
UNIVERSITY OF LJUBLJANA

FACULTY OF COMPUTER AND INFORMATION SCIENCE

Bla�z Zupan

MACHINE LEARNING BASED ON

FUNCTION DECOMPOSITION

DOCTORAL DISSERTATION

Supervisor: Prof. Dr. Ivan Bratko

Ljubljana, 1997

ii

Abstract
This dissertation proposes a new machine learning method that, given a set of training

examples, induces a de�nition of the target concept in terms of a hierarchy of intermediate

concepts and their de�nitions. This e�ectively decomposes the problem into smaller, less

complex problems, and decomposes an initial set of examples into smaller, more easily

manageable sets. Since each example set partially represents a function, the process is

called function decomposition.

Two di�erent approaches to decomposition are proposed. The minimal-complexity

approach aims at deriving subsets of examples that represent functions of minimal com-

plexity. The minimal-error approach aims to derive a hierarchy of concepts with minimal

estimated classi�cation error. These approaches further di�er in the type of data they can

handle: the minimal-complexity decomposition requires consistent example sets, whereas

the minimal-error variant can handle also inconsistent and noisy data, missing values, and

uncertainty.

Both decomposition approaches are implemented in program HINT (Hierarchy INduc-

tion Tool). They are experimentally evaluated using a set of arti�cial and real-world

learning problems. It is shown that decomposition performs well in terms of classi�cation

accuracy and discovery of meaningful concept hierarchies.

The experimental �ndings further indicate that the decomposition may e�ciently be

used to support data structuring, hierarchical data analysis, and knowledge discovery.

As such, the proposed decomposition method contributes to machine learning and to

the related �elds of knowledge discovery in databases, data mining, and intelligent data

analysis. Within machine learning, it contributes an approach to structured induction and

constructive induction.

Keywords
machine learning

inductive concept learning

classi�cation

function decomposition

minimal-complexity decomposition

minimal-error decomposition

discovery of intermediate concepts

constructive induction

concept hierarchy

ii

iii

iv

Contents

1 Introduction 1

1.1 Motivation from the machine learning perspective 2

1.2 Related work . 5

1.3 Contributions of the dissertation . 8

1.4 Experimental methodology and datasets used 8

1.5 An overview of the dissertation . 9

2 Minimal-complexity function decomposition 11

2.1 Introduction to function decomposition . 11

2.2 Single-step decomposition . 13

2.2.1 Example . 15

2.2.2 Single-step decomposition method 16

2.2.3 Properties of single-step decomposition 20

2.3 Decomposition algorithm . 21

2.3.1 Partition selection measures . 22

2.3.2 Decomposability criteria . 24

2.3.3 Overall complexity of decomposed function 25

2.3.4 Complexity of decomposition algorithm 25

2.4 Supervised and unsupervised approach to decomposition 26

2.5 Concept hierarchy as a classi�er . 26

2.6 Implementation . 27

2.7 Experimental evaluation . 27

2.7.1 Arti�cial domains . 29

2.7.2 DEX domains . 31

2.7.3 Several domains from the ML repository 37

2.7.4 Further experiments on MONK1 and MONK2 41

2.7.5 Conduction-block of partially demyelinated �ber 43

vi CONTENTS

2.7.6 Generalization of decomposition . 45

2.7.7 Comparison of partition selection measures 46

2.8 Summary and discussion . 49

3 Decomposition-based attribute selection and discovery of redundancies 51

3.1 Redundancy of attributes . 52

3.2 Redundancy of attribute values . 54

3.3 Attribute and attribute values subset selection algorithm 55

3.4 Experimental evaluation . 57

3.4.1 DEX domains . 57

3.4.2 MONK1 . 58

3.4.3 Protein secondary structure prediction 59

3.5 Summary and discussion . 60

4 Minimal-error function decomposition 63

4.1 Representing examples with class distributions 64

4.2 Minimal-error decomposition algorithm . 64

4.2.1 Related work on noise handling . 65

4.2.2 Single-step decomposition . 67

4.2.3 Properties of minimal-error single-step decomposition 73

4.2.4 Decomposition algorithm . 75

4.2.5 Complexity of the minimal-error decomposition algorithm 76

4.2.6 Selection of parameter m . 77

4.2.7 On (un)supervised decomposition and attribute subset selection . . 78

4.3 Representing imperfect data by examples with class distributions 78

4.3.1 Noisy and inconsistent data . 79

4.3.2 Uncertain data . 79

4.4 Classi�cation . 82

4.5 Implementation . 84

4.6 Experimental evaluation . 84

4.6.1 MM4, CAR, and SHUTTLE . 84

4.6.2 MONK3 . 88

4.6.3 Seven medical domains . 89

4.7 Summary and discussion . 94

5 Conclusion 97

5.1 Summary and discussion of decomposition method 97

CONTENTS vii

5.2 Discussion of experimental results . 98

5.3 Contributions . 99

5.4 Further work . 101

Bibliography 103

A Quantitative assessment of structure similarities 109

A.1 Structure dissimilarity coe�cient . 109

A.2 Experimental evaluation . 111

B Three examples for partition selection measures 115

C Experimental results on DEX domains 119

D Results on MONK domains 123

E Concept structures for seven medical domains 125

F HINT: A hierarchy induction tool 129

viii CONTENTS

Chapter 1

Introduction

Now that we have gathered so much data, what do we do with it?

Usama Fayyad and Ramasamy Uthurusamy

editorial, Communications of ACM, Special issue on Data Mining, November 1996

Recently, many opening statements of this kind appeared in journals, conference proceed-

ings, and other printed materials that deal with data analysis, knowledge discovery, and

machine learning. They all express a concern about how to \make sense" from the large

volumes of data being generated and stored in almost all �elds of human activity.

Especially in the last few years, the digital revolution provided relatively inexpensive

and available means to collect and store the data. For example, in the domain of medicine,

only four years ago one of the fathers of \Arti�cial Intelligence in Medicine" Edward H.

Shortli�e partially blamed the underdeveloped infrastructure for the failure to ful�ll the

initial promise of the �eld (Shortli�e 1993). Recently, however, the situation is changing

rapidly: modern hospitals are well equipped with monitoring and other data collection

devices, and data is gathered and shared in inter- and intra-hospital information systems.

In fact, medical informatics has become a must and an integral part of every successful

medical institution (Spackman, Elert & Beck 1993).

The increase of data volume causes greater di�culties to extract useful information for

decision support, discovery of underlying principles, or di�erent analysis tasks. The tradi-

tional manual data analysis has become insu�cient, and methods for e�cient computer-

based analysis indispensable. From this need, a new interdisciplinary �eld of knowledge

discovery in databases (KDD) was born. By and large, KDD encompasses statistical, pat-

tern recognition, and machine learning (arti�cial intelligence) tools to support the analysis

of data and discovery of principles that are encoded within the data.

The results of computer-based analysis have to be communicated to humans in some

2 Introduction

understandable way. In this respect, the analysis tools have to deliver transparent results

and most often facilitate human intervention in the analysis process. A good example of

such methods are symbolic machine learning algorithms that, as a result of data analysis,

aim to derive a symbolic model (e.g. a decision tree, or a set of rules) of preferably

low complexity but high transparency. Their inclusion as a core of KDD substantially

increased the interest in machine learning and recently facilitated the research in this

area.

When dealing with a complex problem, the approach most often applied is that of

\divide-and-conquer": decompose a problem to less complex and more manageable sub-

problems. This strategy seems to have an obvious parallel in data analysis. This disser-

tation builds on this particular idea and proposes a machine learning and data analysis

method based on dataset decomposition. We show that the proposed decomposition does

not only ease the task of data analysis by providing smaller datasets, but it also derives

the corresponding hierarchical structure that may introduce new concepts which, once

interpreted by humans, may be a discovery by itself.

1.1 Motivation from the machine learning perspective

In arti�cial intelligence, according to Michie (1995), �nding a good decomposition is a

major tactic both for avoiding the combinatorial explosion and for ensuring the transparent

end-product. Michie speci�cally refers to the decomposition approach to machine learning.

Most often the task of machine learning is to induce a general concept from a set of training

examples. The induced classi�cation rules can then be used either to classify new examples

or, if of su�cient transparency and comprehensibility, to provide the means to discover the

underlying principles. For both comprehensibility and classi�cation, it may be bene�cial

if instead of learning a single complex classi�cation rule from examples, one de�nes a

goal-subgoal (concept-intermediate concepts) hierarchy and learn the rules for each of the

subgoals.

Let us illustrate the above idea by an example. Suppose we are given a neurophysi-

ological dataset that describes the neuron conduction block as a function of six neuronal

properties (Figure 1.1). The task is to analyze how these properties inuence the con-

duction block. Instead of inducing a complex classi�er directly from the features, we may

decompose the conduction block problem into subproblems by introducing two intermedi-

ate concepts. Each sub-problem may now be studied separately by inducing the classi�er

for each of the concepts. The possible bene�ts of such an approach are:

� The subproblems are expected to be less complex and easier to analyze than the

1.1 Motivation from the machine learning perspective 3

block

aff k_conc na_conc leak nl scm

block

aff
source-sink

capacity
myelin sheath
conductance

k_conc na_conc leak nl scm

Figure 1.1: Dependency graphs in the conduction block domain for an unstructured and

a structured problem with two intermediate concepts.

original problem. For example, the intermediate concept source/sink capacity is

described using only 3 properties, while the description of the original target concept

uses 6.

� The introduction of meaningful intermediate concepts may itself add to the trans-

parency of the result.

However, along with the bene�ts there are two major problems when using such a

structured approach:

� The intermediate concepts and their placement in the concept structure have to be

given in advance.

