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Abstract

Developing practical tools to aid in understanding medical physiological systems is a
formidable undertaking. This paper presents a method that uses a property structure for
the domain being investigated. Furthermore, it employs realistic models to present examples
of the behavior of the system. From these examples the principles that relate the properties
are inferred through the use of genetic algorithm-based machine learning. The principles are
expressed as qualitative rules that derive the values of the properties. The structured ap-
proach and the qualitative representation of principles provide a simplified means to reason
about the roles of properties and meaning of principles of the physiological systems being
investigated.

1 Introduction

Developing practical tools to aid in understanding medical physiological systems is a formidable
undertaking. Recent advances in computational technology allow the use of complex realistic
models to assist in the discovery of principles and properties within different physiological systems.
Such models map a set of input properties (input parameters of a model) to a set of output
properties (description of model behavior). However, as these models grow in sophistication, it
becomes more difficult to manipulate the growing number of model parameters and equations
efficiently in order to reason about the roles of the properties and hypothesize about the principles
of the modeled system. Moreover, the simulation of realistic models usually requires substantial
computational resources. The reasoning about principles which is then based only on model
simulation can be a potentially time-consuming and tiresome process.

The principles of the modeled system determine how the input properties are mapped to output
properties. In order to understand the process that is being modeled, it should be feasible to derive
why such mapping occurs and to be able to derive and understand the principles that guide the
mapping.

The realistic model itself is usually based on several known mechanisms that can be viewed as
atomic principles. The reason that such models were built is not only to reproduce the behavior
of the realistic system, but moreover to discover how these mechanisms interact, how they are
influenced by a selection of input properties, and what the relationship is between properties. For
example, a realistic computational neuromodel [13, 9] may model the properties of sodium chan-
nels, but a sole inspection of the model equations does not reveal how sodium channel activation
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voltage changes the sodium ion concentration dynamics, and more, how this dynamics influences
the conduction of the sodium ion action potential.

This example presents a need for properties intermediate to input and output properties and a
need for the relational structure that would outline the possible dependencies among the properties.
By intermediate properties we are referring to those that are not explicitly present within the
model, but are considered to be useful when reasoning about model behavior. One might assume
the existence of intermediate properties from medical science or can solely hypothesize it.

In this paper we propose a fuzzy rule-based framework that uses a hierarchical dependency
of properties and encodes the principles that relate the properties through fuzzy rules. We show
that these principles can be automatically extracted by learning the rules from examples of model
behavior. The hierarchical property structure can then be used for either predicting the value of
output properties from a given set of input properties or for the analysis of principles and property
dependencies.

The paper is organized as follows. The next section presents several frameworks that use a
structured approach to reasoning and data analysis. The method proposed in this paper is then
outlined in Sec. 3. An example of using this method to derive the principles for the model from
the domain of computational neuroscience is given in Sec. 4. Sec. 5 concludes the paper and
outlines the future work.

2 Related Work

An approach presented in this paper is based on a qualitative multi-attribute decision making
method DECMAK [3]. DECMAK uses decomposition of a decision problem into smaller, less
complex problems. The representational structure of the problem is a tree of attributes. Attributes
can take a finite set of values, each value being a distinct descriptor for that attribute. The tree
hierarchically orders the attributes from inputs (tree leaves) to a single output (the root of the
tree). DECMAK uses a utility functions in a form of rules that define the aggregation of lower
level attributes into corresponding higher level attribute. DECMAK assumes the structure and
the utility functions to be given by an expert. Both are then used to evaluate the options which
are given as a set of input attributes. The overall utility of the option (output attribute) is then
derived in a bottom-up fashion from the input attributes. DECMAK provides an extensive support
for option evaluation, comparison and ranking. Its successor DEX [4] has been used in over 50
complex decision-making problems.

A similar tree-based hierarchical approach called “signature table schema” is presented in [1].
The problem representation is again a tree of attributes, this time restricting the attributes to
two-valued (boolean) domains, i.e., each attribute has only two descriptors, “0” and “1”. An
aggregation of lower-level to higher-level attributes is done through the use of signature tables,
which are equivalent to a rule representation of DECMAK, where a single table entry is represented
as a single rule. In [1, 2] signature table schema was used to represent a two-valued function. In
contrast with DECMAK, the signature tables where not elicited from expert but rather derived
from the example inputs and outputs of a function the system has to represent. It has been
shown [1], though, that the learning algorithm has an exponential complexity with respect to the
number of function’s attributes being modeled and that the chances of finding an efficient heuristic
approach are minor.

