
Response Time Optimization of Rule-Based Expert Systems∗

Blaž Zupan†, Albert Mo Kim Cheng
Department of Computer Science

University of Houston
Houston, Texas 77204-3475

(blaz,cheng)@cs.uh.edu

Abstract

Real-time rule-based decision systems are embedded
AI systems and must make critical decisions within
stringent timing constraints. In the case the response
time of the rule-based system is not acceptable, it has
to be optimized to meet both timing and integrity con-
straints. This paper describes a novel approach to re-
duce the response time of rule-based expert systems.
Our optimization method is twofold: the first phase
constructs the reduced cycle-free finite state transition
system corresponding to the input rule-based system,
and the second phase further refines the constructed
transition system using the simulated annealing ap-
proach. The method makes use of rule-base system de-
composition, concurrency and state-equivalency. The
new and optimized system is synthesized from the de-
rived transition system. Compared with the original
system, the synthesized system has (1) fewer number
of rule firings to reach the fixed point, (2) is inherently
stable, and (3) has no redundant rules.

1 Introduction

Modern, in particular computer based, technology
is increasingly used in the environments where events
are not predictable, the state of the world is not easily
characterized in advance, and the time-response re-
quirements are critical. Real-time systems belong to
this class of applications and our main interest is in
rule-based real-time systems and the problems posed
by stringent time requirements these systems have to
satisfy.

The rise of the use of rule-based, real-time expert

∗This material is based upon work supported in part by the
National Science Foundation under Award No. CCR-9111563
and by the Texas Advanced Research Program under Grant No.
3652270.

†On leave from “Jožef Stefan” Institute, Ljubljana, Slovenia.

systems as embedded AI systems in different industrial
applications, such as airplane avionics, smart robots,
space vehicles and other safety critical applications in-
creases the importance of the validation and verifica-
tion phase of their life cycle. Apart from functional
correctness, real-time expert systems must also satisfy
stringent timing constraints. The result of missing a
deadline in these systems may be fatal and the ver-
ification task is to prove that the system can deliver
an adequate performance in a bounded time. If this
is not the case or if the real-time expert system is too
complex to analyze, the system has to be resynthe-
sized.

The definition of the synthesis problem given by
Browne et al. in [2] is: “Given an equational rule-
based program P that always reaches a safe fixed point
in finite time but is not fast enough to meet the timing
constraints under a fair scheduler, determine whether
there exists an extension of P that meets both the tim-
ing and integrity constraints under some scheduler.”

We propose a formal framework to a response-time
optimization of the rule-based expert system given
in the form of rule-based equational logic programs
(EQL) as introduced by Browne et al. in [2] and Cheng
and Wang in [6]. Our method is based on the iden-
tification of the finite state transition system for the
original rule-based program. Because of the nontriv-
ial nature of expert systems, the combinatorial explo-
sion of states may threaten the implementability of
such an approach. To tackle the complexity problem,
we use several different approaches, the most impor-
tant of them being: (1) the minimal model genera-
tion method by Bouajjani et al. [1], (2) the stubborn
attack on state explosion using the notion of concur-
rency by Valmari [10], and (3) the equational program
decomposition method and concurrent rule execution
algorithm by Cheng [4].

Bouajjani et al. [1] proposes an algorithm for min-
imal model generation that can be used for building a
state space graph of transition systems. The algorithm

combines generation and reduction methods. He uses
a notion of the equivalency of states and instead of re-
ducing a transition system from its non-reduced ver-
sion introduces a unique approach of reducing the sys-
tem during its generation. A stubborn attack on state
explosion by Valmari is another method for state re-
duction. In [10] he argues that concurrency is the
major contributor to state explosion. It introduces a
large number of execution sequences that lead from
a common start state to a common end state by the
same transition, but the transition occurs in different
order causing the sequences to go through different
states. We use both approaches in combination with
Cheng’s [4] parallel execution model. The later is used
for rule-base system decomposition and reduction of
complexity of optimization, and in combination with
Valmari’s approach to reduce the number of states in
the transition system.