� The originally unstructured dataset has to be decomposed into several subsets, each

describing a subconcept within the concept structure.

A possible solution to these problems is proposed by an approach called structured

induction (Shapiro & Niblett 1982). The concept structure is elicited from the domain-

expert and the result is a so-called human-generated problem decomposition. The next

stage involves the expert to select from the training dataset the relevant sets of examples

for each of the concepts. For each of these sets a separate decision tree is induced. The

structured classi�er is then checked against the examples in the dataset and re�ned by

means of changing the concept representations until all examples are correctly classi�ed.

Shapiro (1987) used this approach for the classi�cation of a fairly complex chess endgame.

He demonstrated that the complexity and comprehensibility (\brain-compatibility") of

the obtained solution was to a large extend superior to the unstructured one.

4 Introduction

The major drawback of the structured induction method is the manual development

of the hierarchy and the selection of examples to induce the classi�cation rules; typically

this is a tiresome process that requires active availability of a domain expert over long

periods of time, which is usually di�cult to achieve. Considerable improvements in this

respect could be expected from methods that would automate or at least actively support

the designer in the problem decomposition task. The open questions in this respect are:

� Given the concept hierarchy, can the unstructured data be machine-decomposed to

several datasets, each describing its own subconcept in the hierarchy?

� Can a meaningful concept hierarchy be discovered directly from the unstructured

data?

� How does the structured classi�er obtained in such a way perform when classifying

unseen examples?

� Can such a decomposition method handle noisy data, data with possible missing

attribute values, and continuously-valued data?

This dissertation deals with the above questions and introduces methods and tools to

answer them a�rmatively. Our work shares the motivation with structured induction, but

uses a rather di�erent approach inspired by the Boolean function decomposition technique

used to support the design of digital circuits. This method was �rst proposed by Ashen-

hurst (1952) and Curtis (1962). The method iteratively decomposes a Boolean function

represented by a truth-table to derive a hierarchical structure of smaller functions prefer-

ably realizable with a simple logic gate. For example, such decomposition was used to �nd

the circuit of the Boolean function in Figure 1.2. Represented as a concept structure, the

Ashenhurst-Curtis decomposition can be regarded as \automated" structured induction

with a limitation to handle Boolean datasets only.

The dissertation thus borrows from two di�erent research areas: it shares the motiva-

tion with structured induction while the core of the method is based on the Ashenhurst-

Curtis decomposition. Other approaches that most inuenced this work include DEX|a

structured approach to decision support (Bohanec & Rajkovi�c 1990)|and the minimal-

error pruning approach to noise handling by Niblett & Bratko (1986) and Cestnik & Bratko

(1991). The dissertation aims to introduce and experimentally evaluate the decomposition

as a new machine learning paradigm.

1.2 Related work 5

x1 x2 x3 x4 y

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 1 1

1 0 1 1 0

1 1 1 0 1

1 1 1 1 1

x2

x1

x3

x4

y

��
��
x1 ��

��
x2

��
��
c1

x1 x2 c1

0 0 0

0 1 0

1 0 0

1 1 1

��� @@I

6

��
��
x3 ��

��
x4

��
��
c2

x3 x4 c2

0 0 0

0 1 1

1 0 1

1 1 0

��� @@I

6

��
��
y

c1 c2 y1

0 0 0

0 1 1

1 0 1

1 1 1

��� @@I

6

Figure 1.2: A truth table for a Boolean function (upper left), its circuit implementation

(lower left), and corresponding hierarchy of concepts with two intermediate concepts c1 =

x1 AND x2 and c2 = x3 XOR x4 and the target concept y = c1 OR c2.

1.2 Related work

The decomposition approach to machine learning was used early by a pioneer of arti�cial

intelligence, A. Samuel. He proposed a method based on a signature table system (Samuel

1967) and used it as an evaluation mechanism for checker playing programs. A signature

table system is a tree of input, intermediate, and a single output variable (the nodes). Each

internal node is assigned a signature table which is, based on the values of its immediate

descendants, used to derive the node's value. Each example in the signature table gives

a corresponding value of the node for a given combination of values of its immediate

descendants. The value of an output variable is determined by a bottom-up derivation

that �rst assigns the values to the intermediate variables, and �nally derives the value

of the output variable. Given a set of training examples and a signature table system's

structure, Samuel proposed an approach to learn the corresponding signature tables by

incrementally adjusting the examples describing the intermediate concepts. Compared to

his previous approach that was based on the learning of a linear evaluation polynomial

(Samuel 1959), Samuel showed that using a signature table system the performance can

be signi�cantly improved. Samuel's approach was later improved by Biermann, Fair�eld

6 Introduction

& Beres (1982), but still did not address the problem of deriving the structure of variables.

While, within machine learning, Samuel and Biermann et al. may be the �rst to

realize the power of decomposition applied to a set of training examples, a very similar

approach had been de�ned earlier in the area of switching circuit design. Curtis (1962)

reports that in the late 1940's and 1950's several switching circuit theorists considered

this subject and in 1952 Ashenhurst reported on a uni�ed theory of decomposition of

switching functions (Ashenhurst 1952). The method proposed by Ashenhurst decomposes

a truth table of a Boolean function to be realized with standard binary gates. Most of

other related work of those times is reported and reprinted in (Curtis 1962), where Curtis

compares the decomposition approach to other switching circuit design approaches and

further formalizes and extends the decomposition theory. Besides a disjoint decomposition,

where each variable can appear as input in just one of the derived tables, Curtis de�nes a

non-disjoint decomposition where the resulting structure is an acyclic graph rather than

a tree. Furthermore, Curtis de�nes a decomposition algorithm that aims at constructing

a switching circuit of the lowest complexity, i.e., with the lowest number of gates used.

Curtis' method is de�ned over two-valued variables and, as with Biermann et al., requires

a complete set of examples.

Recently, the Ashenhurst-Curtis approach was substantially improved by research

groups of M. A. Perkowski, T. Luba, and T. D. Ross. Perkowski (1995) reports on the

decomposition approach for incompletely speci�ed switching functions. Luba (1995) pro-

poses a method for the decomposition of multi-valued switching functions in which each

multi-valued variable is encoded by a set of Boolean variables. The authors identify the

potential usefulness of function decomposition for machine learning. ? indicate that the

decomposition approach to switching function design might be termed knowledge dis-

covery, since a functions not previously anticipated can be discovered. Similar, but using

di�erent terminology, was suggested already by Curtis (1962), who observed that the same

truth table representing a Boolean function might have di�erent decompositions.

Using 10 di�erent Boolean functions, Goldman (1994a) demonstrated the power of

generalization of decomposition. Similarly encouraging conclusions were also drawn by

Ross, Noviskey, Axtell, Gadd & Goldman (1994), further exposing the power of function

decomposition approach for the Boolean feature extraction and illustrating this by Boolean

feature discovery from a simple two-valued training set.

Feature discovery has been at large investigated by constructive induction, a recently

active �eld within machine learning. The term was �rst used by Michalski (1986), who

de�ned it as an ability of the system to derive and use new attributes in the process

of learning. Following this idea and perhaps closest to the function decomposition are

1.2 Related work 7

the constructive induction systems that use a set of constructive operators to derive new

attributes. Examples of such systems are described in (Michalski 1983, Pfahringer 1994,

Ragavan & Rendell 1993).

The main limitation of these approaches is that the set of constructive operators has to

be de�ned in advance. Moreover, in constructive induction, the new features are primarily

introduced for the purpose of improving the classi�cation accuracy of derived classi�er,

while the above described function decomposition approaches focused primarily on reduc-

tion of complexity, where the impact on classi�cation accuracy can be regarded rather as

a side-e�ect of decomposition-based generalization.

In �rst-order learning of relational concept descriptions, constructive induction is re-

ferred to as predicate invention. An overview of recent achievements in this area can be

found in (Stahl 1991).

Within machine learning, there are other approaches that are based on problem de-

composition, but where the problem is decomposed by the expert and not discovered by

a machine. A well-known example is structured induction, a term introduced by Donald

Michie and applied by Shapiro (1987). Their approach is based on a manual decomposi-

tion of the problem and an expert-assisted selection of examples to construct rules for the

concepts in the hierarchy. In comparison with standard decision tree induction techniques,

structured induction exhibits about the same classi�cation accuracy with the increased

transparency and lower complexity of the developed models. Michie (1995) emphasized

the important role of the structured induction in the future and listed several real problems

that were solved in this way.

The concept hierarchy has also been used by a multi-attribute decision support expert

system shell DEX (Bohanec & Rajkovi�c 1990) which has its roots in DECMAK method-

ology (Efstathiou & Rajkovi�c 1979, Bohanec, Bratko & Rajkovi�c 1983). There, a tree-like

structure of variables is de�ned by an expert, and several tools assist in the acquisition

of decision tables. These are, like Samuel's signature tables, used to derive the values of

intermediate and output variables. DEX also allows di�erent representation of de�ned de-

cision tables, including decision trees (as in Shapiro 1987) and decision rules (Rajkovi�c &

Bohanec 1991). DEX has been applied in more than 50 realistic decision making problems.

Although developed independently, the hierarchical structure-based representations

of a signature table system, DEX models, or of the systems discovered by a switching

function decomposition are surprisingly similar. We refer to such structures as concept

structures or concept hierarchies. For the decomposition terminology, we closely follow

the de�nitions used by Curtis (1962), and those used by Perkowski (1995) when dealing

with incomplete set of training examples.

