
In Proc. ICML-97, pages 421–429

Machine Learning by Function Decomposition

Blaž Zupan
Jožef Stefan Institute
Ljubljana, Slovenia
blaz.zupan@ijs.si

Marko Bohanec
Jožef Stefan Institute
Ljubljana, Slovenia

marko.bohanec@ijs.si

Ivan Bratko
Faculty of Computer and
Information Sciences, and

Jožef Stefan Institute
Ljubljana, Slovenia

ivan.bratko@fri.uni-lj.si

Janez Demšar
Faculty of Computer

and Information Sciences
University of Ljubljana

Ljubljana, Slovenia
janez.demsar@fri.uni-lj.si

Abstract

We present a new machine learning method
that, given a set of training examples, induces
a definition of the target concept in terms of a
hierarchy of intermediate concepts and their
definitions. This effectively decomposes the
problem into smaller, less complex problems.
The method is inspired by the Boolean func-
tion decomposition approach to the design
of digital circuits. To cope with high time
complexity of finding an optimal decomposi-
tion, we propose a suboptimal heuristic al-
gorithm. The method, implemented in pro-
gram HINT (HIerarchy Induction Tool), is ex-
perimentally evaluated using a set of artifi-
cial and real-world learning problems. It is
shown that the method performs well both in
terms of classification accuracy and discovery
of meaningful concept hierarchies.

1 INTRODUCTION

To solve a complex problem, one of the most general
approaches is to decompose it into smaller, less com-
plex and more manageable subproblems. In machine
learning, this principle is a foundation for structured
induction (Shapiro 1987): instead of learning a sin-
gle complex classification rule from examples, define a
goal-subgoal hierarchy and learn the rules for each of
the subgoals. Originally, Shapiro used structured in-
duction for the classification of a fairly complex chess
endgame and demonstrated that the complexity and
comprehensibility (“brain-compatibility”) of the ob-
tained solution was superior to the unstructured one.
Typically, applications of structured induction involve
a manual development of the hierarchy and a manual

selection of examples to induce the classification rules;
usually this is a tiresome process that requires active
availability of a domain expert over long periods of
time. Considerable improvements in this respect may
be expected from methods that automate or at least
actively support the user in the problem decomposi-
tion task.

In this paper we present a method for developing a
problem decomposition hierarchy from examples and
investigate its applicability in machine learning. The
method is based on function decomposition, an ap-
proach originally developed for the design of digital
circuits (Ashenhurst 1952, Curtis 1962). The goal is to
decompose a function y = F (X) into y = G(A,H(B)),
where X is a set of input attributes x1, . . . , xn, and y is
the class variable. F , G, and H are functions partially
specified by examples, i.e., by sets of attribute-value
vectors with assigned classes. A and B are subsets of
input attributes such that A ∪ B = X. The functions
G and H are determined in the decomposition pro-
cess and are not predefined in any way. Their joint
complexity (determined by some complexity measure)
should be lower than the complexity of F . Such a de-
composition also discovers a new intermediate concept
c = H(B). Since the decomposition can be applied
recursively on H and G, the result in general is a hier-
archy of concepts. For each concept in the hierarchy,
there is a corresponding function (such as H(B)) that
determines the dependency of that concept on its im-
mediate descendants in the hierarchy.

The proposed decomposition method is limited to
nominal-valued attributes and classes. It was imple-
mented in program HINT (HIerarchy Induction Tool).
In this paper we do not describe the specific noise han-
dling mechanism in HINT.

The reminder of the paper is organized as follows.
Section 2 overviews the related work. The learning

method is described in detail in section 3, and exper-
imentally evaluated in section 4 on several domains
of different complexity. The paper is concluded by a
summary and possible directions of further work.

2 RELATED WORK

The decomposition approach to machine learning was
used by a pioneer of artificial intelligence, A. Samuel.
He proposed a method based on a signature table sys-
tem (Samuel 1967) and successfully used it as an eval-
uation mechanism for his checkers playing programs.
This approach was later improved by Biermann et al.
(1982). Their method, however, did not address the
problem of deriving the structure of concepts.