Since the proposed optimization usually increases
the complexity of rules (enabling conditions), we in-
troduce an additional optimization phase. It is based
on the known method of simulated annealing [8] and
attempts to reduce both the number of rules to be
fired and the complexity of enabling conditions.

The optimized rule-based system is synthesized
from the derived transition system. The system is
cycle-free and has optimal performance in terms of
number of rules to be fired to reach the fixed point.

The rest of the paper is organized as follows. In
Section 2 we outline the syntax of EQL rule-based
programs, introduce the transition system representa-
tion and describe the rule-based programs decomposi-
tion techniques. Section 3 describes the proposed opti-
mization technique, which is ahen discussed in Section
4. The Additional optimization phase is described in
Section 5. Section 6 is the conclusion.

2 Prerequisites

The real-time decision system investigated here is
described by a model introduced by Browne et al.
[2].The system interacts with the external environ-
ment by taking sensor readings and computing control
decisions based on sensor readings and stored state in-
formation. This model is depicted in Fig.1.

The decision system is represented as an equational
EQL rule- based program [2, 3]. This consists of a
finite set of M rules each of which has three parts:

1. LHS: the left-hand-side of a multiple assignment
statement,

update of the system state

(system variables’ values)

system

decision

environment

decisions
(input variables’ values)

sensor readings

Figure 1: The real-time decision system.

2. RHS: the right-hand-side of a multiple assignment
statement, and

3. EC: the enabling condition.

An enabling condition is a predicate on the variables
in the program. For ease of discussion, we define three
sets of variables for a rule rk, 1 ≤ k ≤ M of an EQL
program:

1. Lk = {v|v is a variable appearing in LHS of rk},

2. Rk = {v|v is a variable appearing in RHS of rk},
and

3. Tk = {v|v is a variable appearing in EC of rk}.
An example of an EQL program is shown below

(Fig.2. We will restrict ourselves to the use of two-
valued variables only. Note that EQL programs that
use multivalued variables instead can be easily (auto-
matically) converted to it. The assignment statements
are interpreted from left to right.

PROGRAM eql_program;

INPUT

b : boolean;

VAR

a, c : BOOLEAN;

RULES

(* 1 *) a:=TRUE

IF NOT a AND b AND c OR

NOT a AND NOT b AND NOT c

(* 2 *) [] c:=FALSE IF a AND c

(* 3 *) [] a:=FALSE IF a AND b AND NOT c

(* 4 *) [] a:=FALSE ! c:= TRUE IF a AND NOT c

END.

Figure 2: An example of the EQL rule-based expert
system.

The transition system of an EQL program, as de-
fined in [2] is a labeled graph G = (V, E). V is a
set of vertices each of which is labeled by a tuple:
(x1, ..., xn, s1, ...sp) where xi is a value in the domain
of ith input sensor variable and sj is a value in the do-
main of the jth program variable. E is a set of edges
each of which denotes the firing of a rule. An edge
(i, j) connects vertex i to vertex j iff there is a rule r
which is enabled at vertex i and firing r will modify
the program variables to have the same values as the
tuple at vertex j. We will denote this with i

r→j.
Fig.3 shows a transition system for a program in

Fig.2. There are two vertices of special type (001 and
010) that have no outgoing edges and are said to be
fixed points. Fixed points are states in the system
where no rule is enabled or, if so, firing one will not
change the state. Note that in our transition system
we do not mark the self loops, i.e. cycles of type i

r→i.

000

100

101

001

111 011

110

010

2

34

1

1 2 4

Figure 3: A transition system for the EQL program
in Fig.2.

An invocation of an equational rule-based program
can be thought of as tracing a path in the transi-
tion system. Every time the values of the input vari-
ables are changed (at that point the system is in a
so-called launch state) the values of the system vari-
ables have to be determined through iterative firings
of rules. The fixed point is reached when no vari-
able’s value changes. The required property of hard
real-time rule-based system is reaching the fixed point
before the next change of the values of input variables.
In accordance to this, Browne et al. [2] define a tim-
ing constraint as an upper bound on the length of the
paths from a launch state to a fixed point, and this
corresponds to the response time of the EQL program.

