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Summary 
We present a novel method for the development of hierarchical multi-attribute 
decision models from a given unstructured set of decision examples. The method 
develops a hierarchical structure by discovering new aggregate attributes and their 
descriptions. Each new aggregate attribute is described by an example set whose 
complexity is lower than the complexity of the initial set. The method is based on 
function decomposition. Models can be developed either with or without human 
interaction. The method is experimentally evaluated on a real-world housing loans 
allocation problem. This case study shows that the decomposition can discover a 
meaningful and transparent decision model of high classification accuracy. We show 
that human assistance has a positive effect on both the comprehensibility and 
classification accuracy. 

Keywords: multi-attribute decision making, hierarchical models, function 
decomposition, discovery, data-driven modeling, data-mining 

1 Introduction 
In decision support systems, we use models to predict the outcome of decision choices 
we might make (Mallach 94). For multi-attribute decision problems, i.e., decision-
making situations in which the alternatives are described by several attributes that 
cannot be optimized simultaneously, we develop multi-attribute decision models. 
Most commonly, such models are developed in a hierarchical fashion, starting from 
some general but imprecise goal statement, which is gradually refined into more 
precise sub and sub-sub goals (Stewart 92). A typical example of this approach is 
Saaty’s (93) Analytic Hierarchy Process. 

The development of hierarchical multi-attribute decision models is difficult, 
especially when the decision problem itself is difficult and involves several tens of 
attributes. In most cases, the models are developed manually in a tiresome and lengthy 
process in which the designers (decision analysts, decision makers, experts, 
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knowledge engineers) use their knowledge about the problem and employ their skill 
and experience. On the other hand, the computers nowadays provide relatively 
inexpensive and available means to collect data, and there is a growing volume of data 
about decisions already made. This data may contain useful information for decision 
support, discovery of underlying principles, and different analysis tasks. 

In this paper we propose a method that develops a hierarchical multi-attribute 
decision model using decision examples that may be taken either from an existing 
database of past decisions, or provided explicitly by the decision-maker. Each 
example is described by a set of attributes and its utility. The method is restricted to 
decision problems with nominal attributes and utility. Given an initial set of examples, 
the method develops a corresponding model in terms of a hierarchy of attributes and 
their definitions. The development proceeds either with or without human interaction. 

The proposed method is based on function decomposition, an approach originally 
developed for the design of digital circuits (Ashenhurst 52; Curtis 62). Let a set of 
decision examples EF with attributes X=〈x1,…,xn〉 and utility variable y partially 
represent a utility function y=F(X). The goal is to decompose this function into 
y=G(A,H(B)), where A and B are subsets of attributes such that A∪ B=X, and functions 
G and H are partially represented by sets of examples EG and EH, respectively. The 
task of decomposition is to determine EG and EH so that their complexity (determined 
by some complexity measure) is, if possible, lower than that of EF, and so that EG and 
EH are consistent with EF. Such a decomposition also discovers a new aggregate 
attribute (hereafter referred to as concept) c=H(B). Since the decomposition can be 
applied recursively on EG and EH, the result in general is a hierarchy consisting of 
attributes (terminal nodes) and concepts (internal nodes). For each concept in the 
hierarchy, there is a corresponding set of examples (such as EH) that describes the 
dependency of that concept on its immediate descendants in the hierarchy. 

Central to each decomposition step is the selection of a partition of attributes X to 
sets A and B. This is guided by a partition selection measure that assesses the joint 
complexity of the resulting EG and EH. The decomposition selects the partition that 
minimizes this measure. Although such decomposition can be completely 
autonomous, the comprehensibility of the discovered structure may be improved if the 
user is involved in the partition selection process: few best partitions are presented to 
the user, who selects the best candidate and assigns a label to the new concept. We 
refer to such an approach as supervised decomposition. 

The decomposition aims at the discovery of (1) decision model hierarchy, (2) 
meaningful concepts, and (3) small and manageable sets of examples that describe 
each concept in the model. The decomposition method also has a generalization 
property, and the obtained hierarchical model can be used to classify (evaluate) new 
alternatives. When used in the supervised mode, the method assists the decision-
maker in recognizing and organizing the concepts embedded in data, so it can also be 
regarded as a data-mining tool. 