A similar approach had been defined even earlier
within the area of switching circuit design. Ashenhurst
(1952) reported on a unified theory of decomposition
of switching functions. His decomposition method was
essentially the same as that of Biermann et al., except
that it was used to decompose a truth table of a specific
Boolean function to be then realized with standard bi-
nary gates. Most of other related work of those times
is reported and reprinted by Curtis (1962).

Recently, the Ashenhurst-Curtis approach was sub-
stantially improved by research groups of M. A.
Perkowski, T. Luba, and T. D. Ross. Perkowski et al.
(1995) report on the decomposition approach for in-
completely specified switching functions. Luba (1995)
proposes a method for the decomposition of multi-
valued switching functions in which each multi-valued
variable is encoded by a set of Boolean variables. The
authors identify the potential usefulness of function
decomposition for machine learning. Goldman et al.
(1995) evaluate FLASH, a Boolean function decom-
poser, on a set of eight-attribute binary functions and
show its robustness in comparison with C4.5 decision
tree inducer.

Feature discovery has been at large investigated by
constructive induction (Michalski 1986). Perhaps clos-
est to the function decomposition method are the con-
structive induction systems that use a set of existing
attributes and a set of predefined constructive opera-
tors to derive new attributes (Pfahringer 1994, Raga-
van and Rendell 1993).

Within machine learning, there are other approaches
that are based on problem decomposition, but where
the problem is decomposed by the expert and not dis-
covered by a machine. A well-known example is struc-
tured induction (a term introduced by Donald Michie)

applied by Shapiro (1987). Their approach is based on
a manual decomposition of the problem and an expert-
assisted selection of examples to construct rules for the
concepts in the hierarchy. In comparison with stan-
dard decision tree induction techniques, structured in-
duction exhibits about the same classification accuracy
with the increased transparency and lower complexity
of the developed models. Michie (1995) emphasized
the important role of structured induction and listed
several real problems that were solved in this way.

The concept hierarchy has also been used by a
multi-attribute decision support expert system shell
DEX (Bohanec and Rajkovič 1990). There, a tree-like
structure of variables is defined by a domain expert.
DEX has been successfully applied in more than 50
realistic decision making problems.

The method presented in this paper therefore bor-
rows from three different research areas: it shares
the motivation with structured induction and struc-
tured approach to decision support, while the core
of the method is based on Ashenhurst-Curtis func-
tion decomposition. In comparison with related work,
the present paper is original in the following aspects:
new method for handling multi-valued attributes and
classes, improved decomposition heuristics, empha-
sis on generalization effects of decomposition, paying
strong attention to the discovery of meaningful con-
cept hierarchies, and experimental evaluation on ma-
chine learning problems.

3 DECOMPOSITION METHOD

This section presents the decomposition method.
First, we introduce the method by an example. Next,
we formally present the decomposition algorithm and
conclude with a note on the implementation.

3.1 INTRODUCTORY EXAMPLE

Suppose a function y = F (x1, x2, x3) is given where x1,
x2, and x3 are attributes and y is the target concept.
y, x1, and x2 can take the values lo, med, hi; x3 can
take the values lo, hi. The function F is partially
specified with a set of examples in Table 1.

There are three non-trivial partitions of the at-
tributes: 〈x1〉|〈x2, x3〉, 〈x2〉|〈x1, x3〉, and 〈x3〉|〈x1, x2〉,
and three corresponding decompositions: y =
G1(x1,H1(x2, x3)), y = G2(x2,H2(x1, x3)), and y =
G3(x3,H3(x1, x2)). These decompositions are given
in Figure 1. The comparison shows that:

����x2 ����x3

����c1

����y

����x1

x2 x3 c1
lo lo 1
lo hi 1
med lo 1
med hi 2
hi lo 1
hi hi 3

x1 c1 y
lo 1 lo
lo 2 med
lo 3 hi
med 1 med
med 3 hi
hi 1 hi

��� @@I

��� @@I

6

6

����x1 ����x3

����x2

����y

����c2
x1 x3 c2
lo lo 1
lo hi 2
med lo 3
med hi 2
hi lo 4

x2 c2 y
lo 1 lo
lo 2 lo
lo 4 hi
med 1 lo
med 2 med
med 3 med
hi 1 lo
hi 2 hi
hi 3 med
hi 4 hi