The vertices of the above defined transition system
describe a specific (and only one) state of the system.
According to this we will also refer to them as primi-
tive states. In the next section we will introduce the
notion of equivalent states. These states will group
equivalent primitive states into an aggregate states.

I.e. having two aggregate states I = {i1, ..., im} and
J = {j1, ..., jm}, where i1, ..., im, j1, ..., jm are primi-
tive states, a relation I

r→J would mean that for every
primitive state ix, x ∈ 1..m in I there exists primitive
state jy, y ∈ 1..n so that ix

r→jy.
The parallelization of the rule-based system is inter-

esting from the viewpoint of speeding-up the execution
as well as for the decomposition of the system. Our
main interest is in the later, since it makes the divide
and conquer approach feasible to lower the complexity
of the analysis and synthesis of the system. We refer
to the parallel execution model proposed by Cheng [4].
He uses the notion of inter-ruleset parallelism to de-
compose the EQL program into inter-dependent rule-
sets. We use his model to optimize the rules in each
such rule-set separately and thus decrease the com-
plexity of the optimization phase.

3 Method

Traditional methods [2] construct an expanded
transition system that includes all the states and tran-
sitions and then use various reduction and optimiza-
tion methods to construct a reduced transition system.
They would then use the model checker for the tem-
poral logic CTL [7] to check the integrity and timing
constraints. This approach is potentially very complex
because of the state explosion problem. Note that the
system with N two-valued variables would have 2N

different states.
We here present an optimization method that de-

rives the reduced transition system directly from the
rule-based program and can thus avoid the state explo-
sion. The new and optimized equational rule- based
program is then synthesized from the derived transi-
tion system.

Despite the fact that the reduced transition system
can be used also for analysis purposes, our main goal
is to use it for the synthesis of the new EQL program.
The derived EQL program will have:

• improved response time: if there would be two
or more different paths from a launch state to the
fixed point in the original non- reduced transition
system, only the shortest one will be present in
the reduced transition system,

• no cycles: all states of the system are stable, and

• no redundant rules/transitions.

The method ensures the correctness of the derived ex-
pert system in terms of reaching the single accurate

optimized equational

rule-based

program

expanded

transition

system

original equational

rule-based

program

reduced

transition

systemderivation

optimized

reductionderivation

synthesis

system
transition

system
transition

rule-base

Figure 4: Optimization of equational rule-base pro-
gram. The steps taken by our optimization method
are marked with solid line, while traditional and more
complex optimization method is denoted by a dashed
line.

fixed point for each launch state. The semantics of the
original system is altered since the method guarantees
that a launch state will have just a single correspond-
ing fixed point, which would be arbitrarily chosen from
the set of original fixed points.

To construct a reduced transition system, several
techniques are combined. We first use a bottom-up
derivation method, which starts from the fixed points
and then gradually adds other states and transitions
to the system. To decrease the complexity of the tran-
sition system, we identify the equivalent states while
building the transition system. The third technique
employs further reduction in the number of states and
transitions combining those rules that can be fired in
parallel. This section presents each of the above tech-
niques and discusses the synthesis method.

3.1 Bottom-Up Derivation of Transition
System

Our bottom-up derivation starts at fixed points of
the system and gradually builds the transition system
iteratively adding new states. Each state is added
to the system only once, and the resulting transition
system will thus have states/vertices with at most one
outgoing transition/edge. The algorithm is depicted
in Fig.5.

In the above algorithm, the states used for the ex-
pansion of the current transition system are arbitrar-
ily chosen. Each original (expanded) transition system

procedure BottomUpDerivation()
1: T = {f | f is a fixed point }
2: while (∃s 6∈ T and ∃s′ ∈ T so that s

r→s′)
3: add state s and transition s

r→s′) to T
4: end while

Figure 5: Bottom-up derivation of transition system.

may thus have different corresponding bottom-up con-
structed transition systems. We do not construct the
transition system from the existent (expanded) one
but rather use the rule-based program and a set of
corresponding fixed points. Therefore, we have to ap-
ply the rules “in reverse manner”, meaning that given
the state s′ and rule r we have to find a state s so that
s

r→s′). We have developed a set of functions that al-
low us to do so. Interested reader should refer to [11]
for a detailed description.