8 Introduction

1.3 Contributions of the dissertation

The major and original contributions of this dissertation are:

� the minimal-complexity decomposition method,

� the minimal-error decomposition method that can deal with noise, incomplete and

imperfect data,

� the implementation of the decomposition system called HINT,

� the experimental assessment of the decomposition method showing that

{ the decomposition can discover useful and interpretable structures,

{ the decomposition can inductively learn concepts with at least comparable clas-

si�cation accuracy to those build by other known machine learning tools.

Other contributions include the de�nition of an unsupervised and supervised approach

to decomposition, introduction of formal partition selection measures and decomposabil-

ity criteria for nominal-valued data, redundancy checking and attribute subset selection

based on decomposition, and decomposition-speci�c handling of incomplete data and un-

certainty.

1.4 Experimental methodology and datasets used

A function decomposition method as a machine learning and knowledge discovery tech-

nique can be regarded from two di�erent perspectives: as a concept induction tool intended

to classify new examples, and as a concept discovery tool. The dissertation proposes the

decomposition method and also evaluates it from these two perspectives. To evaluate

the classi�cation accuracy, in most of the cases the performance of the decomposition is

compared to that of a state-of-the-art induction tool C4.5 (Quinlan 1993). To assess the

decomposition's ability to derive meaningful structures with useful concepts, whenever

possible, the domains were chosen for which such structures are either known or antici-

pated. These include a set of arti�cial domains expressed as functions where the structure

was anticipated, and real-world decision support models where the structures were de�ned

by a domain expert.

The dissertation also uses several medical and pharmacology domains. These are:

� lenses prescription domain (section 2.7.3),

1.5 An overview of the dissertation 9

� a domain from neuroscience that addresses the nerve conduction block (section

2.7.5),

� protein secondary structure prediction (section 3.4.3),

� seven medical domains from UCI machine learning repository (section 4.6.3).

1.5 An overview of the dissertation

The dissertation is organized as follows.

The minimal-complexity decomposition is described in Chapter 2. This chapter �rst

proposes a single-step decomposition and, after de�ning the necessary heuristics, intro-

duces the overall decomposition algorithm. Two di�erent means of using decomposition

(supervised and unsupervised) are discussed next, followed by a discussion on the utility

of the decomposition-derived concept structure for classi�cation. Chapter 2 also includes

the experimental evaluation of the proposed method and heuristics.

The decomposition can be used to detect and remove redundancies of attributes and

attribute values. This is the topic of Chapter 3, which further proposes the inclusion of

these mechanisms into the attribute subset selection algorithm.

Minimal-complexity decomposition can handle only consistent example sets. Most of-

ten, the real-world data is inconsistent and includes noise and uncertainty. To handle

such types of data, and speci�cally to handle noise, Chapter 4 proposes the minimal-error

decomposition approach. In comparison with the minimal-complexity decomposition, the

minimal-error decomposition uses a di�erent single-step decomposition algorithm and de-

�nes di�erent partition selection measures and decomposability criteria. The method is

evaluated on several selected domains from Chapter 2 and on the set of medical domains

for which the classi�cation accuracies of other machine learning tools were known from

the literature.

The dissertation concludes with Chapter 5, which discusses the proposed methods and

experimental results, and lists the ideas for further work.

10 Introduction

Chapter 2

Minimal-complexity function

decomposition

This chapter �rst de�nes the function decomposition. Next, it introduces the minimal-

complexity single-step decomposition. The overall decomposition method is given next,

with the description of unsupervised and supervised approach to decomposition. We

experimentally evaluate the proposed methods and heuristics using a set of arti�cial and

real-world learning problems. The chapter concludes with a summary of the method and

experimental results.

2.1 Introduction to function decomposition

This dissertation is concerned with the decomposition method for the functions of type

y = F (a1; : : : ; an), where a1 : : : an are input attributes (or input variables or properties)

and y is a class variable (or output variable or property). The symbol y will also be used to

denote a target concept to be learned by decomposition. Both input attributes and class

are required to be nominal-valued with a �nite cardinality of their set of values, denoted

by jjaijj and jjyjj, respectively.

Let the function y = F (a1; : : : ; an) be partially speci�ed by a set of examples EF . The

value of class variable de�ned by an example ei 2 EF is denoted by F (ei). In this chapter

we will require these sets to be consistent, i.e., no two examples may use the same values

of attributes but de�ne a di�erent value for the class. Let us �rst de�ne a decomposition

of function F .

De�nition 2.1 Decomposition of function y = F (a1; : : : ; an) is a set of functions ci =

Fi(x1; : : : ; xni), where xi is either an input attribute aj or an intermediate concept cj,

12 Minimal-complexity function decomposition

car/4

price/4 tech/4

buying/4 maint/4 safety/3 comfort/4

doors/4 persons/3 lug_boot/3

Figure 2.1: A concept tree for car.

which is again a function. Arguments xi are referred to as attributes of function Fi. 2

Such a decomposition is obtained by inducing the target concept y in terms of a

hierarchy of intermediate concepts (ci) and their de�nitions. Each function Fi that de�nes

an intermediate concept ci within the hierarchy is partially speci�ed by the corresponding

set of examples EFi
. The decomposition of F is thus a decomposition of the set of examples

EF to the sets EFi
.

The decomposition aims to derive the example sets EFi
that are less complex than the

initial example set, i.e., that use less attributes and contain fewer examples. Such sets

may be easier to interpret and may introduce meaningful intermediate concepts.

Throughout the dissertation, we refer to such hierarchical system interchangeably as

a concept structure or concept hierarchy. When the disjoint sets of attributes are used by

the concepts in the hierarchy, we will call such a hierarchy also a concept tree.

Example 2.1 A concept tree for the target concept car is given in Figure 2.1. It uses

three intermediate concepts price, tech, and comfort, and six input attributes buying,

main, doors, persons, lug boot, safety. The numbers associated with the attribute and

concept names denote their cardinality of their set of values. 2

The core of the decomposition algorithm is a single-step decomposition which, given

a set of examples EF that partially represent a function ci = F (X), decomposes it to

EG and EH . Two new example sets partially represent the functions ci = G(A; cj) and

cj = H(B), whereX is a set of F 's attributes, A and B are its subsets such that A[B = X

and A\B = ;, and cj is a new intermediate concept. Before the decomposition, a concept

ci used the attributes X, while after the decomposition it is described using the attributes

from the set A[fcjg. The example sets EG and EH obtained in the decomposition process

are not prede�ned in any way.

2.2 Single-step decomposition 13

A single-step decomposition can be further applied to the new example sets EG and

EH . Curtis (1962) has shown that any decomposition that complies with De�nition 2.1

can be obtained by iterative applications of a single-step decompositions.

Example 2.2 A decomposition from Figure 2.1 can be obtained by three successive sim-

ple decompositions:

1. decompose car= F0(buying,maint,doors,persons,lugboot,safety) to

car= F1(buying,maint,tech) and tech= F2(doors,persons,lugboot,safety),

2. decompose tech= F2(doors,persons,lugboot,safety) to tech= F3(comfort,safety)

and comfort= F4(doors,persons,lugboot),

3. decompose car= F1(buying,maint,tech) to car= F5(price,tech) and

price= F6(buying,maint)

Figure 2.2 shows the evolving hierarchical structure that corresponds to these decomposi-

tion steps. 2

We are concerned only with disjoint decomposition as de�ned by Curtis (1962), i.e.,

a decomposition which yields the functions Fi with disjoint sets of attributes. A more

general decomposition is non-disjoint decomposition, where functions can share attributes.

A non-disjoint decomposition is obtained by iterative applications of non-disjoint single-

step decompositions. Curtis (1962), Perkowski (1995), and Zupan & Bohanec (1996)

have shown that single-step non-disjoint decomposition is a straightforward extension of

a simple disjoint decomposition.

2.2 Single-step decomposition

De�nition 2.2 Given a set of examples EF that partially specify the function ci = F (X)

and a partition of attributes X to sets A and B, a single-step decomposition of F are

functions ci = G(A; cj) and cj = H(B). Functions G and H are partially speci�ed by the

example sets EG and EH , respectively, that are derived and are consistent with example

set EF . EG and EH are discovered in the decomposition process and are not prede�ned

in any way. X is a set of attributes x1; : : : ; xm, and A and B are a nontrivial partition of

attributes in X, such that A [B = X, A \B = ;, A 6= ;, and B 6= ;. 2

We will use the names free set and bound set for attribute sets A and B, respectively,

and use a notation AjB for the partition of attributes X into these two sets. Before

the decomposition, the concept ci is described by an example set EF and is after the

14 Minimal-complexity function decomposition

car

buying maint doors persons lug_boot safety

(a) original dependency

car

buying maint tech

doors persons lug_boot safety

(b) after one single-step decomposition

car

buying maint tech

comfort safety

doors persons lug_boot

(c) after two single-step de-

compositions

car

price tech

buying maint comfort safety

doors persons lug_boot

(d) �nal concept structure after three

single-step decompositions

Figure 2.2: An evolving concept tree for car.

2.2 Single-step decomposition 15

decomposition described by an example set EG. Single-step decomposition discovers a

new intermediate concept cj which is described by an example set EH .

Given the partition AjB of attributes X, the single-step decomposition aims to de-

compose EF to EG and EH . We �rst present an example of such a decomposition and

then de�ne the single-step decomposition method.

2.2.1 Example

Let us consider a function y = F (x1; x2; x3) where x1, x2, and x3 are attributes and y is

the target concept. y, x1, and x2 can take the values flo, med, hig; x3 can take the values

lo, hi. The function F is partially speci�ed with a set of examples in Table 2.1.

x1 x2 x3 y

lo lo lo lo

lo lo hi lo

lo med lo lo

lo med hi med

lo hi lo lo

lo hi hi hi

med med lo med

med hi lo med

med hi hi hi

hi lo lo hi

hi hi lo hi

Table 2.1: A set of examples that partially describe the function y = F (x1; x2; x3).