��� @@I

��� @@I

6

6

����x1 ����x2

����x3

����y

����c3
x1 x2 c3
lo lo 1
lo med 2
lo hi 3
med med 4
med hi 4
hi lo 5
hi hi 5

x3 c3 y
lo 1 lo
lo 2 lo
lo 3 lo
lo 4 med
lo 5 hi
hi 1 lo
hi 2 med
hi 3 hi
hi 4 hi

��� @@I

��� @@I

6

6

Figure 1: Three different decompositions of the example set from Table 1.

x1 x2 x3 y
lo lo lo lo
lo lo hi lo
lo med lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med med lo med
med hi lo med
med hi hi hi
hi lo lo hi
hi hi lo hi

Table 1: Set of examples that partially describe the
function y = F (x1, x2, x3).

• Example sets in the decomposition y =
G1(x1,H1(x2, x3)) are overall smaller than those
for the other two decompositions.

• The new concept c1 = H1(x2, x3) uses only three
values, whereas that for H2(x1, x3) uses four and
that for H3(x1, x2) uses five.

• By inspecting the example sets for H1 and G1 it
is easy to see that c1 corresponds to MIN(x2, x3)
and y to MAX(x1, c1). It is harder to interpret
the sets of examples for G2, H2, G3, and H3.

Among the three attribute partitions it is therefore
beneficial to decide for 〈x1〉|〈x2, x3〉 and decompose
y = F (x1, x2, x3) to y = G1(x1, c1) and c1 =
H1(x2, x3)).

3.2 SINGLE-STEP DECOMPOSITION

The core of the decomposition algorithm is a single-
step decomposition which, given a set of examples EF
that partially specify the function ci = F (X) and a
partition of attributes X to sets A and B, decomposes
F into ci = G(A, cj) and cj = H(B). This is done by
constructing the example sets EG and EH that par-
tially specify G and H, respectively. X is a set of
attributes x1, . . . , xm, and cj is a new, intermediate
concept. A is called a free set and B a bound set, such
that A ∪ B = X and A ∩ B = ∅. EG and EH are
discovered in the decomposition process and are not
predefined in any way.

The single-step decomposition starts with the deriva-
tion of partition matrix.

Definition 1 Given a disjoint partition of X to A|B,
a partition matrix PA|B is a tabular representation of
example set EF with all combinations of values of at-
tributes in A as row labels and of B as column labels.
Each example ei ∈ EF has its corresponding entry
in PA|B with a row index A(ei) and a column index
B(ei). PA|B entries with no corresponding examples in
EF are denoted with “-”. A column a of PA|B is called
non-empty if there exists ei ∈ EF such that B(ei) = a.

Each column in the partition matrix denotes the be-
havior of F when the attributes in the bound set are
constant. Columns that exhibit the same behavior
are called compatible and can be represented with the

same value of cj . An example partition matrix is given
in Figure 2.a.

Definition 2 Columns a and b of partition matrix
PA|B are compatible if F (ei) = F (ej) for every pair
of examples ei, ej ∈ EF with A(ei) = A(ej) and
B(ei) = a, B(ej) = b. The number of such pairs is
denoted d(a, b).

Note that according to this definition the unspeci-
fied PA|B entries are compatible with any value. The
number of values for cj corresponds to the number of
groups of mutually compatible columns. The lowest
number of such groups is called column multiplicity
and denoted by ν(A|B). It is derived by the coloring
of column incompatibility graph.

Definition 3 Column incompatibility graph IA|B is a
pair (V,E), where each non-empty column i of PA|B
is represented with a vertex vi ∈ V , and an edge
(vi, vj) ∈ E connects two vertices if the correspond-
ing columns of vi and vj are incompatible.

Then, ν(A|B) is the number of colors needed to color
IA|B . Namely, the proper coloring guarantees that two
vertices representing incompatible columns are not as-
signed the same color. The same colors are only as-
signed to the columns that are compatible. Therefore,
the optimal coloring discovers the lowest number of
groups of compatible PA|B columns. An example of
colored incompatibility graph is given in Figure 2.b.