Fig.6 shows an example of the original and corre-
sponding bottom-up transition system, which has, in
respect to the original one, the following properties:

• no cycles (all the cycles from the original transi-
tion system are removed),

• determinism: each state has only one correspond-
ing fixed point,

• the states that do not have a path to any of the
fixed points are eliminated, and

• substantial number of transitions are eliminated.

To reduce the response time we can combine the
bottom-up derivation with the breadth-first search ap-
proach. We assume the fixed points to be at level 0
and other states to be at level l, where l is a number
of transitions between the specific state and its corre-
sponding fixed point. Breadth-first search technique
will add all the lower level states to the transition sys-
tem prior to the higher level states. Such derivation
will result in constructing only the shortest paths from
a certain state to its corresponding fixed point.

3.2 Equivalent States

Our bottom-up derivation reduces the number of
states in the transition system by excluding the states
that do not have a corresponding path to the fixed
points. The number of states can be further reduced
with combining the equivalent states into the single
aggregate state. We follow the idea of Bouajjani et
al. In [1] they proposed an algorithm which, instead

a b

c d

e f

g h

i

j

k l

m

1 2

3

2

3

4
4

4

5

3
2

2

a b

c d

e f

j

k l

m

1 2

3

2

3 4
3

(A)

(B)

Figure 6: An example of original (expanded) tran-
sition system (A) and corresponding bottom-up con-
structed transition system (B).

of reducing a transition system from its non-reduced
version, performs a reduction during its generation.

We use the algorithm proposed by Bouajjani et al.
and combine it with breadth-first search derivation.
The initial transition system consists of a single aggre-
gate state which includes all the fixed points. Again,
the transition system is gradually expanded, this time
grouping all the states that lead to the same aggre-
gate state using a specific transition. I.e., having a
state I ∈ T , where T is a current transition system
under generation, we can expand T with aggregate
state J and transition r, so that I

r→J . All the aggre-
gate states in the new transition system have to be
mutually exclusive, i.e. 6 ∃s . s ∈ I ∧ s ∈ J . I 6= J ,
where s is some primitive state and I and J are ag-
gregate states in the transition system.

As before, we use the breadth-first search tech-
nique. We also use a heuristic technique that adds
to the transition system first those aggregate states
that include the highest number of primitive states.
Ties are broken arbitrarily.

Fig.7 shows a transition system with equivalent
states grouped into aggregate states that corresponds
to the transition system from Fig.6. The number of
states in the transition system is reduced from 10 to
5, while the original non- reduced transition system
included 13 states.

e f m

c d k

b ja

l

2

3 4

1

Figure 7: Transition system with grouped equivalent
states constructed from the system in Fig.6.A.

3.3 Reduction of Transition System Due
to Rule Execution Concurrency

The transition systems introduced above have sin-
gle-rule transitions. We here present a method that
can generate a transition system with transitions la-
beled with one or more rules (multiple- rule transi-
tions).

Suppose we have two aggregate states I and J , and
a set of rules R = {r1, ..., rk} that are all enabled at
I, i.e. ∀ri ∈ R . ∃s ∈ I so that ri is enabled at s. We
can write I

R→J) if ∀s ∈ I . ∃s′ ∈ J so that s
r→s′. For

rules in R we impose the following constraints:

C1. rules in R can be fired in parallel, and

C2. firing the rules in R should not result in a cycle
that would include only the primitive states in I.

