
Optimization of Rule-Based Expert Systems
Via State Transition System Construction∗

Blaž Zupan†, Albert Mo Kim Cheng
Department of Computer Science

University of Houston
Houston, Texas 77204-3475

(blaz,cheng)@cs.uh.edu

Abstract

Embedded rule-based expert systems must satisfy
stringent timing constraints when applied to real-time
environments. The paper describes a novel approach
to reduce the response time of rule-based expert sys-
tems. Our optimization method is based on a construc-
tion of the reduced cycle-free finite state transition sys-
tem corresponding to the input rule-based system. The
method makes use of rule-base system decomposition,
concurrency and state-equivalency. The new and op-
timized system is synthesized from the derived transi-
tion system. Compared with the original system, the
synthesized system has (1) fewer number of rule fir-
ings to reach the fixed point, (2) is inherently stable
and (3) has no redundant rules. The synthesis method
also determines the tight response time bound of the
new system. The optimized system is guaranteed to
compute correct results independent of the scheduling
strategy and execution environment.

1 Introduction

Validation and verification is becoming a very im-
portant phase in the life cycle of an expert system [7].
This is particularly true for real-time expert systems.
Apart from functional correctness, a real-time expert
system must also satisfy stringent timing constraints.

Rule-based real-time expert systems are investi-
gated herein. These embedded AI systems are increas-
ingly used in different industrial applications, such
as airplane avionics, smart robots, space vehicles and
other safety critical applications. The result of missing

∗This material is based upon work supported in part by the
National Science Foundation under Award No. CCR-9111563
and by the Texas Advanced Research Program under Grant No.
3652270.

†On leave from “Jožef Stefan” Institute, Ljubljana, Slovenia.

a deadline in these systems may be fatal. The verifi-
cation task is to prove that the system can deliver an
adequate performance in bounded time. If this is not
the case or if the real-time expert system is too com-
plex to analyze, the system has to be resynthesized.
In this paper, we propose a formal framework to such
an optimization.

With respect to the analysis, there has been little
work in the field of synthesis of rule-based real-time ex-
pert systems. The method presented in this paper has
been developed for the EQL rule-based language intro-
duced by Browne et al. [2] and Cheng et al. [6]. They
define the response time of a rule-based program as a
fixed point convergence time. Efficient algorithms for
analyzing the time bounds for rule sets with bounded
response time have been developed [5] for this class of
programs.

Our method is based on the identification of the
finite state transition system for the original rule-
based program. Due to the nontrivial nature of expert
systems, the combinatorial explosion of states may
threaten the implementability of such an approach.
Bouajjani et al. [1] proposes an algorithm for mini-
mal model generation that can be used for building
a state graph of transition systems. He uses a no-
tion of equivalency of states and instead of reducing a
transition system from its entirely generated version,
introduces a unique approach of reducing the system
during its generation. The final states in such a graph
are called stable states and may represent more than
one basic state of an entirely generated graph. A stub-
born attack on state explosion by Valmari is another
method for state reduction. In [9] he argues that con-
currency is the major contributor to state explosion.
It introduces a large number of execution sequences
which lead from a common start state to a common
end state by the same transition, but the transitions
occur in different order causing the sequences to go

through different states. He claims that it would be
sufficient to simulate the process in one arbitrarily cho-
sen order and thus reducing the number of states.

Cheng [3] uses parallel rule execution to achieve
higher execution speed in rule-based systems. He de-
fines inter- and intra-rule-set parallelism. The rule-
based program is decomposed into inter-dependent
sets, rule-sets which do not depend on each other can
be executed in parallel. Within each inter-dependent
rule-set the concurrency is present due to intra-rule-
set parallelism.

The above approaches provide the basis for the
method introduced here. In accordance with Cheng
we use the decomposition techniques so that we do
not have to construct the transition system for the
entire program at once. As proposed by Bouajjani et
al., we construct the transition system with reduced
states. Valmari’s approach is combined with Cheng’s
concept of intra-rule-set parallelism and by using these
two ideas, the number of states is further reduced. The
method uses also the concept of mutual exclusion of
states and builds the transition system so that it con-
tains no cycles.