Graph coloring is an NP-hard problem and the com-
putation time of an exhaustive search algorithm is pro-
hibitive even for small graphs with about 15 vertices.
Instead, Perkowski et al. (1995) suggested a Color In-
fluence Method of polynomial complexity and showed
that the method performed well compared to the opti-
mal algorithm. The Color Influence Method sorts the
vertices to color by their decreasing connectivity and
then assigns to each vertex a color that is different from
the colors of its neighbors so that a minimal number
of colors is used. We use the same coloring method,
with the following improvement: when a color is to
be assigned to vertex v and several compatible ver-
tices have already been colored with different colors,
the color is chosen that is used for a group of colored
vertices v1, . . . , vk that are most compatible to v. The
degree of compatibility is estimated as

∑k
1 d(v, vi) (see

Definition 2 for d).

Each vertex in IA|B denotes a distinct combination of
values of attributes in B, and its label (color) denotes

x2 lo lo med med hi hi
x1 x3 lo hi lo hi lo hi
lo lo lo lo med lo hi
med - - med - med hi
hi hi - - - hi -

c1 1 1 1 2 1 3

(a)

........
.............

..
........
.

........
.............

..
.........

........
.............

..
.........

........
.............

..
........
.

........
.............

..
.........

........
.............

..
.........

...

..

..

...

..

3

2

1

lo,lo

1

1

1

med,hi

hi,lo

hi,hi

med,lo

lo,hi

(b)

Figure 2: Partition matrix with column labels (c1) for
the attribute partition 〈x1〉|〈x2, x3〉 and set of exam-
ples from Table 1 (a) and corresponding column in-
compatibility graph (b). Colors (labels) of the vertices
are circled.

the value of cj . It is therefore straightforward to derive
an example set EH from the colored IA|B . Attribute
set for these examples is B. Each vertex in IA|B is an
example in set EH . Color cj of the vertex is the class
of the example.

EG is derived as follows. For any value of cj and com-
bination of values of attributes in A, ci = G(A, cj) is
determined by looking for an example ei in row A(ei)
and in any column labeled with the value of cj . If such
example exists, an example with attribute set A∪{cj}
and class ci = F (ei) is added to EG.

Decomposition generalizes every undefined (“-”) entry
of PA|B in row a and column b, if a corresponding
example ei with a = A(ei) and column B(ei) with
the same label as b is found. For example, an entry
PA|B [<hi>,<lo,hi>] of partition matrix in Figure 2.a
was generalized to hi because the column <lo,hi> has
the same label as columns <lo,lo> and <hi,lo>.

In our implementation, the incompatibility graph is
constructed directly from the set of examples, avoiding
the construction of partition matrix for efficiency rea-
sons. The algorithm first sorts the examples EF based
on the values of attributes in A and values of ci. The

Input: Initial set of examples describing
a single output concept

Output: Its hierarchical decomposition

get an initial example set EF0 and mark it decomposable
j ← 1
while ∃ decomposable example set EFi that partially

specifies ci = Fi(x1, . . . , xm) with m > 2 do
evaluate all possible partitions A|B of X = 〈x1, . . . , xm〉

such that A ∪B = X, A ∩B = ∅, and ||B|| ≤ b
select the best partition A|B
if EFi is decomposable using A|B then

decompose EFi to EG and EH , such that
ci = G(A, cj) and cj = H(B), where G and H
are partially specified by EG and EH

mark EG and EH decomposable
j ← j + 1

else mark EFi non-decomposable

Algorithm 1 The decomposition algorithm

examples with the same A(ei) constitute groups that
correspond to rows in partition matrix PA|B . Within
each group, examples with the same value of ci con-
stitute subgroups. Two examples that are in the same
group but in different subgroups have a corresponding
edge in IA|B .

3.3 DECOMPOSITION ALGORITHM

The decomposition aims to discover a hierarchy of
concepts described with example sets that are over-
all less complex than the initial one. Since an exhaus-
tive search is prohibitively complex, the decomposition
uses a suboptimal iterative algorithm (Algorithm 1).