Both DECMAK and signature table schema deal with qualitative attributes only. Recently,
and to a large extend in this decade, methods that use fuzzy logic have been used for approximation
and reasoning in domains with quantitative data. For example, [15] describes a hybrid approach
that combines both hierarchical structure and fuzzy reasoning. The structure is represented with
the directed knowledge graph which picks out the influences (dependencies) of the attributes
(properties). Again, the input attributes appear as leaves and the output attributes as roots
of the knowledge graph. Similarly, as in DECMAK, attributes can be fuzzy variables and can
be described by descriptors and corresponding degrees of belief. Different from DECMAK and
signature table schema, the influences of attributes are not encoded as rules but rather as neural



networks. Thus, each non-input attribute requires a single neural network, where descriptors of
that attribute are output nodes of the network, and descriptors of the lower-level attributes are
input nodes. Each neural network has also a hidden layer which is constructed automatically.
The weights of the connections in neural network are derived from a set of examples of input and
output attributes using a punishment and reward algorithm.

The approach in [15] can derive output attributes from a set of input attributes that take either
qualitative or quantitative values. In later case, a system would perform a fuzzification that would
assign degrees of beliefs to every descriptor of input attributes.

Common to all of the methods mentioned above is the attempt not only to approximate the
decision process or some function being modeled, but to reveal its hierarchical components and
their interrelation. The major differences between DECMAK and signature tables schema and
the approach from [15] is though in complexity and expressional power of utility functions. We
might observe that the approach that uses neural networks might be more accurate in predicting
the value of output attribute, while within DECMAK and signature tables it might be easier to
explain why such a value was derived. This accuracy — simplicity tradeoff and the fact that our
interest is more in the transparency of the derivation process than in its accuracy influenced the
basic structure and the derivation methods of the framework presented to be derived from the
ones used in DECMAK.

As for the signature table schema, we base our approach on learning the rules from examples
of input and corresponding output properties. The method employed uses a genetic algorithm ap-
proach. Similar methods have been used to solve several different optimization problems for fuzzy
rule-based systems, ranging from rule derivation and selection to improve accuracy of classifier
[11], to derivation of fuzzy membership functions [12] and a combination of these two approaches
[5].

3 Method

This section outlines the proposed method. The method is based on a property structure that
hierarchically orders the properties and depicts their possible dependencies. The values of prop-
erties are derived from the properties they directly depend on. The derivation technique uses
fuzzy rules, which can be either explicitly given or derived through the use of machine learning.
The later assumes to be given a set of examples with input properties and corresponding output
properties.

Property structure, rules, and derivation of
property values

The input, intermediate, and output properties and their dependencies constitute a hierarchical
property structure which is directed and required to be acyclic. Within the property structure,
properties are represented as nodes: input properties as leaves, intermediate as internal nodes,
and output properties as root nodes of the structure. Vertices in the property structure indicate
property dependence. An example of property structure is given in Fig. 3.

Property descriptions and aggregation functions

Each property has a corresponding set of descriptors. The value of the property is fuzzy and is
given by degrees of beliefs for each of its descriptors.
Formally, if x; is a property, {vi1,vi2, . ..} is a set of its descriptors and d(v;;) is a degree of belief
for j-th descriptor of property x;, then the value of z; can be written as (v;1/d(vi1), via/d(vi2), - . .).
To derive a value for each intermediate and output property z;, an aggregate function is used.
As in DECMAK [3], an aggregate function is given as a set of rules that map the values of the
properties x;j that directly influence z; to a value of z;, i.e.,

fitxi = fi(zi, @ig, .. .) (1)



A valid rule would thus be
T (’0“7111'27...) — U; (2)

where v;1, V2, . .. are descriptors of the properties z;; and v; is a descriptor of ;.
During derivation of a property value, a degree of belief for every rule associated with that
property is determined as

d(’l“l) = min(d(vil), d(’UiQ), .. ) (3)

Let R, be a set of rules that map the set of parameter descriptions to a descriptor v;, i.e.,
Rvi = {’I“i, T (’Uﬂ,vig, .. ) — ’Ui} (4)
The degree of belief for v; is computed as:

HTERW d(?")

Normalization is required in order to keep the degrees of belief in the range [0, 1].

Derivation of the value of output properties from the input properties values is then a bottom-
up process that derives the intermediate properties that are directly dependent on input properties
first, and derives output properties last.

In order to deal with possible quantitative values of input and output properties, for each of
these a corresponding set of membership functions are given. An example membership functions
that map a quantitative value g(z;) of z; to degrees of beliefs of descriptors v;1, vi2, and v;3 is
given in Fig. 1.

q(z;)

Figure 1: An example membership functions for property x; and its descriptors v;1, v;2, and v;3.