The new rule-based expert system is derived from
the constructed transition system. Unlike the methods
that use only parallel execution of rules as a means of
increasing the performance [3], we also guarantee sta-
bility of the synthesized system. Another advantage
of the method is that by using the transition system,
it can determine the exact upper bound of rule fir-
ings. Thus, the analysis of the constructed rule based
system by tools described in [5] is no longer needed.

The rest of the paper is organized as follows. The
next section briefly describes the syntax and seman-
tics of the EQL rule-based language, the concept of
finite state transition system, and EQL program de-
composition techniques. The method for EQL pro-
gram optimization is then introduced in Section 3 and
an attempt to evaluate its performance is given by
Section 4. Section 5 is the conclusion.

2 Introductory Definitions

The class of real-time programs considered in this
paper are called equational rule-based EQL programs
[2]. Here we define the syntax of EQL programs, de-
scribe the decomposition techniques to break the pro-
gram into inter-dependent sets, and formally intro-
duce the state transition system of an EQL program.

2.1 EQL program

A real-time expert system given in the form of M
EQL rules is defined as:

r1 : A1 IF EC1

r2 : A2 IF EC2

. . .
rM : AM IF ECM

where k = 1 . . . M , ECk is the enabling condition of
rule k and Ak is an action. An action can be a primi-
tive action or a composite of MS

K subactions:

Ak ≡ Lk,1 := Rk,1 ! . . . ! Lk,MS
k

:= Rk,MS
k

The subactions are interpreted from left to right.
Thus, the subaction with index i can change the value
of variable used by the action with index j, where
j > i.

We will restrict ourselves to the use of two-valued
variables only. In this paper, the right-hand-side of the
assignments and enabling conditions are thus boolean
expressions and can be viewed as predicates on the
variables in the program.

Here (Fig.1) we give an example of an EQL pro-
gram, which will be used throughout the whole paper.
For clarity, the example program is intentionally kept
very simple. In practice, our method can be used for
the systems of much bigger complexity, possibly con-
sisting of several hundreds of rules.

PROGRAM eql_program;

VAR

a, b, c, d : BOOLEAN;

RULES

(* 1 *) c:=TRUE IF NOT a AND NOT b AND NOT c

(* 2 *) [] b:=TRUE IF NOT b

(* 3 *) [] a:=TRUE IF NOT a

(* 4 *) [] b:=FALSE ! c:=FALSE IF NOT a AND b AND c

(* 5 *) [] a:=FALSE ! b:=TRUE ! c:=TRUE IF a AND

NOT b AND c

(* 6 *) [] d:=TRUE IF a AND b AND c

(* 7 *) [] d:=FALSE IF a AND b AND NOT c

END.

Figure 1: An example of the EQL rule-based expert
system.

For ease of discussion, we define three sets of vari-
ables for an EQL program:

1. Lk = {v | v is a variable appearing in the left-
hand-side of the multiple assignment statement
of rule k} (i.e. for the above EQL program L5 =
{a, b, c}),

2. Rk = {v | v is a variable appearing in the right-
hand-side of the multiple assignment statement
of rule k} (R2 = ∅) and

3. Tk = {v | v is a variable appearing in the enabling
condition of rule k} (T2 = {b}).

2.2 Finite State Transition System

To develop an optimization method we view an
EQL rule-based real-time expert system as a transi-
tion system T with a finite set of states. T is a triple
(S,R,→) where

1. S is a finite set of states. Assuming a finite set V
of variables v1, v2, . . . , vN and an ordering of V,
S is the set of all possible Cartesian products of
the values of variables;

2. R is a set of rules r1, r2, . . . , rM in the rule base
of the expert system;

3. → is a mapping associated with each r ∈ R, i.e.
a transition relation r→ ⊆ S × S, so that if r is
enabled at s1 ∈ S and firing of r at that state
s1 would result in the new state s2 ∈ S, we can
write s1

r→s2.

A transition system for the program given in Fig.1
is shown in Fig.2.

µ´
¶³
µ´
¶³
µ´
¶³
µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³
µ´
¶³
µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³µ´

¶³

µ´
¶³

µ´
¶³

@
@@R

?