In each step the algorithm tries to decompose a single
example set of the evolving structure. It evaluates all
possible disjoint partitions of the attributes and selects
the best one. This step requires a so-called partition
selection measure. A possible measure is the number of
values of the new concept ν(A|B). The best partition
A|B is the one with the lowest ν(A|B).

An alternative measure for the selection of partitions
is based on the complexity of function F . Let F
be defined on attributes xi ∈ XF with class vari-
able yF . In this attribute-class space, there are a to-

tal of N(XF , yF) = ||yF ||
∏

xi∈XF
||xi|| possible func-

tions, where ||yF || and ||xi|| represent the cardinal-
ities of value sets of yF and xi, respectively. The
number of bits to encode F is therefore Θ(F) =
log2N(XF , yF) = (log2 ||yF ||)

∏
xi∈XF ||xi||. Decom-

position prefers to discover functions of low complex-
ity, so the measure is therefore defined as Θ(A|B) =
Θ(G) + Θ(H).

The decomposition algorithm will decompose EF and
the function F it partially represents only if its decom-
posed functions G and H are overall less complex than
F . Therefore, the partition A|B can be used to decom-
pose EF to EG and EH if and only if Θ(A|B) < Θ(F).
We say that example set EF is decomposable if there
exists a partition A|B with this property.

3.4 COMPLEXITY OF DECOMPOSITION
ALGORITHM

The time complexity of single step decomposition of
EF to EG and EH , which consists of sorting of EF ,
deriving the incompatibility graph and coloring it, is
O(N logN) +O(Nk) +O(k2) where N is the number
of examples in EF and k is the number of vertices in
IA|B . For any bound set B, the upper bound of k is
kmax = (maxxi∈X ||xi||)b where b = ||B||. The num-
ber of disjoint partitions considered by decomposition
when decomposing EF with m attributes is

b∑
j=2

(
m

j

)
≤

b∑
j=2

(em
j

)j
= O(mb)

The highest number of n−2 decompositions is required
when the hierarchy is a binary tree, where n is the
number of attributes in the initial example set. The
running time of the decomposition algorithm is thus

O
(

(N logN +Nkmax + k2
max)

n∑
m=3

mb
)

=

= O
(
nb+1(N logN +Nkmax + k2

max)
)

Therefore, the algorithm’s complexity is polynomial
in N , n, and kmax. Note that the bound b is a user-
defined constant. This analysis clearly illustrates the
benefits of setting b to a sufficiently low value. In our
experiments, b was set to 3.

3.5 IMPLEMENTATION

The machine learning method based on function de-
composition was implemented in the C language as a
system called HINT (Hierarchy INduction Tool). The
system runs on several UNIX platforms, including HP-
UX, SGI Iris, and SunOS. The definition of domain
names and examples, and the guidance of the decom-
position is managed through a script language.

4 EXPERIMENTAL EVALUATION

We experimentally evaluated the decomposition
method using the following datasets:

MM4 A function y = MIN(x1,AVG(x2,MAX(x3,
x4), x5)) with 4-valued attributes and class.
While the definition of MIN and MAX is stan-
dard, the function AVG computes the average of
its arguments and rounds it to the closest integer.

LENSES A small domain taken from UCI machine
learning repository (Murphy and Aha 1994). Us-
ing patient age, spectacle prescription, astigma-
tism, and tear production rate each example de-
scribes whether the patient should wear soft or
hard contact lenses or no lenses at all.

MONK1 and MONK2 Well-known six-attribute
binary classification problems taken from the
same repository (Murphy and Aha 1994, Thrun
et al. 1991). Attributes are 2 to 4-valued.
MONK1 has an underlying concept (x1 = x2)
OR x5 = 1 and MONK2 the concept xi = 1 for
exactly two choices of i ∈ {1, . . . , 6}.

CAR and NURSERY For these two domains hi-
erarchical classifiers in DEX (Bohanec and Ra-
jkovič 1990) formalism already existed. These
were used to obtain a set of examples from which
decomposition tried to reconstruct the original hi-
erarchies. CAR evaluates cars based on their price
and technical characteristics. This simple model
was developed for educational purposes and is de-
scribed in (Bohanec and Rajkovič 1988). NURS-
ERY is a real-world model developed to rank ap-
plications for nursery schools (Olave et al. 1989).