The paper is organized as follows. Section 2 describes the decomposition method. 
In section 3, the method is experimentally evaluated on a real-world problem of 
housing loans allocation. The issues specifically addressed are: comprehensibility, the 
benefit of user's interaction in the decomposition process, and classification accuracy 
of the developed model. Section 4 overviews the related work. The paper is concluded 
by a summary and possible directions of further work. 
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2 Decomposition method 
This section describes the decomposition method. First, a single-step decomposition is 
presented which, given a set of decision examples EF, decomposes it to consistent sets 
EG and EH. This is followed by the description of overall decomposition algorithm 
that, given an initial set of examples, iteratively applies the single-step decomposition 
to derive a hierarchy of concepts. Each concept in the hierarchy is described by its 
own set of examples. In each iteration, the decomposition algorithm also deals with 
the problem of attribute selection. 

2.1 Single-step decomposition 
The core of the decomposition algorithm is a single-step decomposition which, given 
a set of examples EF that partially specifies a function y=F(X), and a partition of 
attributes X to sets A and B (denoted A|B), decomposes F into y=G(A,c) and c=H(B). 
This is done by constructing sets of examples EG and EH that partially specify G and 
H, respectively. X is a set of attributes x1,…,xm, and c is a new concept. The partition 
A|B is composed of a free set A and bound set B such that A∪ B=X and A∩B=∅ . EG 
and EH are developed in the decomposition process and are not predefined in any way. 

Let us describe the single-step decomposition by an example. Suppose there is a set 
EF (Table 1) that partially describes a function y=F(x1,x2,x3), where x1, x2, and x3 are 
attributes and y is the target concept. The variables y, x1, and x2 can take the values 
lo, med, hi, and x3 can take the values lo, hi. 

Table 1: Set of examples EF that partially describes the function y=F(x1,x2,x3). 

x1 x2 x3 y 
lo lo lo lo
lo lo hi lo
lo med lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med med lo med
med hi lo med
med hi hi hi
hi lo lo hi
hi hi lo hi

Table 2: Partition matrix with column labels (c) for examples from Table 1 
 using the attribute partition 〈x1〉|〈x2,x3〉.  

x2 
x1    x3 

lo
lo 

lo
hi 

med
lo 

med
hi 

hi
lo 

hi
hi 

lo lo lo lo med lo hi
med - - med - med hi
hi hi - - - hi -

c 1 1 1 2 1 3 

Suppose that we want to derive EG and EH for the attribute partition 
A|B=〈x1〉|〈x2,x3〉. For this purpose, the initial set of examples is first represented by a 
partition matrix, which is a tabular representation of EF with all combinations of 
values of attributes in A as row labels and of B as column labels. Each example from 
EF has its corresponding entry in the matrix. Partition matrix entries with no 
corresponding example in EF are denoted by ‘-’ and treated as a don't-care. For our 
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example set (Table 1) and the above attribute partition, the partition matrix is given in 
Table 2. 

Each column in the partition matrix denotes the behavior of F when the attributes 
in the bound set are constant. Columns that exhibit the same behavior, i.e., have 
pairwise equal row entries or at least one row entry is a don't-care, are called 
compatible and can be labeled with the same value of c. For instance, the first two 
columns in Table 2 are compatible: their entries in the first row are equal, and at least 
one entry is ‘-’ in the remaining rows. 

The single-step decomposition aims at deriving the new concept variable c having 
the smallest set of possible values. For that purpose, we construct an incompatibility 
graph whose vertices correspond to partition matrix columns. Two vertices are 
connected if the corresponding columns are incompatible. To find the values of c, the 
incompatibility graph is colored: the coloring will assign different labels to the 
vertices that represent mutually incompatible columns, while the compatible columns 
may share the same color. 

An optimal coloring identifies the minimal number of groups of mutually 
compatible columns. This number is called column multiplicity and denoted by ν(A|B). 
Column multiplicity equals to the lowest number of possible values to be used for the 
new concept variable c. Since optimal graph coloring is an NP-hard problem, we use a 
heuristic method of polynomial complexity (Perkowski, et al. 95). For our example 
partition matrix, the incompatibility graph is given in Figure 1. Note that three colors 
are required to color this graph. 