6 6

-

-HHHj

©©¼
£
£
£
£
£
£
££±

-

-

¾

6 6

?

©©©¼

S
S

S
So

A
A

A
A

A
A

AAK¡
¡¡ª¾

¾

¾

HHHj

Á

0000

0010

0110

1000

0100

1100

1110

1010 1011

1111

1101

0101

1001

0111

0011

0001

2

3

3

7

6

2

3

3
11

3

4
4

3

2
2

3 3

5 5

2 22 2

Figure 2: The transition system for the EQL program
in Fig.1. Values in each vertex (4 binary digits) cor-
respond to the values of the variables a, b, c and d.
There are two fixed points: 1100 and 1111.

The cardinality of S grows exponentially with the
number of variables. Even for a small EQL program
the complexity of transition system is quite big and
this reduces the possibility for time and space-efficient
analysis of the system. For this reason we introduce
the assertion based finite state transition system T R.

T R is a triple (SR,R,⇒) where R is as defined
above and

1. SR is a set of assertions about states in S, so that
for sR ∈ SR and s ∈ S sR(s) holds if state s in T
is mapped to state sR in TR;

2. ⇒ is a mapping associated with each r ∈ R, i.e.
a transition relation r⇒ ⊆ SR × SR. Having s1 ∈
S, s2 ∈ S and r ∈ R so that s1

r→s2, there are
corresponding states sR

1 ∈ SR and sR
2 ∈ SR so

that both sR
1 (s1) and sR

2 (s2) hold and sR
1

r⇒ sR
2 .

When ECk(sR) holds, sR ∈ SR, rule rk is enabled
for all states s for which sR(s) holds.

In contrast with the states in T R, the states in T
describe a specific (and only one) state of a system.
According to this we will also refer to them as primi-
tive states. The states in T R may include one or more
primitive states and we will refer to them as aggregate
states.
T is a special case of T R, where each state in SR

would be an assertion for a single state in S. T R may
have as many states as T . However, using the method
described in the next section we can, depending on
the given EQL system, construct T R of much smaller
complexity.

For a transition system T we define a set of fixed
points as:

F = {f : f ∈ S ∧ s∗ ∈ S ∧ s 6= s∗∧ 6 ∃r ∈ R∧ s1
r→s2}

FR is a set of assertions about fixed points in T , so
that for every fR ⊂ FR and every f ∈ F fR(f) holds.
Similarly, for every f ∈ F there exists fR ∈ FR so
that fR(f) holds. In Fig.2 and 6, fixed points can be
easily identified and are represented by those vertices
that are without outgoing edges.

A launch state is either an initial state of the system
or a state obtained from a fixed-point by replacing the
input variable components with any combination of
input variable values (note that for simplicity, we do
not distinguish between program and input variables,
as is the usual case with an EQL program).

We say that sj is reachable from si if there exists
a path from si to sj . We denote the reachability with
si
∗→sj (si

∗⇒sj for reachability in T R).
Note that in general the transition system of an

EQL program can contain cycles and redundant rules,
and the fixed point may be unreachable from some of
the launch states.

2.3 Decomposition of an EQL Program

We refer to decomposition techniques for EQL pro-
grams as given in [3], which are based on rule inde-
pendency. Rule b is said to be independent from rule
a if the following conditions hold:

I1. La ∩ Lb = ∅.
I2. rule a does not potentially enable rule b.
I3. Rb ∩ La = ∅.
The independent rule-sets are determined from the
high-level dependency (HLD) graph. This is con-
structed from the rule-dependency graph which con-
sists of vertices (one for every rule) and directed edges
(i.e. connecting vertices a to b if rule b is not indepen-
dent from rule a). All vertices belonging to the same
strongly connected component are then grouped into
a single vertex. The graph thus obtained is called a
high-level dependency graph and each of its vertices is
called a forward independent rule-set.

B
B

B
BBMB
B
B
BBN

¾ -

º

¹

·

¸
{6, 7}
C2

º

¹

·

¸
C1

{1, 2, 3, 4, 5}

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯±°

²¯

6
?