Fuzzification (assignment of degrees of belief to descriptors from a quantitative value) of input
properties takes place prior to derivation of intermediate and output properties values. Once
a qualitative values of output properties with corresponding degrees of beliefs are derived, a
defuzzification can convert this value to a quantitative one.

Learning rules and membership functions from examples
The entities that are required for the proposed framework to be functional are:
1. a property structure,
2. a set of descriptors of each property,
3. a set of rules to derive a value for every intermediate and output property,

4. a membership function for every descriptor of input and/or output properties that require
quantitative interpretation.

While (1) and (2) are required to be given a-priori, (3) and (4) can be specified only partially or
even not given at all. The idea is that one can present a set of examples E of the form

E = {ei;ei = (ivil,ivig,...,01)1'1,01)1'2,...)} (6)



where 7v;; are values of the input properties and ov;; are the expected values of output properties.
In the case of realistic models, these examples are obtained through simulation. The system is
then required to learn a complete representation of (3) and (4), so as to minimize the error when
trying to predict the output properties from input properties of examples E. If, for every example
e;, the system derives an estimated value of output properties (ev;1, €v;a, .. ., ev;,), the cumulative
relative error over all the examples can be derived in one of the following ways:

|evij — oviy
Erel = Z Z ovi,j (7)
Cabs = Z > Jevij — ovyg (8)
1
MAX(ev;;, ovij)
Cnorm = ZZ <‘ MIN (ew;;, ov;;) 1) )
The decision which error function to use might be of ultimate importance to the performance of
genetic optimization. For the example provided in this paper we have chosen ey, for the reasons
discussed in Sec. 4.

The learning method employed is based on genetic algorithm. The rules and membership
functions are encoded in integer-typed genes. A population of genes, initially set to arbitrary val-
ues, then undergoes a standard genetic algorithm procedure [7] which includes iterative selection,
mutation, and crossover of genes. The fitness of each gene is associated with the error estimate
as above, i.e., the smaller the error the bigger the fitness. The learning terminates when the gene
with fitness that is estimated to be close to optimal is found.

The probabilities of crossover and mutation for a rules’ part and membership functions’ part
of gene are set separately. While the mutation and crossover for a part of the gene that represents
the rules are standard, the corresponding ones for membership functions are not and had to be
designed to accommodate the constraints the membership functions have to comply with. For

example, we assume descriptors of properties to be ordered and allow only a specific type of such
functions (see Fig. 2).
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Figure 2: The membership functions are constrainted. For example, a membership functions (a)
are not allowed since the upper segments of two functions should not interleave. Also, there should
be no quantitative value of property that has all the degrees of beliefs of descriptors 0. This makes
memberships functions at (b) illegal.
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Utilization

The simplest use of the property structure with rules and fuzzy mappings is prediction. Given a
set of input properties’ values, these are mapped to qualitative descriptions and then propagated
through the property structure up to the output properties. Such predictions can be orders of
magnitude faster than the ones that require simulation. But what really differentiates the property
structure approach from realistic models is the means of its exploitation. Here we list some possible
ways a property structure with its rules can be used:



e The discovery of principles: the principles that relate the properties can be revealed by the
inspection of qualitative rules. The rules can be either viewed textually or graphically, or
can be transformed to a decision tree. All of these and other rule inspection methods have
been introduced in DEX and DECMAK [4, 3].

e Testing and discovery of the constraints that may exist between input and output parameters
(hypothesis testing). The constraints that we are testing for are simple monotonicity and
local minima/maxima constraints of types defined in [6]. The structured approach reduces
the complexity of constraint testing. For example, when a constraint between input property
xz; and output property x, is tested, it is only necessary to inspect the rules that apply for
properties that are on the path from z; to z, (see Fig. 3).

e Explanation of the derivation of output properties for a given set of input properties through
the use of intermediate properties and the rules that were used to derive them.

e The estimation of influence of the parameters to a certain output parameter using the known
methods that derive informativity of parameters from rules.

e Analysis of the differences of two (or more) input parameter sets that resulted in different
output sets.
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Figure 3: An example property graph for x; as output property, x2 and z3 intermediate properties
and z4 ... x7 input properties. The figure also shows that to test for the relationship between input
property xg and output property x1, it is only required to inspect the principles (rules) that derive
the values of x3 and ;.

Implementation

The system described in this Section was implemented in a C programming language under HP
and SGI UNIX workstations. The system uses a PGApack genetic algorithm library [14] and
employs Geomview 3D visualization tool [16] for graphical display of rules.

4 Example

This section is to illustrate the use of the proposed method and its capability to derive the principles
that define the relationships among properties. In this example, a realistic nerve fiber model is
used. The sophisticated distributed parameter model was developed at Baylor College of Medicine
in Houston and is used to predict the functional implications of neuronal structural and biophysical
properties [10, 8]. The model is given in the form of a system of multiple cross-coupled parabolic
partial differential equations that are solved by an implicit numerical integration method.