The original datasets are noiseless. They completely
cover the attribute space for all domains other than
MONK1 and MONK2, where the coverage is 28.7%
and 39.1%, respectively. Some other domain charac-
teristics are given in Table 2.

The decomposition used column multiplicity as a par-
tition selection measure. When the Θ complexity mea-
sure was used instead, the results were similar and are
not shown here.

The bound set size b was limited to the maximum of
three elements. The decomposition times on HP J210
workstation were all below 2 seconds for all the do-
mains other than NURSERY, for which HINT required
about 20 seconds for the largest training sets.

The experimental evaluation addressed the classifica-
tion accuracy of HINT and its ability to derive a com-
prehensible and meaningful structure, possibly simi-
lar to the anticipated one. The classification accuracy
learning curves were computed, where the datasets

Domain n N Class names and their
relative frequencies

MM4 4 1024 0/0.27, 1/0.42, 2/0.29, 3/0.02
LENSES 4 24 hard/0.17, soft/0.21, no/0.62
MONK1 6 124 0/0.5, 1/0.5
MONK2 6 169 0/0.621, 1/0.379

CAR 6 1728 unacc/0.70, acc/0.22,
good/0.04, v-good/0.04

NURSERY 8 12960 unacc/0.33, acc/0.0001,
v-acc/0.03, prior/0.33,
h-prior/0.31

Table 2: Some characteristics of domains used in the
experiments. n is the number of attributes and N the
dataset size.

were split to training and test sets of sizes p and 1−p,
respectively, for p from 10% to 90%. HINT derived
a concept hierarchy and corresponding classifier using
the examples in the training set and was tested for
classification accuracy on the test set. For each p, the
results are the average of 10 randomly chosen splits.
The learning curve is compared to the one obtained
by C4.5 inductive decision tree learner (Quinlan 1993)
run on the same data. C4.5 used the default options
except for -m1, which was observed to obtain a better
classification accuracy than the default -m2. Accuracy
is measured on unpruned decision trees for the same
reason. For each p, the significance of the difference
between C4.5 and HINT is determined using a paired
t-test with α = 0.01 (99% confidence level).

The learning curves are given in Figure 3. For all the
domains other than LENSES, HINT outperforms C4.5.
With more than 20% of examples in the training set,
this difference is always significant. Moreover, HINT’s
learning curves converge faster to the desired 100%,
which is in turn never reached by C4.5. For LENSES,
there are no significant differences in the classification
accuracy of the two learners. It is also interesting
to note that in MM4 C4.5’s accuracy decreases with
higher coverage of example space, which may be ex-
plained with decreased generalization.

HINT was further tested on the data sets for MONK1
and MONK2 used in the detailed study of 25 ma-
chine learning algorithms (Thrun et al. 1991). For
both MONK1 and MONK2, the training set was the
same as our original data set described above. The
two test sets used in the study consisted of 432 ex-
amples that completely covered the attribute space.
For MONK1, the accuracy of HINT is 100%. In the
study (Thrun et al. 1991), this score was achieved by
9 learners: three variants of AQ17, Assistant Profes-
sional, mFOIL, CN2, two variants of Backpropagation,

0 20 40 60 80 100
40

60

80

100

◦

•
• • • • •

• •

.........
.........
.........
.........
.........
.........
.........
..........
...........
...........
...........
.......................

..
..

� �
� � � � � � �............

............
........

p

cl.acc.

(a) MM4

0 20 40 60 80 100
40

60

80

100

◦

◦

•
• • • • • •

.........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................

...............
...

�
� �

�
� � � � �

........
........

........
.......
........
........
........
........

........
........

........

p

cl.acc.

(b) MONK1

0 20 40 60 80 100
70

80

90

100

◦

•
• • • • • • •

........
........
........
........
........
........
........
........
........
........
........
........
........
.............
.............

......................
..

�
�
� �

� � �
� �

........
........
........
........

........
.........

..........
.....

........
........

.
....

p

cl.acc.