For two rules ra and rb both belonging to R, the for-
malization of the above constraints is:

D1. rule ra and rb do not potentially disable each
other,

D2. La ∩ Lb = ∅, or La ∩ Lb 6= ∅ and the same ex-
pression is assigned to the variables of the subset,
and

D3. La ∩Rb = ∅ and Lb ∩Ra = ∅.
D1 follows the idea of intra-ruleset parallelism intro-
duced by Cheng [4] (C1), and D2 and D3 guarantee
the cycle- freedom (C2).

The transition system generation algorithm is now
more complex so that not only all the states of the
certain level would be considered for the expansion,
but also all the possible combinations of rules satis-
fying D1 to D3 would have to be derived and used.
Having an aggregate state S ∈ T that is considered

for expansion, and a group of rules R, so that each
of its firing can result in S, we construct concurrent
execution graph CON(V, E). Each vertex in CON
represents a single rule from R and two vertices are
connected if D1 to D3 hold for corresponding two
rules.

From the graph CON we construct all possible
combinations of rules that can be fired in parallel. The
algorithm uses the matrix M representation of CON,
where the size of M is |R|2 and M is defined as:

Mi,j =
{

1 if i and j are neighbors in CON
0 otherwise

The algorithm removes all equal rows and rows that
include all corresponding 1’s of some other row. Each
row of the resulting matrix represents a group of rules
to be fired in parallel. Thus, for row i, rules rj can
be fired in parallel iff Mi,j = 1. In the transition
system construction algorithm (Fig.10) we will denote
this procedure with G(CON). Rx ∈ G(CON) would
be one of possible rule-sets to be used in a transition.

1 2

3 4

Figure 8: An example of CON graph.

We here show an example of the derivation of
G(CON). Suppose we have a CON graph for four
rules shown in Fig.8. The initial M matrix is:

M =

1 2 3 4

1 1 1 1 0

2 1 1 1 1

3 1 1 1 1

4 0 1 1 1

and the resulting matrix is:

M =

(1 2 3 4

3 1 1 1 0

4 0 1 1 1

)

Therefore, G(CON) = {{1, 2, 3}, {2, 3, 4}} and the
transition may be labeled with rules 1, 2 and 3, and
2, 3 and 4.

Considering our example transition system from
Fig.7 and knowing that rules 3 and 4 satisfy the con-
straints D1 to D3, whiles rules 1 and 2 do not, we
can construct the reduced transition system as shown
in Fig.9.

e f m

b ja

c d lk

21

{3,4}

Figure 9: A transition system with multiple-rule tran-
sitions and aggregate states.

3.4 Transition System Construction: The
Algorithm

The algorithm that combines the approaches intro-
duced above and builds the reduced transition system
directly from the original rule- based EQL program is
depicted in Fig.10. Variables States and Edges store
the current state of the transition system. ToExpand
stores the states that are considered to be expanded.
Initially, ToExpand consists of a single aggregate state
that includes all the fixed points. NextToExpand
stores the states of the next level. In each itera-
tion an aggregate state that stores the biggest num-
ber of primitive states is chosen for the expansion.
If there is no such state (state includes 0 primitive
states), ToExpand becomes NextToExpand and the
next level of states is investigated. The derivation ter-
minates when there are no more states available to
expand.

Cover includes all the primitive states currently in
the transition system and is used to obtain aggregate
states that are mutually exclusive (line 12 in the algo-
rithm).

Despite the fact that the use of multiple-rule tran-
sitions reduces the number of states, there is a certain
advantage of single-rule transitions systems. Namely,
the latter are always deterministic, meaning that at
each primitive state of the system at most one rule
will be enabled. It has been shown [11] that it is easy
to convert multiple-rule transitions system to the one

procedure TransitionSystem()
1: States := FixedPoints(); Cover := States;

Edges := ∅
2: ToExpand := State; NextToExpand := ∅
3: repeat
4: repeat
5: forall S ∈ ToExpand do

6: Applicable := {ri : ∃S′ . S
r→S′)}

7: for rules in Applicable construct CON graph
8: forall R ∈ G(CON) do

9: S′S,R := ∪ S′ − Cover where S
r→S′, r ∈ R

10: end forall
11: end forall
12: chose S′S,R so that |S′S,R| = Max
13: if |S′S,R| 6= 0 then

14: Edges := Edges ∪ S′S,R
R→S

15: States := States ∪ {S′S,R}
16: Cover := Cover ∨ S′S,R

17: NextToExpand := NextToExpand ∪ S′S,R

18: end if
19: until |S′S,R| = 0
20: ToExpand := NextToExpand
21: until ToExpand = ∅

Figure 10: Bottom-up breadth-first search construc-
tion of reduced transition system.

with single-rule transitions, and we may use two dif-
ferent approaches in combination.