The problem addressed in this paper is to observe the influences of sodium ionic channel
properties (voltage activation av and inactivation iv) and the influence of sodium permeability



(naperm) to the peak sodium current (ina) in a node segment of the neuron. Fig. 4 shows the
property structure used.

ina
lo,med,hi

nach

lo,med,hi
naperm

lo,med,hi

av iv
lo,med,hi lo,med,hi

Figure 4: Property structure for the peak sodium current (output property) as a function of
sodium permeability, inactivation and inactivation voltage (input properties).

Let us assume that ina monotonically increases with naperm. Let us also define an intermediate
property nach that, when increases, should increase the value of ina. nach is the property of the
sodium channel that is influenced by iv and av and identifies a level of channel conductance for
sodium current. We can state this assumptions for nach and naperm by the following rules:

naperm nach ina

lo lo lo
med med med
hi hi hi
lo hi med
hi lo med

The problem is now to discover how iv and av influence nach and ina. To derive this principles,
100 examples of the form (naperm, iv, av) where presented to the system. Input properties were
expressed as the offsets to corresponding parameters of normal mammalian mielinated nerve fiber
(for the values and units see [9]). For each example they where selected arbitrary from ranges
[0.5,1.5] for naperm, [-10,10] for av, and [-20,20] for iv. The experimental results show that there
is high non-linearity because of two different states the neuron might be: non-firing and firing.
High negative values of ina appear when the neuron fired and the values close to 0 are in the cases
when neuron did not fire.

Next, the system was requested to learn the remaining rules (the ones that are still missing
for derivation of ina and all of the rules for nach). For learning, the information about rules
and membership functions was coded into genes of 53 alleles. The population size was 300 genes.
The crossover probability was 0.85, and probability for mutation was 0.9% and 2.0% for rule and
membership function part of gene respectively. Error function used was enorm (Eq. 9). The
problem with other two error functions where that the use of the eqps (Eq.8) lead to a poor
performance for examples with low values of ina. The e,.; (Eq.7) lead genetic algorithm to a local
minima with estimated ina=0 (the error equal 1.0) for early generations. The algorithm could
then not escape this local minima at later generations and would not find a global optima.

The learning took 1000 iteration steps which accounted for app. 5 min of CPU time on IRIS
SGI 4400 Workstation. Membership functions derived for input and output properties are shown
in Fig.5. The additional rules for ina, i.e., other than those preset above, are:



naperm nach ina

med lo lo
lo med med
hi med med

med hi hi

The rules for nach are graphically presented in Fig. 6. To no surprise, the graph reveals that
nach increases with av and decreases with iv. Because of the monotonical dependence of ina
from nach, ina increases with av and decreases with iv. This discovered principles qualitatively
match with a known physiological effect an activation and inactivation voltage on a peak sodium
current [8].

Membership functions for ina

1o med hi
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Figure 5: Membership functions as derived from the set of examples by the learning algorithm.

The genetic algorithm derived a solution (rules and membership functions) that minimizes
enorm. After 1000 generations the value settled at 17.63. This error is relatively high and can
be contributed to the simplicity and low number of descriptors of our system. We performed an
experiment where every property had 5 descriptors instead of 3. The error of the solution found
was 0.01. But, most importantly, the principles found expressed the same influence of activation
and inactivation voltages to peak sodium current as for presented, less complex system.
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Figure 6: Rules for derivation of nach from iv and av.
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5 Conclusion

We have presented a method that is to assist in discovery of the principles of the medical physi-
ological systems. The method uses a structure of properties. An additional information used for
automatic derivation of principles is supplied in form of the examples that map input properties
to output and are, in the case of realistic models, derived through simulation.

An example given in Sec. 4 shows that although the predictive accuracy of the method might
be low for the systems of low complexity, the same principles as with using more complex systems
might be discovered. The advantage of the less complex systems are its higher transparency and
lower computational requirements.

We are currently exploring several issues of the method. These include the selection of appro-
priate error estimate, impacts of the genetic representation scheme to a learning time, and the
automatic derivation of property structure. Future work includes also the estimation of prediction
accuracy of the method and its dependency on complexity of the systems.

Although the outlined approach is targeted for computer assisted reasoning with a general
class of realistic models, the idea for its development and the first tests where done on a specific
model. This realistic nerve fiber model was developed at Baylor College of Medicine in Houston
and is used to predict the functional implications of neuronal structural and biophysical properties.
The idea we are pursuing is to embed both realistic model and methods presented in this paper
in a framework that would be efficiently used in the exploration of properties and principles in
neurobiology.
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