(c) CAR

0 20 40 60 80 100

20

40

60

80

100

◦

◦
◦
◦
◦ ◦ ◦

◦
◦

.........
.........
.........
.........
.........
.........
..

...............
.............
............
............
..

...........
...........
............
...............

...............

�
�
� �

� �
� � �

........
........
........
........
........
........
................

........
........
........

.........
....................................

.........
.

p

cl.acc.

(d) LENSES

0 20 40 60 80 100
40

60

80

100

◦ ◦
•

•
•

• • • •

...........................
...........
..........
..........
..........
...........
.........
.........
.........
.........
.........
.........
...........
..........
..........
..........
...........
.........
.........
.........
.........
.........
..

� � �
� � � � � �

........
........

........................
.......

p

cl.acc.

(e) MONK2

0 20 40 60 80 100
90.0

92.5

95.0

97.5

100.0 • • • • • • • • •..

�

�

�
� �

�
� �

�

........
........
........
........
........
........
........
........
........

........
........

.........
.........

.........
........

.......
........

......
........

.

p

cl.acc.

(f) NURSERY

Figure 3: Learning curves for HINT (solid line with ◦) and for C4.5 (dashed line with �). When, for a specific
relative training set size p, the classification accuracy of HINT is significantly better than that of C4.5, HINT’s
data points are marked with •.

and Cascade Correlation. For MONK2, the accuracy
of HINT is 97.7%. In the same study, four learners
performed better: AQ17-DCI, two variants of Back-
propagation, and Cascade Correlation. It should be
noted that these results were obtained by HINT with-
out tuning in less than 0.3 seconds of CPU time on
HP J210 workstation.

For each of the domains and with increasing p, HINT
converged to a single concept structure. These are
shown in Figures 4 to 6, with the names of attributes
and concepts, and cardinality of their value sets. For
MM4, this is the anticipated structure except for the
concept AVG(x2,MAX(x3, x4), x5)), which HINT ad-
ditionally decomposed by introducing an intermediate
concept c3. For MONK1, HINT discovered the antici-
pated hierarchy MONK1 = F1(c1, x5) c1 = F2(x1, x2)
with F1 and F2 matching the expected disjunctive and
equality functions. For MONK2, because of disjunc-

tive condition on a bound and free set it was impossible
to derive concepts comparable to the original concept
definition. However, the discovered concept hierarchy
is a reformulation of the target concept using func-
tions that count 1’s. For LENSES, HINT discovered
the structure in Figure 4 which we did not try to inter-
pret without the domain expert. For CAR and NURS-
ERY (Figures 5 and 6), the structures discovered were
very similar to the original DEX models. In fact, they
were the same except that some original DEX interme-
diate concepts were further decomposed. It should be
emphasized that we consider this similarity of concept
structures as a most significant indicator of success of
our decomposition-based learning method.

Figure 4: Structures discovered for MM4, LENSES, and MONK2 domains.

Figure 5: Original (left) and discovered structure (right) for CAR

5 CONCLUSION

We introduced a new machine learning approach based
on function decomposition. A distinguishing feature
of this approach is its capability to discover new, in-
termediate concepts, organize them into a hierarchi-
cal structure, and define the relationships between the
attributes, newly discovered concepts, and target con-
cept. In their basic form, these relationships are spec-
ified by newly constructed example sets. In a way,
the learning process can thus be viewed as a process
of generating new, equivalent example sets, which are
consistent with the original example set. The new sets
are smaller, have smaller number of attributes, and
introduce intermediate concepts. Generalization also
occurs in this process.

We have evaluated the decomposition-based learning
method on six datasets. In terms of classification ac-
curacy, the decomposition significantly outperformed
C4.5 in all but one domain. The examples also show
that the decomposition is useful for discovery of new
intermediate concepts. For example, the decomposi-
tion was able to discover an appropriate concept hier-
archy approved by domain experts for a rather com-
plex real-world NURSERY domain.

The classification accuracy results may be biased be-
cause we have mostly used the domains where we an-
ticipated the hierarchies discoverable by decomposi-
tion. However, MONK2 is a counter example where
decomposition was not able to discover the original
definition of the target concept, but rather unexpect-
edly its reformulation.