1
lo,lolo,lo

med,lo

lo,hi

hi,lo

hi,hi

med,hi

3

2

1 1

1

 

Figure 1: Incompatibility graph with assigned colors (labels) 
for the partition matrix from Table 2. 

After the coloring of the incompatibility graph, each column of the partition matrix 
is assigned a label, which corresponds to an abstract value of the new concept variable 
c. From such an annotated partition matrix, the new sets EG and EH can be derived. 
For EH, the attribute set is B. Each column in partition matrix is an example in EH . 
The label (color) of the column becomes the class value of that example. 

EG is derived as follows. For each value of c and combination of values of 
attributes in A, y=G(A,c) is determined by looking for an example ei∈ EF in the 
corresponding row and in any column labeled with the value of c. If such an example 
exists, it is included in EG using the attributes A∪{ c}  and class y=F(ei). 
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Figure 2a shows EG and EH for the decomposition of Table 2. Note that the new 
sets are less complex than the initial set EF, and are thus much easier to interpret: it is 
easy to see that c corresponds to min(x2,x3) and y to max(x1,c). The corresponding 
interpretation of the three possible values of c is: 1=lo, 2=med, 3=hi. 

There exist two other non-trivial partitions of the same attribute set: 〈x2〉|〈x1,x3〉 and 
〈x3〉|〈x1,x2〉. The corresponding decompositions are shown in Figures 2b and 2c, 
respectively. Compared to the decomposition using the partition 〈x1〉|〈x2,x3〉, they 
result in overall larger sets EG and EH and introduce intermediate concepts with more 
values (4 and 5, respectively, instead of 3). Moreover, the resulting sets are harder to 
interpret. Among the three attribute partitions it is therefore preferable to decide for 
the first one. 

x1 c y
lo 1 lo
lo 2 med
lo 3 hi
med 1 med
med 3 hi
hi 1 hi

x2 x3 c
lo lo 1
lo hi 1
med lo 1
med hi 2
hi lo 1
hi hi 3

x1 c

y

x2 x3

(a)

x3 c y
lo 1 lo
lo 2 lo
lo 3 lo
lo 4 med
lo 5 hi
hi 1 lo
hi 2 med
hi 3 hi
hi 4 hi

x1 x2 c
lo lo 1
lo med 2
lo hi 3
med med 4
med hi 4
hi lo 5
hi hi 5

x3

y

x1 x2

(c)

x2 c y
lo 1 lo
lo 2 lo
lo 4 hi
med 1 lo
med 2 med
med 3 med
hi 1 lo
hi 2 hi
hi 3 med
hi 4 hi

x1 x3 c
lo lo 1
lo hi 2
med lo 3
med hi 2
hi lo 4

x2

y

x1 x3

(b)

 
Figure 2: Three different decompositions of  Table 1. 

The decomposition algorithm has a generalization property. Each undefined entry 
(‘-’) of the partition matrix in row a and column b is generalized if there exists a 
corresponding example ei that belongs to the same row a and to a column labeled with 
the same label as column b. For example, the entry in row hi and column 〈lo,hi〉 in 
Table 2 is generalized to hi because the column 〈lo,hi〉 has the same label as 
columns 〈lo,lo〉 and 〈hi,lo〉. 

Single-step decomposition can also be used to detect redundant attributes. Let an 
initial set of attributes X be partitioned to B=〈xj〉 and A=X\〈xj〉. If ν(A|B)=1, then the 
corresponding function c=H(xj) is constant, and the attribute xj can be removed from 
the set of examples. 

2.2 Overall decomposition method 
Given a set of examples EF that partially defines a utility function y=F(X), where 
X=〈x1,…,xn〉,  it is particularly important to find an appropriate attribute partition A|B 
of the set X for the single-step decomposition. As illustrated in the previous section, 
the partition selection can affect both the complexity and comprehensibility of the 
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resulting example sets. Zupan (97) proposed several partition selection measures of 
which in this paper we mention and use only the simplest one: column multiplicity 
ν(A|B). In this case, the decomposition method favors the attribute partitions that yield 
the intermediate concepts with the smallest sets of possible values. For our example, 
this criterion prefers the decomposition from Figure 2a, which indeed results in the 
simplest and most comprehensible description of the target concept. 