There are three partitions of the attributes: hx1ijhx2; x3i, hx2ijhx1; x3i, and hx3ijhx1; x2i,

and three corresponding decompositions: y = G1(x1;H1(x2; x3)), y = G2(x2;H2(x1; x3)),

and y = G3(x3;H3(x1; x2)). These decompositions are given in Figure 2.3. The compari-

son shows that:

� Example sets in the decomposition y = G1(x1;H1(x2; x3)) are overall smaller than

those for the other two decompositions.

� The new concept c1 = H1(x2; x3) uses only three values, whereas that for H2(x1; x3)

uses four and that for H3(x1; x2) uses �ve.

� By inspecting the example sets for H1 and G1 it is easy to see that c1 corresponds

to MIN(x2; x3) and y to MAX(x1; c1). It is harder to interpret the sets of examples

for G2, H2, G3, and H3.

16 Minimal-complexity function decomposition

��
��
x2 ��

��
x3

��
��
c1

��
��
y

��
��
x1

x2 x3 c1
lo lo 1

lo hi 1

med lo 1

med hi 2

hi lo 1

hi hi 3

x1 c1 y
lo 2 med

lo 3 hi

lo 1 lo

med 3 hi

med 1 med

hi 1 hi

��� @@I

��� @@I

6

6

��
��
x1 ��

��
x3

��
��
x2

��
��
y

��
��
c2

x1 x3 c2
lo lo 1

lo hi 2

med lo 3

med hi 2

hi lo 4

x2 c2 y
lo 1 lo

lo 2 lo

lo 4 hi

med 1 lo

med 3 med

med 2 med

hi 1 lo

hi 3 med

hi 2 hi

hi 4 hi

��� @@I

��� @@I

6

6

��
��
x1 ��

��
x2

��
��
x3

��
��
y

��
��
c3

x1 x2 c3
lo lo 1

lo med 2

lo hi 3

med med 4

med hi 4

hi lo 5

hi hi 5

x3 c3 y
lo 1 lo

lo 2 lo

lo 3 lo

lo 4 med

lo 5 hi

hi 1 lo

hi 2 med

hi 3 hi

hi 4 hi

��� @@I

��� @@I

6

6

y = G1(x1;H1(x2; x3)) y = G2(x2;H2(x1; x3)) y = G3(x3;H3(x1; x2))

Figure 2.3: Three di�erent decompositions of the decision table from Table 2.1.

Among the three attribute partitions it is therefore bene�cial to decide for hx1ijhx2; x3i

and decompose y = F (x1; x2; x3) to y = G1(x1; c1) and c1 = H1(x2; x3)). An intuitive

criterion that would indeed prefer this decomposition is for example the minimal number

of values required for the new intermediate concept c1.

2.2.2 Single-step decomposition method

Let EF be a set of examples that partially speci�es the function ci = F (X) and let

AjB be a partition of attributes X. The single-step decomposition derives new example

sets EG and EH from EF , such that they partially specify functions ci = G(A; cj) and

cj = H(B), respectively. The single-step decomposition starts with the derivation of a

partition matrix.

De�nition 2.3 Given a partition of X to AjB, a partition matrix PAjB is a tabular

representation of example set EF with all combinations of values of attributes in A as

row labels and of B as column labels. Each example ei 2 EF has its corresponding entry

in PAjB with a row index A(ei) and a column index B(ei). Elements of PAjB with no

corresponding examples in EF are denoted by \-". A column a of PAjB is called non-

empty if there exists an example ei 2 EF such that B(ei) = a. 2

2.2 Single-step decomposition 17

Each column in the partition matrix denotes the behavior of F when the attributes in

the bound set are constant. Columns that exhibit the same behavior are called compatible

and can be represented by the same value of cj . Example partition matrices are given in

Figure 2.4.

x2 lo lo med med hi hi

x1 x3 lo hi lo hi lo hi

lo lo lo lo med lo hi

med - - med - med hi

hi hi - - - hi -

c1 1 1 1 2 1 3

x1 lo lo med med hi hi

x2 x3 lo hi lo hi lo hi

lo lo lo - - hi -

med lo med med - - -

hi lo hi med hi hi -

c2 1 2 3 2 4 -

x1 lo lo lo med med med hi hi hi

x3 x2 lo med hi lo med hi lo med hi

lo lo lo lo - med med hi - hi

hi lo med hi - - hi - - -

c3 1 2 3 - 4 4 5 - 5

Figure 2.4: Partition matrices and their column labels for three di�erent partitions of

attributes x1, x2, and x3, and the example set from Table 2.1.

De�nition 2.4 Columns a and b of partition matrix PAjB are compatible if F (ei) = F (ej)

for every pair of examples ei; ej 2 EF with A(ei) = A(ej) and B(ei) = a, B(ej) = b. The

number of such pairs is called a degree of compatibility between columns a and b and is

denoted by d(a; b). The degree of compatibility is de�ned only for compatible columns. 2

Note that according to this de�nition the unspeci�ed PAjB elements are compatible

with any value. The number of values for cj corresponds to the number of groups of mutu-

ally compatible columns. The lowest number of such groups is called column multiplicity

and denoted by �(AjB). It is derived by the coloring of column incompatibility graph.

De�nition 2.5 Column incompatibility graph IAjB is a pair (V;E), where each non-empty

column i of PAjB is represented by a vertex vi 2 V , and an edge (vi; vj) 2 E connects two

vertices if the corresponding columns of vi and vj are incompatible. 2

Then, the parition matrix column multiplicity �(AjB) is the number of colors needed

to color the incompatibility graph IAjB. Namely, the proper coloring guarantees that

two vertices representing incompatible columns are not assigned the same color. The

same colors are only assigned to the columns that are compatible. Therefore, the optimal

18 Minimal-complexity function decomposition

coloring discovers the lowest number of groups of compatible PAjB columns. An example

of a colored incompatibility graph is given in Figure 2.5.

.....

......
........
..
......
.....
..

.....

.....
.......
..
......
.....
..

.....

.....
.......
..
......
.....
..

.....

.....
.......
..
......
.....
..

.....

.....
.......
..
......
.....
..

.....

.....
.......
..
......
.....
..

...

..

..

...

..

3

2

1

lo,lo

1

1

1

med,hi

hi,lo

hi,hi

med,lo

lo,hi

Figure 2.5: Incompatibility graph for the partition hx1ijhx2; x3i and the partition matrix

of Figure 2.4. Numbers in circles represent di�erent colors (labels) of vertices.

Graph coloring is an NP-hard problem and the computation time of an exhaustive

search algorithm is prohibitive even for small graphs with about 15 vertices. Instead,

Perkowski (1995) suggested a Color Inuence Method of polynomial complexity and

showed that the method performs well compared to the optimal algorithm. The Color

Inuence Method sorts the vertices by their decreasing connectivity and then assigns to

each vertex a color that is di�erent from the colors of its neighbors so that a minimal num-

ber of colors is used. We use the same coloring method, with the following improvement:

when a color is to be assigned to vertex v and several compatible vertices have already

been colored with di�erent colors, the color is chosen that is used for a group of colored

vertices v1; : : : ; vk that are most compatible to v. The degree of compatibility is estimated

as
P

k

1 d(v; vi) (see De�nition 2.4 for d).

Each vertex in IAjB denotes a distinct combination of values of attributes in B, and

its label (color) denotes a value of cj . It is therefore straightforward to derive an example

set EH from the colored IAjB. The attribute set for these examples is B. Each vertex in

IAjB is an example in set EH . Color cj of the vertex is the class of the example.

Set EG is derived as follows. For any value of cj and combination of values of attributes

in A, ci = G(A; cj) is determined by looking for an example ei in row A(ei) and in any

column labeled with the value of cj . If such example exists, an example with attribute set

A [fcjg and class ci = F (ei) is added to EG.

Decomposition generalizes every unde�ned (\-") element of PAjB in row a and column

b, if a corresponding example ei with a = A(ei) and column B(ei) with the same label

as column b is found. For example, an unde�ned element PAjB[<hi>,<lo,hi>] of the �rst

partition matrix in Figure 2.4 was generalized to hi because the column <lo,hi> has the

same label as columns <lo,lo> and <hi,lo>.

2.2 Single-step decomposition 19

An interesting situation occurs when the number of values required for cj is 1. This

means that cj = H(B) is constant. H is therefore not needed and the attributes in B are

redundant. The example set EF is thus not decomposed but rather transformed to EG,

which uses only the attributes in A. The utility of decomposition to discover redundancy

and select a subset of attributes to consistently represent a given example set is further

investigated in Chapter 3.

Most often the machine learning algorithms deal with sparse datasets. For these, the

implementation using the partition matrix is memory ine�cient. Instead, the incompat-

ibility graph IAjB can be derived directly from the example set EF . Such derivation

requires a di�erent de�nition for the edges in IAjB:

De�nition 2.6 An edge (vi; vj) of incompatibility graph IAjB connects two vertices vi

and vj if there exist examples ek; el 2 EF with F (ek) 6= F (el) such that A(ek) = A(el),

i = B(ek), and j = B(el). 2

Dem�sar (1996) proposed an algorithm that e�ciently implements the construction of

IAjB using the above de�nition. The algorithm �rst sorts the examples EF based on the

values of attributes in A and values of ci. The examples with the same A(ei) constitute

groups that correspond to rows in partition matrix PAjB. Within each group, examples

with the same value of ci constitute subgroups. Two examples that are in the same group

but in di�erent subgroups have a corresponding edge in IAjB.