¾

¾ Z
Z

ZZ} ¶
¶

¶/

HHjH
HY

?Z
Z

ZZ~Q
Q

QQk

½
½

½½>½½
½½=

7

6

1

2

3 4

5

(B)(A)

Figure 3: Rule-dependency graph (A) and HLD graph
constructed from it (B) for EQL program in Fig.1.

Rules can now be fired by following the topological
ordering of the vertices (rule sets) and firing the rules
in each vertex until a fixed point is reached. If the
EQL program is guaranteed to reach the fixed point
from every launch state, the above uniprocessor rule
schedule will guarantee the program will reach a fixed
point as well [3].

If the optimization technique maintains the asser-
tion about fixed-point reachability for every indepen-
dent rule-set, each rule-set can be optimized indepen-
dently. The above decomposition method was eval-
uated in [3] and the results encourage us to use this
method to substantially reduce the complexity of the
optimization process.

3 Method

We designed an optimization method (see [2])
which takes an original rule-based expert system as

input and derives a new optimized expert system. The
method ensures the correctness of the derived expert
system in terms of reaching the single accurate fixed
point for each launch state and faster response time
in terms of the number of rule firings. The seman-
tics of the original system is altered since the method
guarantees that a launch state will have just a single
corresponding fixed point, which would be arbitrarily
chosen from the set of original fixed point.

Our optimization method consists of two main
steps: construction of an assertion-based finite state
transition system T R and synthesis of a new EQL rule-
based expert system from the derived T R (Fig.4). The
complexity of these two phases is reduced by optimiz-
ing only one independent rule-set at a time.

1: read in the original EQL program P
2: construct HLD graph and identify independent

rule-sets for P
3: forall independent rule-sets in P do
4: construct T R

5: synthesize EQL program PR from T R

6: output PR

7: end forall

Figure 4: Derivation of the optimized EQL program.

3.1 Construction of reduced assertion-
based transition system T R

T R is derived directly from the original rule-set of
the EQL program. The derivation algorithm (Fig.5)
combines bottom-up and breadth-first search strategy.
It starts at the assertion state for the fixed points and
gradually expands T R until all states that can reach
fixed points are found.

The algorithm uses the variable S, which stores a
set of all possible expansion states for the current tran-
sition system. S is constructed by considering all ag-
gregate states in ToExpand and finding all rules that
their (single) firing can result in that state. For each
such tuple (s, r), where expanded state s ∈ ToExpand
and r ∈ R, the expansion state s′s,r is found so that
s′s,r

r⇒s, r ∈ R.
Note that the aggregate state s′s,r should be mu-

tual exclusive with all of the states currently in States
(∀s∗ ∈ S . s∗∧s′s,r ≡ FALSE). This constraint ensures
the constructed system to be cycle-free.

In each iteration the most general aggregate state
from States is chosen. The generality of a state is as-
sumed to be proportional to the number of primitive

states in the aggregate state. The algorithm termi-
nates when no more expandable states are found, i.e.
when the transition system includes all the states that
can reach the fixed point.

The above algorithm will minimize the number of
states grouping equivalent primitive states into a sin-
gle aggregate states. Each transition corresponds to
the firing of a single rule.

To further reduce the number of the states in the
transition system, we use the technique that originates
from the notion of intra-rule-set parallelism [3] and
from the idea of utilizing the concurrency for prevent-
ing the state explosion [9]. We will allow transitions to
be labeled with a set of rules c rather than with single
rule r. For every state s ∈ States we find all possible
rule-sets, so that for particular set c each of the rules
ri ∈ c can be used for expansion of s. Furthermore,
for every pair of rules ri, rj ∈ c, ri 6= rj , the following
conditions should hold:

D1. rules ri and rj do not potentially disable each
other.

D2. Lri ∩ Lrj = ∅ or Lri ∩ Lrj 6= ∅ and the same ex-
pression is assigned to the variables of the subset.

D3. Lri ∩Rrj = ∅ and Lrj ∩Rri = ∅.
D1 follows the idea of intra-ruleset parallelism [3]. D2
and D3 guarantee the cycle-free firing of the two rules
at primitive states in the expansion state s′s,c (for a
detailed proof, see [10]).