To limit the time complexity of the method, we propose to consider only the 
partitions with small bound sets. In the case study presented in section 3, partitions 
with only two or three attributes in the bound sets were investigated. Such a constraint 
results in intermediate concepts with only a few attributes, which may have a positive 
effect on comprehensibility and the size of generated sets of examples. 

In this paper we advocate for the interaction of the user throughout the 
decomposition process. Given an initial set of examples, all candidate partitions are 
examined and those with the best partition selection measure are presented to the user. 
The user then decides for the most favorable partition, i.e., the partition whose bound 
set consists of inter-related attributes that can constitute a meaningful intermediate 
concept. The selected partition is used by the single-step decomposition to derive two 
new sets of lower complexity. These two sets are then further investigated for 
decomposition. To further engage the user in the decomposition process, we let them 
decide whether or not to decompose a given set of examples. 

Because of user's involvement in partition selection and selection of the sets to 
decompose, we refer to such a process to as supervised decomposition. Compared to 
unsupervised decomposition (Zupan, et al. 97), we expect better comprehensibility, 
especially in the cases when the initial examples sparsely cover the attribute space. 

2.3 Implementation 
The decomposition method is implemented in the C language as a system called HINT 
(Hierarchy INduction Tool). The system runs on several UNIX platforms, including 
HP-UX, SGI Iris, and SunOS. The definition of domain names and examples, and the 
guidance of the decomposition is managed by a script language.  

3 Experimental evaluation: housing loans allocation 
Experimental evaluation of the method was carried out using a real-world database 
used in a management decision support system for allocating housing loans (Bohanec, 
et al. 96). This system was developed for the Housing Fund of the Republic of 
Slovenia and used since 1991 in 13 floats of loans with a total value of approximately 
90 million ECU. 

In each float, the basic problem is to allocate the available funds to applicants. 
Typically, there are several thousands of applicants and their requested amount 
exceeds the available financial resources. Therefore, the applicants must be ranked in 
a priority order for the distribution of resources in accordance with the criteria 
prescribed in the tender. Each applicant is ranked into one of five priority classes. The 
criteria may vary from tender to tender, but typically include: 
1. applicant's housing conditions in terms of the ownership and suitability of present 

housing, the way of solving their problem, and the stage of solving; 
2. applicant's status in terms of earnings, employment and the number of children; 
3. social and health conditions. 
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In the system, the evaluation of loan priority is carried out by a hierarchical multi-
attribute model whose structure is presented in Figure 3. For each internal concept in 
the structure, there is a decision rule defined for the aggregation of concepts. Both the 
structure and the rules were developed manually by the experts using a multi-attribute 
decision making shell DEX (Bohanec, Rajkovič 90). 

housing

earningspresent solvingstage employed children health social

house status soc_health

ownership suitab advantagecult_hist fin_sources family age
 

Figure 3: Original model structure for housing loans allocation. 

For the evaluation of the decomposition method, we took applicants' data from one 
of the floats carried out in 1994. There were 1932 applicants in that float. In addition 
to some general data, such as the name and address of the applicant, each data record 
contained 12 two to five-valued attributes that were essential for the determination of 
loan priority. Due to the discreteness of attributes, the 1932 records provided 722 
unique examples. These examples cover only 3.7% of the complete attribute space. 

The primary goal of the experimental evaluation was to try to reconstruct the 
original decision model using only the available applicants’ data, supplemented by the 
already known decisions about their loan priority. For this purpose, each example was 
classified by the original evaluation model and the resulting unstructured database was 
submitted to the decomposition method. Both unsupervised and supervised 
decompositions were carried out. The resulting models were interpreted, compared to 
the original one, and analyzed in terms of comprehensibility and classification 
accuracy. Finally, the generalization quality of the method was assessed by a cross-
validation method. 

3.1 Supervised decomposition 
In the first stage of the analysis, the attributes were tested for redundancy. The 

attributes cult_hist and fin_sources were found redundant and removed from 
the database. The reason for redundancy is that these two attributes affect the loan 
priority only under some very special circumstances, which did not occur in the 
database. For example, cult_hist applies only to renewing a house that is a 
cultural or historical monument, and there were no such houses in that float. 