Again, EH is derived directly from the colored IAjB. The sorted examples of EF are

then used to e�ciently derive EG. With coloring, each subgroup has obtained a label

(value of cj). Each subgroup then de�nes a single example of EH with the values of

attributes in A and a value of cj , and a value of ci which is the same and given by any

example in the subgroup.

Example 2.3 For an example set from Table 2.1 and for the partition hx1ijhx2; x3i, the

examples sorted on the basis of the values of attributes in A and values of y are given

in Table 2.2.2. The double lines delimit the groups and the single lines the subgroups.

Now consider the two instances printed in bold. Their corresponding vertices in IAjB are

(lo,lo) and (med,hi). Because these instances are in the same group but in di�erent

subgroups, there is an edge in IAjB connecting (lo,lo) and (med,hi). After the coloring

(see Figure 2.5), these two subgroups obtained the labels 1 and 2 (1= H(lo;lo) and

2= H(med;hi)) and thus constitute two examples in EG, such that lo= G(lo;1) and med=

G(lo;2). 2

20 Minimal-complexity function decomposition

x1 x2 x3 y

lo lo lo lo

lo lo hi lo

lo med lo lo

lo hi lo lo

lo med hi med

lo hi hi hi

med med lo med

med hi lo med

med hi hi hi

hi lo lo hi

hi hi lo hi

Table 2.2: Examples from Table 2.1 sorted on the basis of the values of attribute x1 and

values of y.

2.2.3 Properties of single-step decomposition

Theorem 2.1 The example sets EG and EH obtained by single-step decomposition are

consistent with EF , i.e., every example in EF is correctly classi�ed using the functions H

and G.

Proof: Consistency is guaranteed by the EG and EH derivation method. Namely, for

ei 2 EF and yi = F (ei), the value cj = H(Bi) is assigned only to the PAjB columns

with the row entries that are either unde�ned or have an instance with a class value yi.

Therefore there exist no instance ej in PAjB in the same row A(ei) and in the column

labeled cj that would have F (ej) 6= F (ei). 2

Theorem 2.2 The partition matrix column multiplicity �(AjB) obtained by optimal col-

oring of IAjB is the lowest number of values for cj to guarantee the consistence of example

sets EG and EH with respect to example set EF .

Proof: Suppose that IAjB is colored with less than �(AjB) colors. Then, at least two non-

compatible PAjB columns are assigned the same label and for these by the De�nition 2.4

exist two examples ei; ej 2 F with F (ei) 6= F (ej) and A(ei) = A(ej). Since H(ei) = H(ej)

then G(A(ei); c) = G(A(ej); c), which is a contradiction and at least one instance in EF

is misclassi�ed. 2

Theorem 2.3 Let NG, NH , and NF be the numbers of examples in EG, EH , EF , respec-

tively. Sets EG and EH are derived by decomposition of EF using the attribute partition

AjB. Then, EG and EH use less attributes than EF (jjBjj < jjXjj and jjAjj + 1 < jjXjj,

2.3 Decomposition algorithm 21

where X is the initial attribute set) and include fewer or equal number of examples

(NG � NF and NH � NF).

Proof: The lower number of attributes for new example sets follows from the requirement

and type of decomposition we are using: jjAjj+ jjBjj = jjXjj, jjAjj � 1 and jjBjj � 1. NH

is equal to the number of non-empty columns in PAjB and thus less than or equal to the

number of examples in EF . Suppose, as described above, a sorted set EF is used to derive

EG. Then, NG is equal to the number of subgroups, and this can not be greater than the

number of examples in EF . 2

2.3 Decomposition algorithm

The decomposition aims to discover a hierarchy of concepts described with example sets

that are overall less complex than the initial one. Since an exhaustive search is pro-

hibitively complex, the decomposition uses a suboptimal greedy algorithm (Algorithm

2.1).

Input: Set of examples EF0
describing a single output concept

Output: Its hierarchical decomposition

initialize E fEF0
g

initialize j 1

while E 6= ;

arbitrarily select EFi
2 E that partially speci�es ci = Fi(x1; : : : ; xm), i < j

E E n fEFi
g

AbestjBbest = argmin
AjB

	(AjB),

where AjB runs over all possible partitions of X =< x1; : : : ; xm >

such that A [B = X , A \ B = ;, and jjBjj � b

if EFi
is decomposable using AbestjBbest then

decompose EFi
to EG and EFj

, such that ci = G(Abest; cj) and cj = Fj(Bbest)

and EG and EFj
partially specify G and Fj , respectively

EFi
 EG

if jjAbestjj > 1 then E E [fEFi
g end if

if jjBbestjj > 2 then E E [fEFj
g end if

j j + 1

end if

end while

Algorithm 2.1 The decomposition algorithm

22 Minimal-complexity function decomposition

In each step the algorithm tries to decompose a single example set of the evolving

structure. It evaluates all possible partitions of the attributes and selects the best one.

This step requires a so-called partition selection measure denoted with 	(AjB). The best

partition with the lowest value of this measure is then selected. The decomposition algo-

rithm will decompose EFi
and the function Fi it partially represents only if its decomposed

functions G and H are overall less complex than Fi. In such case we say that example

set EFi
is decomposable using partition AjB. The decomposability is evaluated using

the decomposability criterion. If the best partition found satis�es this criterion, then this

partition is used to decompose EFi
to sets EG and EH .

2.3.1 Partition selection measures

We will denote the partition selection measures with 	(AjB). The best partition is the

one that minimizes this measure:

AbestjBbest = argmin
AjB

	(AjB) (2.1)

This section introduces three partition selection measures, one based on column multiplic-

ity of partition matrix (CM(AjB)) and the other two based on complexity of resulting

functions (C(AjB) and 	SC(AjB)).

Column multiplicity (CM)

This is the simplest partition selection measure and is equal to �(A;B), i.e., a column

multiplicity of partition matrix PAjB. The idea for this measure came from the practical

experience with the DEX decision support system (Bohanec & Rajkovi�c 1990). There,

the hierarchical system of decision tables is constructed manually and it has been found

that decision tables that describe concepts with a small number of values are easier to

construct and interpret. Formally,

	CM(AjB) = �(AjB) (2.2)

Example 2.4 For the partitions in Figure 2.4 the column multiplicity-based partition

selection measures are 3, 4, and 5 respectively. As expected, the best partition according

to 	CM is therefore hx1ijhx2; x3i. 2

Complexity-based measures

The complexity-based measures introduced are based on the idea of Biermann et al. (1982)

who counted the number of di�erent functions that can be represented by a given signature

2.3 Decomposition algorithm 23

table schema, i.e., a tree structure of concepts whose cardinality is prede�ned. Let F be

de�ned on attributes xi 2 XF with class variable yF . In this attribute-class space, there

are a total of

N(XF ; yF) = jjyF jj

Q
xi2XF

jjxijj
(2.3)

possible functions, where jjyF jj and jjxijj are the cardinalities of value sets of yF and xi,

respectively. Assuming the uniform distribution of functions, the number of bits to encode

F is therefore

�C(F) = log2N(XF ; yF) = (log2 jjyF jj)
Y

xi2XF

jjxijj (2.4)

The �C complexity-based partition selection measure is de�ned as a sum of complexities

of G and H: 	C(AjB) = �C(G) + �C(H).

A similar measure was indeed proposed by Abu-Mostafa (1988) as a general measure

of complexity and used in the decomposition of Boolean functions. The author called

this measure a decomposed function cardinality (DFC) and computed it as
Q

xi2XF
jjxijj.

Although its ability to guide the decomposition of Boolean functions has been illustrated

in several references including (Ross, Noviskey, Gadd & Goldman 1994), DFC has been

recently criticized by Perkowski (1995) for de�ciencies in handling some classes of functions

including multi-output symmetric functions. Moreover, we are not aware of any study of

the applicability of DFC measures for the decomposition of example sets that use multi-

valued attributes and classes.

�C seems an appropriate complexity measure for function G. However, it can not be

used as such for H because of the following. When decomposing y = F (X) to y = G(A; c)

and c = H(B), we assign a single value from the set f1; : : : ; �(AjB)g to each of the columns

of partition matrix AjB (note that jjcjj = �(AjB)). But, each of these values has to be used

in at least one example from EH . In other words, from jyj

Q
xi2B

jjxijj
di�erent functions we

have to exclude all those that use less than jjcjj values. The number of di�erent functions

with exactly jjcjj possible values is therefore N(�(AjB)), where N is de�ned as:

N(x) = x

Q
xi2B

jjxijj
�

jjcjj�1X
i=1

jjcjj

i

!
N(x� 1)

N(1) = 1

(2.5)

Furthermore, since the actual label (value of c) of the column in PAjB is not important,

there are �(AjB)! equivalent assignments and therefore jjcjj! equivalent functionsH. Func-

tion H therefore uniquely represents N(�(AjB))=(�(AjB)!) functions with exactly �(AjB)

output values, and the number of bits needed to encode H is therefore:

�0
C(H) = log2N(jjcjj) � log2(jjcjj!) bits (2.6)

24 Minimal-complexity function decomposition

The �C and �0
C-based partition selection measure is then:

	C(AjB) = �C(G) + �0
C(H) (2.7)

Example 2.5 For the partitions in Figure 2.4, the corresponding complexity-based par-

tition selection measures are: 	C(hx1ijhx2; x3i) = 20:76 bits, 	C(hx2ijhx1; x3i) = 25:04

bits, and 	C(hx3ijhx1; x2i) = 28:61 bits. The preferred partition is therefore hx1ijhx2; x3i.