3.5 Synthesis of an Optimized Rule-
Based System

A new EQL program is synthesized from the con-
structed T Rs. For each rule in a independent rule-set
we determine the new enabling condition by scanning
through T R so that for rule i,

ECNew
i = (

∨

So
i→Sd

So) ∧ ECi

New rules are then formed with the same assignment
parts as in the original rules and new enabling condi-
tions.

4 Discussion

It was shown [12] that the proposed algorithm can
be applied to minimize the number of rule firings. The
method was used to optimize a set of randomly gener-
ated EQL programs of up to 15 rules and up to 10 vari-
ables. The Estella - General Analysis Tool proposed

by Cheng et al. [5] was used to estimate the response
time in regard to the number of rule firings for the
original programs. The same metrics were derived di-
rectly from the transition systems using the proposed
optimization algorithm for the optimized programs.
While the optimized programs required on the aver-
age 25% to 50% fewer rule firings to reach the fixed
point, the enabling condition complexity increased up
to 2000%.

The algorithm was also used to optimize the In-
tegrated Status Assessment Expert System (ISA) [9].
We used the two-valued EQL version with 35 rules
and 58 variables. The Estella - General Analysis Tool
[5] was used to determine the stability of the system
and discovered several cycles which led to a termina-
tion of the analysis. Thus, the time response of the
original program could not be determined and the au-
thors are unaware of any other method that could do
so. Still, we have used the ISA expert system to com-
pare the complexity of the unoptimized and optimized
programs, and discovered that the later has approxi-
mately 10 times more complex enabling conditions.

All this led us to believe that optimization should
also address enabling condition complexity and that
the response time should not be viewed solely from
number of rule firings point of view.

5 Proposal for Additional Iterative
Improvement Method

In the previous sections we have shown the opti-
mization technique, which improves the input rule-
based program in different ways, but addresses the
response time only from the viewpoint of the upper
bound of number of rules to fire to reach the fixed
point. The optimization process makes the rules’ en-
abling conditions more specific than the original ones
and thus increases their complexity. The proposed op-
timization does not address this issue. Here we intro-
duce the method that attempts to minimize both the
number of rules to fire and the complexity of enabling
conditions.

The iterative improvement method introduced here
starts from the transition system derived by our op-
timization algorithm and attempts to iteratively im-
prove it. The improvement is defined by means of
minimizing the cost function. In each iteration, the
method generates a new transition system from the old
one and synthesizes the corresponding EQL program.
It then compares the cost of both solutions, and if the
acceptance criteria is satisfied accepts a new solution.

Owing to its simplicity and potentially good perfor-
mance [8] we use a simulated annealing optimization
method scheme.

from the
derivation

of optimized
transition

system

transition
system

neighboring
solution

accept the
neighbor?

the new solution
is the neighbor

keep with
current solution no

yes

Figure 11: Iterative improvement method.

Fig.11 describes the iterative improvement method.
The cost function to be minimized by the simulated
annealing program is

C = c1NRF + c2ECC + c3(NS −NS0)

where NRF is the maximum number of rules to fire
to reach a fixed point, ECC represents the complexity
of the enabling conditions, NS is the number of states
of the newly derived transition diagram, and NS0 is
the number of states in the original transition dia-
gram (output of the greedy or breadth-first algorithm
from the previous section). ECC is expressed as the
average number of two-valued operations (AND, OR,
NOT) to evaluate the enabling condition. Constants
c are weights and depending on the type of the opti-
mization preferred can be set accordingly.