The resulting set of examples was examined for decomposition. All possible 
partitions with bound sets of 2 or 3 attributes were examined. From these, according 
to the partition selection measure (column multiplicity ν), HINT proposed only the 
best candidates with ν=3. Among the 120 possible bound sets of 3 attributes, there 
were 11 bound sets that minimized column multiplicity: 
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suitab advantage employed earnings employed family
advantage stage employed earnings children health
advantage employed health employed children health
advantage employed family employed health family
earnings employed children employed health age
earnings employed health

Among these, it was considered by the domain expert that the underlined bound set is 
the most favorable as it constitutes the comprehensible intermediate concept of 
applicants' current status. The resulting concept structure is given in Figure 4b. 
 

housing

earnstage employ child healthown sui advcult fin family age

earnings employed children

status

housing

stage healthownership suitab advantage family age

earnings employed children

status

housing

stage

healthownership suitab

advantage

family age

socialpresent

earnings employed children

status

housing

stage health

ownership suitab

advantage family age

social

present

house

(a) unstructured dataset

(b) new concept: status

(c) present and social

(d) final structure

 

Figure 4: Evolving concept structure for housing allocation decision model. 

Next, the new set of examples describing the concept housing was examined. In 
a similar fashion, three best candidate bound sets were considered among the total of 
56 possible partitions: 
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ownership suitab advantage
suitab advantage stage
health family age

Again, the most favorable bound set is underlined, which was recognized as social and 
health condition of the applicant and formed a new 4-valued intermediate concept 
social. 

The decomposition process continued similarly resulting in intermediate concepts 
present (suitability of applicant's present housing) and house (overall housing 
conditions). Overall, the process resulted in a concept structure presented in Figure 4d. 
Apart from the two excluded redundant attributes, the resulting concept structure is 
very similar to the structure actually used in the management decision support system 
to determine loan priority. Thus, when evaluated by the domain expert, the 
reconstruction was considered successful. 

In each decomposition step, the selection of the most favorable bound set may not 
be straightforward. In our case, this was especially true for the first decomposition 
step, where the number of candidate partitions was quite high. The technique we 
employed was a gradual elimination of less favorable partitions. However, in the 
following decomposition steps the number of candidate bound sets was substantially 
lower, which made the selection easier. The decreased number of candidates was due 
to the lower number of attributes and better coverage of the attribute space. 

3.2 Unsupervised decomposition 
To assess the benefit of user’s interaction in the decomposition process, we used 
HINT in unsupervised mode that automatically discovered the concept structure 
(Figure 5). When this was assessed by the expert, it was found that in addition to 
subtrees that were identical or similar to the ones in the original model, some less 
intuitive intermediate concepts were developed. For example, the unsupervised 
decomposition combined employed and health into c2, which was found 
difficult to be interpreted as a useful concept. Therefore, the overall solution was not 
as satisfactory as the one obtained by supervised decomposition. 
 

housing

earnings

c5 c4

stage

employedchildren health

c2ownership suitab advantage family age

c7

c6 c3

c8

c1

 

Figure 5: Model structure developed by unsupervised decomposition. 
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3.3 Interpretation of models 
The sets of examples that describe the concepts in the resulting structure are 
considerably less complex than the initial one: while the initial set contains 722 
examples, the most complex resulting set (housing) has only 38 examples, and all 
the remaining sets include less than 20 examples. In total, the resulting decomposed 
sets include only 108 examples, which is a considerable reduction in comparison with 
the initial set. In addition, the decomposed sets use significantly less attributes. 

In the interpretation of the resulting sets it was observed that all were quite 
comprehensible. For example, even from the raw set it was easy to see that status 
depends monotonically on earnings, employed, and children. An even better 
interpretation was provided by a set of tools within DEX (Bohanec, Rajkovič 90), 
which include decision rule induction methods and visualization tools (Rajkovič, 
Bohanec 91). For all sets of examples it was found out that they relevantly and 
consistently with the expert's expectations represent the discovered concepts. 

3.4 Cross-validation 
The generalization quality of decomposition was assessed by 10-fold cross 

validation. The initial set of examples was split to 10 subsets, and 10 experiments 
were performed taking a single subset as a test set and the examples in the remaining 
subsets as a training set. HINT used either the structure as developed above (Figure 
4d) or was used in the unsupervised mode on the training sets (i.e., 90% of original 
data). For comparison, we have also used C4.5, a machine learning program that 
induces decision trees from examples (Quinlan 93) and is considered a state-of-the-art 
generalization tool in machine learning. Note, however, that C4.5 does not develop 
hierarchical decision models. Rather, it uses a different representation (decision trees) 
and does not explicitly develop new concepts. 