While the introduction of multiple-rule transitions
minimizes the number of states in the transition sys-
tem, we can not determine the tight response time
(maximum number of rules to be fired to reach the
fixed point) for such system directly. Namely, consid-
ering the transition s1

c⇒s2, it is not trivial to deter-
mine the lower bound for the rules in c to fire at s1.
For this we have to derive a single-transition system
rooting at s2 and including all the primitive states
from s1. All the transitions in such system would be
labeled with the rules from c and the longest path to
s2 would correspond to the tight number of rules to
be fired for the transition s1

c⇒s2.
Different firing sequences of rules that are enabled

in the same state when the multiple-rule transitions
are used can lead to different fixed points. Due to
the mutual-exclusivity of states, this is not true for a
single-rule transition system, since no two rules can be
enabled at the same primitive state.

The constructed transition diagrams for the EQL
program from Fig.1 are shown in Fig.6. The assertion-
based transition diagrams in Fig.6 are considerably

procedure Construct T R()
1: States := FixedPoints(); Edges := ∅
2: ToExpand := State; NextToExpand := ∅
3: repeat
4: repeat
5: S := {s′s,r | s ∈ States, s′s,r ∩ States 6= ∅,

s′s,r
r⇒s, r ∈ R}

6: if S 6= ∅ then
7: choose most general state |s′s,r| > 0 from S

8: Edges := Edges ∪ s′s,r
c⇒s

9: States := States ∪ {s′s,r}
10: NextToExpand := NextToExpand ∪ s′s,r

11: end if
12: remove states from ToExpand that

can not be expanded
13: until |s′s,r| = 0
14: ToExpand := NextToExpand
15: until ToExpand = ∅
Figure 5: Construction of T R with single-rule tran-
sitions using breadth-first bottom-up derivation algo-
rithm.

®

©
ªa ∨ b

®

©
ª

?
ab

{2, 3}

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

¶

µ

³

´

¶

µ

³

´

¡
¡ª

@
@R

¡
¡ª

¡¡ª

¡
¡ª

@
@R

@
@R

abcd

7

T srf
C1

T mrf
C1

T mrf
C2

T srf
C2

ab

ab ab

32

3

abcd

7

abcd

6

ab

abcd

6

∨ b ∨ bcd
a ∨ bcd∨a ∨ bcd∨
∨ b ∨ bcd

Figure 6: Assertion-based transition diagrams con-
structed for the example EQL program (Fig.1). Both
single- and multiple-rule (srf and mrf) solutions are
shown for both independent rule-sets (C1 and C2).
Fixed points (both in the cases of srf and mrf) are ab
and a ∨ bcd ∨ b ∨ bcd.

simpler than the one shown in Fig.2. This may not
always be the case, nonetheless the experiments per-
formed lead us to believe that for standard rule-based
expert systems, the corresponding constructed T Rs
would not be exhaustibly complex in terms of space
requirements.

3.2 Synthesis of an optimized EQL pro-
gram

A new EQL program is synthesized from the con-
structed T Rs. For each rule in the independent rule-
set, the new enabling condition is determined by scan-
ning through T R so that for rule i and multiple-rule
transitions system:

ECNew
i = (

∨

so
i⇒sd

so) ∧ ECi

In the case of single-rule transitions system, the con-
junction term ECi can be omitted in the above ex-
pression.

The new rules are then formed with the same as-
signment parts as the original rules and the new en-
abling conditions. Rules not included in any of con-
structed T Rs are redundant and will not be added to
the new rule-base.

For our example, the optimized EQL program con-
structed from T Rs with multiple-rule transitions from
Fig.6 is shown in Fig.7. Note that redundant rules 1,
4 and 5 are not included in the constructed transition
system.

PROGRAM optimized_eql_program;

VAR

a, b, c, d : BOOLEAN;

RULES

(* 2 *) [] b:=TRUE IF NOT b

(* 3 *) [] a:=TRUE IF NOT a

(* 6 *) [] d:=TRUE IF a AND b AND c

(* 7 *) [] d:=FALSE IF a AND b AND NOT c

END.

Figure 7: An example of the EQL rule-based expert
system.

Concluding the example we have to point out that
the synthesized EQL program has fewer rules than the
original and it is easy to determine that the maximum
number of rule firings to reach a fixed point is 3 (since
enabling conditions for rule 6 and 7 are mutually ex-
clusive). The resulting program does not have any
cycles.