The critical phase of the algorithm is derivation of
the neighboring solution. The main idea is to steal
some primitive states from certain aggregate state of
the system and either add them to some other aggre-
gate state or create a new aggregate state. The main
constraints for the method are that: (1) the resulting
system has to be correct, (2) it is cycle-free, and (3)
all the primitive states present in the original system
have to be present in the neighboring one.

The algorithm for derivation of the neighboring so-
lution is rather complex and lengthy to describe and is
presented in detail in [11]. We are currently working
on the implementation and evaluation of the impact
of such an algorithm.

6 Conclusion

We have presented a new two-phase algorithm for
the response time optimization of rule-based expert
system. The two-phase algorithm first constructs the

reduced and optimized transition system, which en-
codes all the necessary information about the behav-
ior of the real-time system. Next, the correspond-
ing optimized rule-based system is constructed from
the derived transition system. The original and op-
timized rule-based systems are equivalent: all the
launch states of the optimization system reach exactly
one corresponding fixed point from the original sys-
tem. Furthermore, the new system is stable and does
not contain cycles, and has optimal performance in
respect to the number of rules to fire to reach a fixed
point.

The proposed optimization technique would usu-
ally increase the complexity of enabling conditions
and this might influence the response time of the rule-
based program. We propose an additional optimiza-
tion phase based on the known optimization method
of simulated annealing. This uses the derived reduced
transition system and attempts to change it so as to
minimize both the number of rules to be fired and the
complexity of the enabling conditions.

References

[1] A. Bouajjani, J.-C. Fernandez, and N. Halb-
wachs. Minimal model generation. In E. M.
Clarke and R. P. Kurshan, editors, Proc. of 2nd
International Conference, CAV ’90, pages 197–
203, New Brunswick, NJ, June 1991. Springer-
Verlag.

[2] J. C. Browne, A. M. K. Cheng, and A. K. Mok.
Computer-aided design of real-time rule-based
decision system. Technical report, Department of
Computer Science, University of Texas at Austin,
1988. Also to appear in IEEE Trans. on Software
Engineering.

[3] A. M. K. Cheng. Analysis and synthesis of real-
time rule-based decision systems. PhD disserta-
tion, Dept. of Computer Science, University of
Texas at Austin, 1990.

[4] A. M. K. Cheng. Parallel execution of real-time
rule-based systems. In Proc. of IEEE Interna-
tional Parallel Processing Symposium, pages 779–
789, NewPort Beach, CA, April 1993.

[5] A. M. K. Cheng, J. C. Browne, A. K. Mok, and
R.-H. Wang. Analysis of real-time rule-based sys-
tem with behavioral constraint assertions speci-
fied in Estella. IEEE Trans. on Software Eng.,
19(19):863–885, September 1993.

[6] A. M. K. Cheng and C.-K. Wang. Fast static
analysis of real-time rule-based systems to verify
their fixed point convergence. In Proc. 5th Annual
IEEE Conf. on Computer Assurance, pages 197–
203, NIST, Gaithersburg, Maryland, June 1990.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
system using temporal logic specifications. ACM
Trans. on Programming Languages and Systems,
8(2):244–263, April 1986.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[9] C. A. Marsh. The ISA expert system: A pro-
totype system for failure diagnosis on the space
station. MITRE report, The MITRE Corpora-
tion, Houston, Texas, 1988.

[10] A. Valmari. A stubborn attack on state explo-
sion. In E. M. Clarke and R. P. Kurshan, editors,
Proc. of 2nd International Conference, CAV ’90,
pages 156–165, New Brunswick, NJ, June 1991.
Springer-Verlag.

[11] B. Zupan. Optimization of real-time rule-based
systems using state-space diagrams. Master’s the-
sis, University of Houston, Department of Com-
puter Science, 1993.

[12] B. Zupan and A. M. K. Cheng. “Optimization
of rule-based systems via state transition system
construction”. to be presented at IEEE Conf.
on Artificial Intelligence for Applications, March
1993.