The obtained classification accuracies (Table 3) clearly indicate that for this 
problem the decomposition outperformed C4.5. It is further evident that the 
supervised method resulted in a classifier that was superior to that developed without 
user's interaction. However, it has to be noted that the testing domain is, due to its 
original hierarchical structure, biased towards HINT. 

Table 3: Classification accuracies in % by 10-fold cross validation. 

HINT (developed structure) HINT (unsupervised) C4.5 
97.8 ± 1.8 94.7 ± 2.5 88.9 ± 3.9  

4 Related work 
The problem of criteria identification and their structuring in terms of a decision 
model is central to multi-attribute decision making (Keeney, Raiffa 76), decision 
analysis (Phillips 86), and related fields. The research reported here was motivated by 
a practical need for a method that would automate and/or assist the decision-maker in 
developing a multi-attribute model from decision examples. The representation of 
decision models developed by the proposed method closely resembles that used in a 
multi-attribute decision support expert system shell DEX (Bohanec, Rajkovič 90). 

The decomposition method is based on the function decomposition approach to the 
design of digital circuits by Ashenhurst (52) and Curtis (62). Their approach was 
recently advanced by Perkowski, et al. (95), Luba (95), and Ross, et al. (94). Given a 
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Boolean function partially specified by a truth table, their methods aim to derive 
switching circuits of low complexity. 

The problem of developing hierarchical models from examples has been also 
studied within machine learning. There, the decomposition approach was first used by 
Samuel (67) in checkers playing programs. His methods relied on a given concept 
structure but learned the corresponding functions from the training sets. Another 
technique that uses a predefined structure, known as structured induction (Michie 95), 
was independently developed by Shapiro (87) and originally used for the classification 
of a fairly complex chess endgame. It was shown that the obtained solutions were both 
comprehensible and of high classification accuracy. 

The method presented in this paper is thus closely related to three primary research 
areas: it shares the motivation with multi-attribute decision making and structured 
induction, while the core of the method is based on Ashenhurst-Curtis function 
decomposition. In comparison with related work, this paper is original in the 
following aspects: adaptation of the function decomposition approach to the 
development of multi-attribute decision models, new method for handling multi-
valued attributes, supervised decomposition, emphasis on generalization effects of 
decomposition, paying strong attention to the discovery of meaningful concepts, and 
experimental evaluation on a real-world decision problem. 

5 Conclusion 
A novel method for the development of hierarchical multi-attribute decision models is 
proposed. Using an unstructured set of decision examples, the method develops a 
hierarchical structure of concepts and their definitions. The resulting model 
generalizes the decision examples and can serve for the evaluation of new alternatives. 
The method is implemented in a system called HINT. 

The development of models can be carried out either autonomously or in the 
interaction with the decision-maker. In the latter case, the method turns into a data-
mining tool for data structuring and analysis: the decomposition assists in the 
identification of concepts, organizing them into a hierarchy and deriving the concept 
representations by example sets. In this process, the original data set is decomposed 
into a number of less complex data sets that are easier to interpret and analyze. 

We have assessed the applicability of the approach in a real-world housing loans 
allocation problem. It was demonstrated that the method was able to reconstruct 
almost completely the “right” decision model that was available for this problem. The 
reconstruction was carried out using 722 distinct decision examples taken from a 
database of applicants. Although these examples sparsely covered the attribute space, 
the method succeeded in deriving a model of high comprehensibility and classification 
accuracy. The comparison of models developed by supervised and unsupervised 
decomposition revealed that human assistance had a positive effect on both the 
comprehensibility and classification accuracy. It was further shown that the 
decomposition is a good generalizer and for this problem outperformed a state-of-the-
art induction tool C4.5.  