It is not always the case where the synthesized en-
abling conditions are as simple as the one in our ex-
ample. In general, they are more complex than the

original one due to the greater specificity of the syn-
thesized rules.

The problem of enabling condition complexity can
be solved by iteratively changing the generated T Rs
and observing the impact of the changes by synthe-
sizing the output EQL program. We are considering
simulated annealing [8] to be an appropriate method
to be used for the optimization.

4 Experimental Results

To demonstrate the applicability of our method, we
used it to optimize several EQL programs. The met-
rics used are the number of rules fired to reach the
fixed point and the complexity of the rules (enabling
conditions) before and after the optimization. To eval-
uate the performance of the non-optimized EQL pro-
gram, we used the Estella - General Analysis Tool[4].
Estella determines the upper-bound on the number of
rule firings for a cycle-free (stable) EQL program. The
complexity of an enabling condition was determined
by counting the number of operations (conjunctions,
disjunctions and negations) that are to be performed
to evaluate the conditions. The optimization does not
alter the action part of the rules. For this reason, the
complexity of the action part has not been considered
in this analysis.

In [6], Estella was used to analyze the Integrated
Status Assessment Expert System (ISA) and the Fuel
Cell Monitoring Expert System (FCE). For both ex-
pert systems Estella identifies the cycles of rule-firings
and therefore is not able to determine the number of
rules to be fired to reach a fixed point. We have used
our optimization program on both mentioned expert
systems. Due to the rule-firing cycles, besides obtain-
ing an equivalent stable cycle-free system, we could
not evaluate the improvement in the time-response.

To be able to compare the time-response of un-
optimized and optimized systems, we have developed
a tool for randomized generation of EQL programs.
Given the input parameters, the tool generates the
cycle-free EQL programs that could be analyzed with
Estella. We evaluated seven such different programs.
Since the independent rule-set is the basic unit for
both the Estella and our method, we have generated
the program with a single independent rule-set. Table
1 shows the results of the evaluation of the optimiza-
tion.

Two different assumption based transition system
techniques were investigated: (1) single-rule transi-
tion case allowed us to determine the tight response

#rules #vars #fired av. #operations/rule av. #vars/rule #states in T R

U OS OM all U OS U OS OM U OS OM OS OM
P1 5 3 3 5 5 2 1.80 13.0 14.5 1.80 4.333 5.0 6 3
P2 5 4 4 5 4 3 7.20 11.50 12.5 3.80 4.000 4.25 11 3
P3 8 6 7 5 5 2 1.50 9.167 14.2 1.625 5.000 4.714 10 3
P4 12 6 10 5 5 3 1.833 11.50 13.5 1.833 4.833 4.600 15 3
P5 10 7 8 5 5 3 2.30 10.0 10.7 2.100 5.00 5.000 15 2
P6 10 8 9 10 7 4 7.20 121.2 229.8 4.500 10.00 9.88 39 2
P7 15 11 13 10 7 4 6.733 179.3 157.3 4.266 9.272 9.615 53 3

Table 1: Results of the experiments given for the unoptimized (U) and optimized programs synthesized from
transition systems with single (OS) and multiple-rule (OM) transitions. #rules and #vars are respectively the
total number of rules and variables in the program. The number of operations and variables per rule are averaged
for all of the rules in the generated program. #fired is the maximum number of rules to be fired to reach a fixed
point.

bound, and (2) the multiple-rule transition case highly
reduced the size of the assumption based transition
system.

The optimization always resulted in a reduction of
the number of rules to be fired to reach a fixed point
in respect to the one determined by Estella from the
unoptimized program. It was expected that the opti-
mized programs will have more complex enabling con-
ditions. For most of these programs, the total number
of rules was changed, indicating that some rules are re-
dundant (compare this to our example in the previous
section).

A surprisingly low number of states in the assertion-
based transition diagram for programs P6 and P7 have
been observed. Note that even for a small program
with 10 variables, there are potentially 210 = 1024
states in the non-reduced transition diagram.