2

The implementation of 	C may be quite ine�cient because of the complex and recur-

sive formula (2.5). As an alternative, we introduce a simpli�ed complexity-based partition

selection measure 	SC, which is similar to 	C except that for H it does not subtract the

cases where H uses less than jjcjj values. 	SC uses the following complexity measures:

�SC(F) = (
Y

xi2XF

jjxijj) log2 jjyjj bits (2.8)

�0
SC(H) = (

Y
xi2B

jjxijj) log2 jjcjj � log2(jjcjj!) bits (2.9)

	SC partition selection measure is then de�ned as 	SC(AjB) = �SC(G) + �0
SC(H).

2.3.2 Decomposability criteria

The decomposition algorithm will decompose EF and the function F it partially rep-

resents only if its decomposed functions G and H are overall less complex than F .

Therefore, the partition AjB can be used to decompose EF to EG and EH if and only

if 	C(AjB) < �C(F), or, using a simpli�ed complexity-based measures if and only if

	SC(AjB) < �SC(F). We say that example set EF is decomposable if there exists a

partition AjB with this property.

Note that because 	CM is not based on function complexity, it can not be similarly used

for decomposability criteria. Therefore, when using 	CM for partition selection criteria,

either 	C or 	SC is used to determine decomposability.

Example 2.6 The application of both 	C and 	SC decomposability criteria on the de-

composition of example set from Table 2.1 are compared in Table 2.3. Neither one allows

the decomposition using the partition hx3ijhx1; x2i. Of other two partitions, the partition

hx1ijhx2; x3i is the best partition according to both partition selection measures. 2

2.3 Decomposition algorithm 25

hx1ijhx2; x3i hx2ijhx1; x3i hx3ijhx1; x2i

	(AjB) �(F) 	(AjB) �(F) 	(AjB) �(F)

C 20.76 28.53 ✓ 25.04 28.53 ✓ 28.61 28.53 ✗

SC 21.19 28.53 ✓ 26.44 28.53 ✓ 29.84 28.53 ✗

Table 2.3: Complexity measures and decomposability for partitions of Figure 2.4.

2.3.3 Overall complexity of decomposed function

Complexity-based measures can be used to assess the overall complexity of the functions

in the concept hierarchy. This complexity is equal to the sum of complexities of functions

in the hierarchy, where �C (or �SC) is used to estimate the complexity of the function at

the root of the hierarchy and �0
C (or �0

SC) is used for all other functions.

2.3.4 Complexity of decomposition algorithm

The time complexity of a single step decomposition of EF to EG and EH , which consists of

sorting of example set, deriving the incompatibility graph and coloring it, is O(N logN)+

O(Nk)+O(k2) where N is the number of examples in EF and k is the number of vertices

in IAjB. For any bound set B, the upper bound of k is

kmax = (max
xi2X

jjxijj)
b (2.10)

where b = jjBjj. The number of disjoint partitions considered by decomposition when

decomposing EF with m attributes is

bX
j=2

m

j

!
�

bX
j=2

(
em

j
)
j
= O(mb) (2.11)

The highest number of n � 2 decompositions is required when the hierarchy is a binary

tree, where n is the number of attributes in the initial example set. The time complexity

of the decomposition algorithm is thus

O

�
(N logN +Nkmax + k

2
max

)
nX

m=3

m
b

�
= O

�
n
b+1(N logN +Nkmax + k

2
max

)
�

(2.12)

Therefore, the algorithm's complexity is polynomial in N , n, and kmax. Note that the

bound b is a user-de�ned constant. This analysis clearly illustrates the bene�ts of setting

b to a su�ciently low value. In our experiments, b was usually set to 3.

26 Minimal-complexity function decomposition

2.4 Supervised and unsupervised approach to decomposi-

tion

The concept hierarchy may be obtained with or without human supervision. In the �rst

case, the user is involved in deciding if, which, and how to decompose the example sets of

the evolving hierarchical system. The second case is an algorithmic implementation of suc-

cessive simple decomposition steps where partition selection measures and decomposition

criteria as de�ned above are used. The user is involved in unsupervised decomposition only

to set its parameters (bound b on cardinality of the set B) and speci�es which measures

and criteria to use.

Unsupervised decomposition discovers a hierarchical structure of concepts without

user's interaction. Although the structure and discovered functions may be optimal with

respect to used complexity measures, the essential drawback of the approach is that the

user may prefer a di�erent structure, i.e., a di�erent dependency of concepts and at-

tributes. Although such a hierarchy and corresponding functions may be more complex

than those discovered by unsupervised decomposition, they can be more comprehensible

and introduce recognizable concepts.

Both arguments are related to \brain compatibility" as introduced by Shapiro (1987).

Decomposition should not only address the complexity, but rather provide methods to

assist the user in the discovery of the structure and underlying principles of the domain.

We therefore require the supervised decomposition to support the following operations:

� Given a user-de�ned hierarchical structure of concepts, derive the associated example

sets.

� Allow the user to control the decomposition process by selecting the example set to

decompose next.

� Given an example set, allow the user to select a partition for decomposition by

providing a list of partitions and their associated partition selection measures.

2.5 Concept hierarchy as a classi�er

A concept hierarchy can be used to classify new and possibly previously unseen examples.

When an example is presented to a concept hierarchy, the target concept value is derived

by bottom-up derivation where the lower-level concepts are derived �rst and are then used

to derive the values of the higher-level concepts.

2.6 Implementation 27

For each concept in the hierarchy, given the values of its attributes, an example is

found that has the same value of attributes and its class is assigned to that concept. If

such example is not found, we use a default rule: assign the concept a class that is the

most frequently used in the set of examples that de�ne this concept. Ties are resolved

arbitrarily. According to the experimental evaluation (section 2.7.6) the default rule does

help when the training examples rather sparsely cover the attribute set, but with a better

coverage the role of the default rule becomes minor.

2.6 Implementation

The minimal-complexity decomposition is implemented within the program HINT(Hierarchy

INduction Tool). HINT is written in the C programming language and runs in the UNIX

environment. (See also Appendix F.)

2.7 Experimental evaluation

The experimental evaluation addresses the classi�cation accuracy of HINT and its ability

to derive a comprehensible and meaningful structure, possibly similar to the anticipated

one.

In most of the cases, the classi�cation accuracy was assessed by means of learning

curves. The datasets were split to training and test sets of sizes p and 1� p, respectively,

for p from 10% to 90%. HINT derived a concept hierarchy and corresponding classi�er

using the examples in the training set and was tested for classi�cation accuracy on the

test set. For each p, the results are the average of 10 randomly chosen splits.

The learning curve is compared to the one obtained by C4.5 (Quinlan 1993) inductive

decision tree learner run on the same data. Although we could choose from a number of

di�erent learners, and possibly for a di�erent learner with optimized performance for a

speci�c domain, we have decided for C4.5 for the following reasons: (1) it is one of the

most known and used learning algorithms, (2) it performs well in terms of classi�cation

accuracy when compared to other learners (Michie, Spiegelhalter & Taylor 1994). We

have used the release 8 of the C4.5 program, and run it with default options except for

-m1, which was observed to obtain a better classi�cation accuracy than the default -m2

(parameter -m de�nes the minimum number of examples contained in the leaf nodes of

C4.5 decision tree). Accuracy is measured on unpruned decision trees for the same reason.

For each p, the signi�cance of the di�erence between C4.5 and HINT is determined using a

paired t-test with � = 0:01 (99% con�dence level). Learning curves use symbols � (HINT)

28 Minimal-complexity function decomposition

and � (C4.5) when the di�erence is not signi�cant, � when HINT is signi�cantly better,

and ◆ when C4.5 is signi�cantly better.

The derived concept hierarchies were, where possible, compared to the anticipated

ones. The comparison was either qualitative or by means of structure dissimilarity co-

e�cient SDC (Appendix A) to assess the similarity of the discovered structure and the

structure that is anticipated. For a qualitative comparison, the comprehensibility of the

discovered structure and the appropriateness of intermediate concepts were evaluated.

The appropriateness of the discovered structure was further evaluated by means of the

complexity of its functions by the simpli�ed complexity measure �SC.

We have considered the training sets of three di�erent types:

� Arti�cially generated training sets using binary and multi-valued functions. The

structure and intermediate concepts for these domains are anticipated.

� The training sets obtained from multi-attribute decision models originally developed

using DEX (Bohanec & Rajkovi�c 1990). The DEX models are hierarchical, so both

structure and intermediate concepts for these domains are known.

� Several training sets from machine learning repository (Murphy & Aha 1994) for

which the structure is not known to us.

The �rst group of examples is to illustrate the main characteristics of decomposition

method: discovery of concepts and functions. The examples also illustrate the method's

ability to learn from an incomplete set of examples. DEX examples are speci�cally inter-

esting to evaluate the decomposition method on more complex domains and to assess the

ability of decomposition to reconstruct multi-attribute decision models. Additional conve-

nience of DEX examples is the availability of the decision support expert (Marko Bohanec)

who was involved in the development of the models, for the evaluation of comprehensibility

and appropriateness of the structures discovered by the decomposition. The experiments

with domains from machine learning repository mainly focused on the evaluation of the

classi�cation accuracy.

Throughout this section we use an unsupervised decomposition. The decomposition

program HINT was run on a HP J210 workstation. If not stated otherwise, the partition

selection measure used is the column multiplicity, the simpli�ed complexity measure 	SC

is used as a decomposability criterion. Only the bound sets with 3 or 2 attributes were

examined for decomposition (parameter b of the decomposition algorithm was set to 3).