The decomposition approach as presented in this pa-
per is limited by that there is no special mechanism
for handling noise and continuous attributes. How-
ever, preliminary results on using an extended version
of decomposition for continuously-valued data sets in
(Demšar et al. 1997) and preliminary results on noise-
handling extension strongly encourage further devel-
opments in this direction.

References

Ashenhurst, R. L.: 1952, The decomposition of switch-
ing functions, Technical report, Bell Laboratories
BL-1(11), pages 541–602.

Biermann, A. W., Fairfield, J. and Beres, T.: 1982,
Signature table systems and learning, IEEE
Trans. Syst. Man Cybern. 12(5), 635–648.

Figure 6: Original (left) and discovered structure (right) for NURSERY

Bohanec, M. and Rajkovič, V.: 1988, Knowledge ac-
quisition and explanation for multi-attribute de-
cision making, 8th Intl Workshop on Expert Sys-
tems and their Applications, Avignon, France,
pp. 59–78.

Bohanec, M. and Rajkovič, V.: 1990, DEX: An ex-
pert system shell for decision support, Sistemica
1(1), 145–157.

Curtis, H. A.: 1962, A New Approach to the Design
of Switching Functions, Van Nostrand, Princeton,
N.J.

Demšar, J., Zupan, B., Bohanec, M. and Bratko,
I.: 1997, Constructing intermediate concepts
by decomposition of real functions, Proc. Euro-
pean Conference on Machine Learning, ECML-
97, Prague.

Goldman, J. A., Ross, T. D. and Gadd, D. A.: 1995,
Pattern theoretic learning, AAAI Spring Sym-
posium Series: Systematic Methods of Scientific
Discovery.

Luba, T.: 1995, Decomposition of multiple-valued
functions, 25th Intl. Symposium on Multiple-
Valued Logic, Bloomigton, Indiana, pp. 256–261.

Michalski, R. S.: 1986, Understanding the nature
of learning: issues and research directions, in
R. Michalski, J. Carbonnel and T. Michell (eds),
Machine Learning: An Artificial Intelligence Ap-
proach, Kaufmann, Los Atlos, CA, pp. 3–25.

Michie, D.: 1995, Problem decomposition and the
learning of skills, in N. Lavrač and S. Wrobel
(eds), Machine Learning: ECML-95, Notes in Ar-
tificial Intelligence 912, Springer-Verlag, pp. 17–
31.

Murphy, P. M. and Aha, D. W.: 1994, UCI Repos-
itory of machine learning databases [http://

www.ics.uci.edu/~mlearn/mlrepository.html].
Irvine, CA: University of California, Department
of Information and Computer Science.

Olave, M., Rajkovič, V. and Bohanec, M.: 1989, An
application for admission in public school sys-
tems, in I. T. M. Snellen, W. B. H. J. van de
Donk and J.-P. Baquiast (eds), Expert Systems
in Public Administration, Elsevier Science Pub-
lishers (North Holland), pp. 145–160.

Perkowski, M. A. et al.: 1995, Unified approach to
functional decompositions of switching functions,
Technical report, Warsaw University of Technol-
ogy and Eindhoven University of Technology.

Pfahringer, B.: 1994, Controlling constructive induc-
tion in CiPF, in F. Bergadano and L. D. Raedt
(eds), Machine Learning: ECML-94, Springer-
Verlag, pp. 242–256.

Quinlan, J. R.: 1993, C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers.

Ragavan, H. and Rendell, L.: 1993, Lookahead feature
construction for learning hard concepts, Proc.
Tenth International Machine Learning Confer-
ence, Morgan Kaufman, pp. 252–259.

Samuel, A.: 1967, Some studies in machine learning
using the game of checkers II: Recent progress,
IBM J. Res. Develop. 11, 601–617.

Shapiro, A. D.: 1987, Structured induction in ex-
pert systems, Turing Institute Press in association
with Addison-Wesley Publishing Company.

Thrun, S. B. et al.: 1991, A performance comparison
of different learning algorithms, Technical report,
Carnegie Mellon University CMU-CS-91-197.