In general, based on the analysis of the systems
with single-rule transitions, the performance was im-
proved from 25% to 50% with regard to the number
of rule firings while the enabling condition complex-
ity was increased. Although the complexity of the
enabling conditions was in general increased, the fact
the number of rules in the new rule-base was in all
cases reduced leads us to believe that this would not
have a major impact to the performance. Besides, the
performance is enhanced due to the cycle freedom of
the synthesized programs. Furthermore, we have to
stress that all optimized programs are stable and thus
are guaranteed to reach a fixed point in a determined
bounded number of rule firings.

5 Conclusion

In this paper, we have described a novel approach
to the optimization of rule-based expert systems. Our
method is based on a construction of the reduced fi-
nite state transition system corresponding to the input
rule-based system. Our focus is on the optimization of
the rules’ enabling conditions while leaving the rules’
assignments unchanged.

The new and optimized rule-based expert system is
synthesized from the derived transition system. The
states in the transition system are mutually exclusive.
This, together with the cycle-free nature of the transi-
tion system’s state diagram, contributes to the special
properties of the rule-based system constructed from
it.

In comparison with the original system, the syn-
thesized rule-based systems have fewer number of rule
firings to reach the fixed point. The rule-based sys-
tems constructed by the proposed method contain no
cycles and thus are inherently stable. Redundant rules
present in the original systems are either changed or
removed.

For programs generated from systems with single-
rule transitions, each launch state of such rule-based
systems has exactly one fixed point which makes the
systems deterministic. The result of the execution of
such systems no longer depends on the order of the
sequence of rule firings for the rules enabled at the
same time. This makes the system tolerant to the
different scheduling techniques and, once tested, it can
guarantee the same results under different execution
environments.

We have shown the evaluation of the method
through its use for the optimization of several sam-

ple rule-based programs. The development of our sys-
tematic approach to tackle the optimization problem
opens up new avenues to further enhance the runtime
performance of rule-based systems in time-critical en-
vironments. Ongoing work is also done to apply the
proposed techniques to a variety of rule-based sys-
tems.

References

[1] A. Bouajjani, J.-C. Fernandez, and N. Halb-
wachs. Minimal model generation. In E. M.
Clarke and R. P. Kurshan, editors, Proc. 2nd Int’l
Conference on on Computer-Aided Verification,
pages 197–203, New Brunswick, NJ, June 1991.

[2] J. C. Browne, A. M. K. Cheng, and A. K.
Mok. Computer-aided design of real-time rule-
based decision systems. Technical report, Depart-
ment of Computer Science, University of Texas at
Austin, 1988. Also to appear in IEEE Transac-
tions on Software Engineering.

[3] A. M. K. Cheng. Parallel execution of real-time
rule-based systems. In Proc. IEEE Int. Parallel
Processing Symposium, pages 779–789, Newport
Beach, CA, April 1993.

[4] A. M. K. Cheng, J. C. Browne, A. K. Mok, and
R.-H. Wang. Analysis of real-time rule-based sys-
tem with behavioral constraint assertions speci-
fied in Estella. IEEE Transactions on Software
Engineering, 19(9):863–885, September 1993.

[5] A. M. K. Cheng and C.-H. Chen. Efficient re-
sponse time bound analysis of real-time rule-
based systems. In Proc. 7th Annual IEEE Conf.
on Computer Assurance, pages 63–76, NIST,
Gaithersburg, Maryland, 1992.

[6] A. M. K. Cheng and C.-K. Wang. Fast static
analysis of real-time rule-based systems to verify
their fixed point convergence. In Proc. 5th Annual
IEEE Conf. on Computer Assurance, pages 197–
203, NIST, Gaithersburg, Maryland, June 1990.

[7] L. B. Eliot. If it works, is it good? AI Expert,
7(6):9–11, June 1992.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[9] A. A. Valmari. A stubborn attack on state
explosion. In E. M. Clarke and R. P. Kur-
shan, editors, Proc. 2nd Int’l Conference on
on Computer-Aided Verification, pages 156–165,
New Brunswick, NJ, June 1991.

[10] B. Zupan. Optimization of real-time rule-based
systems using state-space diagrams. Master’s the-
sis, University of Houston, Department of Com-
puter Science, 1993.