2.7 Experimental evaluation 29

2.7.1 Arti�cial domains

For this set of experiments, we generated several simple data sets based on prede�ned

functions and tried to reconstruct them. These functions are listed in Table 2.4. They are

de�ned using standard functions XOR, OR, AND, MIN, and MAX. The function AVG

used with MM3, MM4, and MM5 computes the average of its arguments and rounds it to

the closest integer. Prior probabilities of class values for each domain are given in Table

2.5. In all cases the examples in the data sets completely cover the attribute space.

Name Function Number and type of

attributes

Data set size

BOOL y = (x1 AND x2) OR (x3 XOR x4) 4 binary attributes 16

MM3

MM4

MM5

y = MIN(x1;

AVG(x2;MAX(x3; x4); x5))

5 k-valued attributes

k = 3; 4; 5

243 (for k = 3)

1024 (for k = 4)

3125 (for k = 5)

PAL2

PAL3

y =

palindrome(x1; x2; x3; x4; x5; x6) =

(x1 = x6) AND (x2 = x5)

AND (x3 = x4)

6 k-valued attributes

k = 2; 3

64 (for k = 2)

729 (for k = 3)

Table 2.4: Datasets based on binary and multi-valued functions.

Dataset Apriori class probabilities

BOOL 0/0.375, 1/0.625

MM3 0/0.383, 1/0.543, 2/0.074

MM4 0/0.268, 1/0.416, 2/0.291, 3/0.025

MM5 0/0.208, 1/0.293, 2/0.342, 3/0.146, 4/0.011

PAL2 0/0.875, 1/0.125

PAL3 0 0.963 1/0.037

Table 2.5: Apriori probabilities of classes in the arti�cial datasets.

Figure 2.6 shows the results for BOOL. The anticipated structure (Figure 2.6.a) uses

two intermediate concepts c1 = x1 AND x2 and c2 = x3 XOR x4, where the �nal

concept is y = c1 OR c2. Because of the small size of this domain, the training sets

used either 25%, 50%, or 75% samples from the original data set. The learning curve

(Figure 2.6.b) indicates that decomposition learned signi�cantly better than C4.5 at 75%,

30 Minimal-complexity function decomposition

whereas when using training sets of lower sizes the di�erences are not signi�cant. Also

at 75% the decomposition discovered the anticipated structure in all the 10 trials. The

joint complexity of the functions in a classi�er monotonically increases with the size of

the training set. Namely, for sets with lower number of examples, fewer intermediate

concepts and fewer attributes may be required to describe them, and consequently fewer

and simpler example sets are discovered (see Chapter 3 for a formal discussion of such

cases).

BOOL/2

c1/2 c2/2

a/2 b/2 c/2 d/2

(a) anticipated concept structure

0 20 40 60 80 100
20

40

60

80

100

�

�

�

.......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
.......
......
........
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
....

�

� �
........
........
........
........
........
........
........

........ C4.5

..................................... HINT

p

class. acc.

(b) learning curve

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

�

�

�

...

SDC

p

(c) dissimilarity with the anticipated

structure

0 20 40 60 80 100
0.0

2.5

5.0

7.5

10.0

�

�

�

......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
.....
......
..........
.............
.............
.............
.............
.............
.............
............

�SC

p

(d) joint complexity of discovered functions

Figure 2.6: Results for learning the BOOL function.

For all three MM functions, the anticipated structure is shown in Figure 2.8.a. The

structure to which decomposition converged to with an increasing number of training

examples is slightly di�erent, with the intermediate concept c1 of anticipated structure

2.7 Experimental evaluation 31

decomposed to two intermediate concepts. Although the concept c2 of such structure uses

relatively higher number of values (5 for MM3, 7 for MM4, 9 for MM5) when compared

to other attributes and concepts in the structure (k for MMk), �SC of such structure is

lower than that for the anticipated (66.13 instead of 66.15 for MM3, 143.4 instead of 182.8

for MM4, 267.5 instead of 392.5 for MM5).

The experimental results for MM functions are shown in Figure 2.7. For larger do-

mains, HINT's classi�ciation accuracy converges faster to 100%. Similar is true for the

convergence to the anticipated structure. In comparison with C4.5, HINT is signi�cantly

more accurate for all the training set sizes for MM5, for all but 10% size for MM4, and

for all sizes larger or equal to 50% for MM3.

An interesting phenomenon is the dependency of the joint complexity of functions �SC

on the size of the training set. In all three cases, it can be observed that �SC has a local

extreme (maximum). This can be contributed to the interplay of two e�ects:

� with a training set that sparsely covers the attribute space, the discovered structure

may use a lower number of atributes and a lower number of intermediate concepts

which may require lower number of values to describe the training set,

� when increasing the training set size the decompositon may have more evidence for

column (in)compatibility of partition matrices considered to �nd better structures

with simpler concepts.

Similar conclusions as for MM function can be drawn for PAL2 and PAL3 (see Figure

2.9. The anticipated structure is either one of y = ((x1 = x6)AND(x2 = x5))AND(x3 =

x4), y = (x1 = x6)AND((x2 = x5)AND(x3 = x4)), or y = ((x1 = x6)AND(x3 =

x4))AND(x2 = x5). HINT performs signi�cantly better than C4.5 for training set sizes of

60% or larger for PAL2 and 30% or larger for PAL3. It needs at least 70% of examples

from the original dataset to discover one of the anticipated structures for PAL2, and at

least 40% for PAL3.

2.7.2 DEX domains

An area where concept hierarchies have been used extensively is decision support in prob-

lems, in which an option is to be selected from a list of given options that best satis�es the

aims or goals of the decision maker. The decision is made on the basis of the evaluation of

options by a multi-attribute hierarchical model. In addition to evaluation, such models are

used also for various analyses and simulations of options. Most common are the models

that use numerical values and analytically expressed functions (Mallach 1994). A typical

example of such an approach is Analytic Hierarchy Process (Saaty 1993). In all cases the

32 Minimal-complexity function decomposition

learning curves

0 20 40 60 80 100
40

60

80

100

�

�
� �
� �
� � �

.....
......
.....
......
.....
......
.....
......
......
........
........
........
........
....................

............
......
.......
......
.......
.........
...........
..........
....................

..
............

�
� � �

� � � � �

........
........
........

..
........

........

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100
40

60

80

100

�

�
� � � � �

� �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
........
.......
.......
.......
........
................

..............................
..

......................

�
� � �

� � � � �........
........
........ .
.......

........

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100
40

60

80

100

�

� �
� � � � � �

.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
............
...........
...

...

�
� � � � � � � �........

........
........

........

........ C4.5

.........................HINT

p

class. acc.

dissimilarity with anticipated structure

0 20 40 60 80 100
0.6

0.8

1.0

1.2
�

�

�
�

�
� � � �

..
...........
..

SDC

p

0 20 40 60 80 100
0.6

0.8

1.0

1.2

�

�

� � � � � � �

..

SDC

p

0 20 40 60 80 100
0.6

0.8

1.0

1.2

�

� � � � � � � �

...

SDC

p

complexity

0 20 40 60 80 100
20

40

60

�

�

�

�
� � � � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
.......
.......
.......
.......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..

�SC

p

(a) MM3

0 20 40 60 80 100
100

120

140

160

�

�
� � � � �

�
�

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..

�SC

p

(b) MM4

0 20 40 60 80 100
260

310

360

410

�

�

�
� �

� � � �.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..

�SC

p

(c) MM5

Figure 2.7: Results of learning for MM functions.

2.7 Experimental evaluation 33

MM

x1 c1

x2 c2 x5

x3 x4

MM

x1 c3

x2 c2

x5 c1

x3 x4

Figure 2.8: The anticipated structure for MM functions (left) and the structure to which

decomposition converges with an increasing number of training examples (right).

0 20 40 60 80 100
70

80

90

100

�
� �
�

�

�

�
� �

........
........
........
.........
...........
...........
............
...........
...........
.....
......
......
......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
........
........
........
.................................

�

� � �
� �

� �

�

......
..
......
..
.......
.

........
........
........

.... ..
......
......
..
.....
...
.....
...

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100
0

1

2

3
�

�

�

�

�

�
� � �

..

SC

p

0 20 40 60 80 100
0

5

10

15

20

�

�

�

�

� �
� � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
........
.......
.......
.......
........
.......
.......
.......
.......
.......
......
......
......
......
......
......
........
...................

...

�SC

p

0 20 40 60 80 100
70

80

90

100

� �

� �
� � � � �

..............................
......
.....
.....
......
.....
.....
......
.....
.......
............
............
..................

..

� �
� � � � � � �........

....
....

...
....

........ C4.5

.........................HINT

p

class. acc.

(a) learning curves

0 20 40 60 80 100
0

1

2

3

�

�

� � � � � � �

..

SC

p

(b) similarity with antici-

pated structure

0 20 40 60 80 100
20

40

60

�

�

�

� � � � � �

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..

�SC

p

(c) complexity

Figure 2.9: Results for learning the PAL2 (top) and PAL3 (bootom) functions.

34 Minimal-complexity function decomposition

structure of the model is de�ned manually. However, the acquisition of functions is well

supported by various methods based on interactive dialogs, graphs, and tables.

DEX (Bohanec & Rajkovi�c 1990) is a multi-attribute decision support system that has

been extensively used to solve realistic decision making problems. DEX uses categorical

attributes and expects the structure and the functions to be given by the expert. The

formalism used to describe the resulting model and its interpretation is essentially the

same as those derived through the decomposition process described in this paper. This

makes models developed by DEX ideal benchmarks for the evaluation of decomposition.

For this experiment, we have chosen six existing DEX models:

CAR: A model for evaluating cars based on their price and technical characteristics. This

simple model was developed for educational purposes and is described in (Bohanec

& Rajkovi�c 1988).