The decomposition approach as presented in this paper is limited to consistent sets 
of examples using discrete attributes and utility. However, recently developed noise 
and uncertainty handling mechanisms (Zupan 97), and an approach to handle 
continuously-valued attributes (Demšar, et al. 97) will enable HINT to be used in 
more general model developing tasks that are planned for the future. 
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Another important issue for further work is related to the interpretation of  derived 
example sets. Currently, each concept in the developed decision model is defined by a 
set of examples, whose investigation and interpretation is left to the decision-maker. 
Unless the set is particularly small, such an interpretation may be difficult, resulting in 
a less comprehensible decision model. Fortunately, there is a number of existing 
methods that could be used to assist in the interpretation, for example regression, 
machine learning and visualization. We will attempt to extend the proposed approach 
by a systematic selection of such interpretation methods and correspondingly enhance 
HINT’s capabilities. 

6 References 
R. L. Ashenhurst (1952). The decomposition of switching functions. Technical report, Bell Laboratories 

BL-1(11), p. 541–602. 
M. Bohanec, B. Cestnik, and V. Rajkovič (1996). A management decision support system for allocating 

housing loans. In P. Humpreys, L. Bannon, A. McCosh, and P. Migliarese, editors, Implementing 
System for Supporting Management Decisions, p. 34–43. Chapman & Hall, London. 

M. Bohanec and V. Rajkovič (1990). DEX: An expert system shell for decision support. Sistemica, 1(1), 
p. 145–157. 

H. A. Curtis (1962). A New Approach to the Design of Switching Functions. Van Nostrand, Princeton, 
N.J. 

J. Demšar, B. Zupan, M. Bohanec, and I. Bratko (1997). Constructing intermediate concepts by 
decomposition of real functions. In M. van Someren and G. Widmer, editors, Machine Learning: 
ECML-97, p. 93–107. Springer-Verlag. 

R. L. Keeney and H. Raiffa (1976). Decisions with Multiple Objectives: Preferences and Value 
Tradeoffs. Wiley. 

T. Luba (1995). Decomposition of multiple-valued functions. In 25th Intl. Symposium on Multiple-
Valued Logic, p. 256–261, Bloomigton, Indiana. 

E. G. Mallach (1994). Understanding Decision Support Systems and Expert Systems. Irwin. 
D. Michie (1995). Problem decomposition and the learning of skills. In N. Lavrač and S. Wrobel, 

editors, Machine Learning: ECML-95, Notes in Artificial Intelligence 912, p. 17–31. Springer-
Verlag. 

A. Perkowski, T. Luba, S. Grygiel, P. Burkey, M. Burns, N. Iliev, M. Kolsteren, R. Lisanke, R. Malvi, 
Z. Wang, H. Wu, F. Yang, S. Zhou, and J. S. Zhang (1995). Unified approach to functional 
decompositions of switching functions. Technical report, Warsaw University of Technology and 
Eindhoven University of Technology. 

L. D. Phillips (1986). Decision analysis and its applications in industry. In G. Mitra, editor, Computer 
Assisted Decision Making, p. 189–197. Elsevier (North-Holand). 

J. R. Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers. 
V. Rajkovič and M. Bohanec (1991). Decision support by knowledge explanation. In H. G. Sol and 

J. Vecsenyi, editors, Environments for Supporting Decision Processes, p. 47–57. North Holland. 
T. D. Ross, M. J. Noviskey, D. A. Gadd, and J. A. Goldman (1994). Pattern theoretic feature extraction 

and constructive induction. In Proc. ML-COLT '94 Workshop on Constructive Induction and  
Change of Representation, New Brunswick, New Jersey. 

A. Samuel (1967). Some studies in machine learning using the game of checkers II: Recent progress. 
IBM J. Res. Develop., 11, p. 601–617. 

T. L. Saaty (1993). Multicriteria Decision Making: The Analytic Hierarchy Process. RWS Publications. 
A. D. Shapiro (1987). Structured induction in expert systems. Turing Institute Press in association with 

Addison-Wesley Publishing Company. 
T. J. Stewart (1992). A critical survew on the status of multiple criteria decision making theory and 

practice. Omega, Intl. J. of Mgmt. Sci, 20(5/6), p. 569–586. 
B. Zupan (1997). Machine learning based on function decomposition. Ph.D. Thesis. University of 

Ljubljana, Faculty of Computer and Information Sciences. 
 B. Zupan, M. Bohanec, I. Bratko, and J. Demšar (1997). Machine learning by function decomposition. 

In Proc. International Conference on Machine Learning ICML-97, Nashville, TN. 