EMPLOY1 and EMPLOY2: These are simpli�ed versions of the models that were devel-

oped with DEX for a common problem of personnel management: selecting the best

candidate for a particular job. While the realistic models that were practically used

in several mid- to large-size companies in Ljubljana and Sarajevo consisted of more

than 40 attributes, the simpli�ed versions used here have only 7 and 9 attributes, re-

spectively. EMPLOY1 composes the attributes into education of the candidate, age

and experience, and personal characteristics. In EMPLOY2, the latter is replaced by

other characteristics. EMPLOY1 is presented in (Bohanec, Urh & Rajkovi�c 1992),

while EMPLOY2 is previously unpublished.

NURSERY: This model was developed in 1985 (Olave, Rajkovi�c & Bohanec 1989) to

rank applications for nursery schools. It was used during several years when there

was excessive enrollment to these schools in Ljubljana, and the rejected applications

frequently needed an objective explanation. The �nal decision depended on three

subproblems: profession of parents and child's nursery, family structure and �nancial

standing, and social and health conditions of the family.

HOUSING: A model to determine the priority of housing loans applications (Bohanec,

Cestnik & Rajkovi�c 1996). This model is a part of a management decision support

system for allocating housing loans that has been used since 1991 in the Housing

Found of the Republic of Slovenia. So far, 11 oats of loans have been completed

and various models have been used to process over 20.000 applications. Basically,

the application priority is determined on applicants housing conditions, their status,

and social and health conditions.

2.7 Experimental evaluation 35

ENTERPRISE: A model developed in 1987 at the International Center for Public Enter-

prises, Ljubljana, for performance evaluation of public enterprises. Actually, this is

a single model from a suite of models developed for this purpose and used for the

evaluation of enterprises in Pakistan and Peru (Bohanec & Rajkovi�c 1990). The

performance of enterprises is measured by three main groups of concepts: �nancial,

economic, and social.

The goal of this experiment was to reconstruct these models from examples. The

examples were derived from the original models, where for speci�c combination of input

attributes the class was determined by a corresponding original model. The learning set

consisted of all possible combinations of input attributes' values. When less than 20.000

examples constituted the learning set, this whole set was used for training, otherwise,

20.000 examples were randomly selected. Some characteristics of the original models and

corresponding training sets are given in Table 2.6 and the prior probabilities of classes are

given in Table 2.7.

Domain n i N N [%]

CAR 6 3 1728 100

EMPLOY1 7 3 9600 100

EMPLOY2 9 5 18000 100

NURSERY 8 4 12960 100

HOUSING 12 6 20000 10.3

ENTERPRISE 12 8 20000 2.3

Table 2.6: Some characteristics of DEX domains used in the experiments. n is the number

of attributes, i the number of concepts, N the dataset size, and N [%] is its coverage of

the attribute space.

For CAR and NURSERY, the quanititative results of experiments are given in Figures

2.10 to 2.11. For DEX domains, these results are rather typical and we include the results

for other four DEX domains in Appendix C. The following can be concluded:

� In terms of the classi�cation accuracy and in almost all of the cases, HINT performs

signi�cantly better than C4.5. The only exceptions where there is no signi�cant

di�erence is with training sets of 10% in the CAR and ENTERPRISE domains.

� The convergence of classi�cation accuracy to 100% is much faster for HINT than

for C4.5. Moreover, while HINT usually correctly classi�es all the examples in the

36 Minimal-complexity function decomposition

Dataset Prior probabilities

CAR unacc/0.700, acc/0.222, good/0.040, v-good/0.038

EMPLOY1 unacc/0.942, acc/0.017, good/0.030, exc/0.012

EMPLOY2 unacc/ 0.949, acc/ 0.048, good/ 0.002, exc/ 0.002

NURSERY unacc/ 0.333, acc/ 0.000, v-acc/ 0.025, prior/0.329, h-prior/ 0.312

HOUSING 1/0.008, 2/0.150, 3/0.092, 4/0.299, 5.1/0.099, 5.2/0.060,

5.3/0.082, 5.4/0.051, 5.5/0.159

ENTERPRISE bad/0.190, less-acc/0.429, acc/0.143, good/0.190, exc/0.048

Table 2.7: Prior probabilities of classes in the DEX datasets.

test set when it has learned from the training set of the size higher than 30%, the

accuracy of C4.5 always stays below 100%.

� For both structure disimilarity coe�cient SDC and overall complexity of functions

in concept hierarchy �SC the standard deviation is quite high for small traing sets,

but it converges to 0 when learning from larger traing sets.

For each of the domains and with increasing the size of the traing set, the decomposition

converges to a single and speci�c structure. For CAR and NURSERY, these structures

are shown in Figure 2.12 and Figure 2.13, respectively, while for other DEX domains the

corresponding structures are given in Appendix C. The structures discovered by HINT

are presented along with the original structure of the corresponding DEX model. The

qualitative comparison of the concept structures shows that:

� The overall complexity of discovered functions is for all domains lower than of corre-

sponding original ones (Table 2.8). This is due to the fact that the discovered models

are in general more decomposed than original ones. Another reason is that origi-

nal DEX models included redundancies that were removed by the decomposition.

Section 3.4.1 further discusses the redundancy issue.

� For CAR, EMPLOY1, NURSERY, and HOUSE the structures derived are very

similar to the original ones, with a distinction that each of them can be obtained

from the original one by further decomposing one or several of its concepts. For

example, the original intermediate concept comfort= F (doors,persons,lug boot)

of CAR is represented by c1 = F
0(lug boot,c4) and c4 = G(doors,persons), i.e.,

the discovered structure uses one additional intermediate concept c4. Similarly,

additional intermediate concept for EMPLOY1 is c5, for NURSERY c6, and for

HOUSING c5, c9, c3, and c10.

2.7 Experimental evaluation 37

� Among the discovered structures, it is that of EMPLOY2 that least resembles to the

original one. HINT discovered the intermediate concepts formal (c2) and work app

(c4), but other intermediate concepts used do not relate to the original ones. Still,

the discovered structure has functions that are overall less complex than the original

ones. However, this a�ects the transparency of the structure since the attributes

that were combined together, such as manag ab and health, do not represent a

concept easy to comprehend. This is a nice example that illustrates that the most

compact representation need not be the most comprehensible. Clearly, supervised

decomposition is preferable for such cases.

CAR EMPLOY1 EMPLOY2 NURSERY HOUSING ENTERPRISE

original 146.2 145.1 160.0 169.4 299.9 231.9

discovered 108.7 128.5 108.3 134.3 236.5 180.7

Table 2.8: Comparison of the overall �SC complexity of functions in original concept

structure and in the structures discovered by HINT.

Overall, the unsupervised decomposition performed extremely well when discovering

DEX models. The derived structures were the same or only slightly di�erent to original

ones. This success can be contributed to the intrinsic structure and relatively large number

of the training examples. In spite of the large number of training examples, the time needed

for learning was small or moderate (Table 2.9).

2.7.3 Several domains from the ML repository

The following set of examples was taken from UCI machine learning repository (Murphy

& Aha 1994):

LENSES: A small domain that uses patient's age, spectacle prescription, astigmatism,

and tear production rate and describes whether the patient should wear soft or hard

contact lenses or no lenses at all.

CAR EMPLOY1 EMPLOY2 NURSERY HOUSING ENTERPRISE

1.2 s 25 s 29 s 28 s 346 s 130 s

Table 2.9: HINT's run-times on HP J210 workstation when decomposing the complete

datasets. These are also the upper bounds for the run-times when there are fewer examples

in the traing sets.

38 Minimal-complexity function decomposition

0 20 40 60 80 100
70

80

90

100

�

�
� � � � � � �

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

........
.......
.......
.......
........................

..

�

�
�
� �

� �
� �

......
..
......
..
......
..
........
........
........
........
........
........
........ ..
......

...
........
........ ..

...... ...

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100
0.5

1.0

1.5

�

�

� � � � � � �

..

SDC

p

0 20 40 60 80 100
100

125

150

175

200

�

�

�

� � � � � �

...

�SC

p

Figure 2.10: Results for the CAR domain.

0 20 40 60 80 100
90.0

92.5

95.0

97.5

100.0 � � � � � � � � �......................
...

�

�

�

�
�
�
�
� �

.....
...
.....
...
.....
...
.....
...
......
..
......
..
......
..
......
..
......
..
......
..
........
........
........
........
........
........
........
........
........
........ .
..

........ C4.5

......................... HINT

p

class. acc.

0 20 40 60 80 100
0.8

0.9

1.0

�

� � � � � � � �

...

SDC

p

0 20 40 60 80 100

100

120

140

160

�

� � �
�

� � � �
...

..............
...........
...........
...........
............
...

.....................................

�SC

p

Figure 2.11: Results for the NURSERY domain.

CAR/4

price/4 tech/4

buying/4 maint/4 safety/3 comfort/4

doors/4 persons/3 lug_boot/3

CAR/4

c2/4 c3/4

buying/4 maint/4 safety/3 c1/3

lug_boot/3 c4/4

doors/4 persons/3

Figure 2.12: The original (left) and decomposition-derived (right) structure for the CAR

domain.

2.7 Experimental evaluation 39

NURSERY/5

employ/4 struct_finan/3 soc_health/3

parents/3 has_nurs/5 housing/3 finance/2 structur/3 social/3 health/3

form/4 children/4

NURSERY/5

c3/3 c6/5

social/3 health/3 c4/3 c5/4

c1/3 c2/3 parents/3 has_nurs/5

form/4 childs/4 housing/3 finance/2

Figure 2.13: The original (left) and decomposition-derived (right) structure for the NURS-

ERY domain.

SHUTTLE: The 6 attribute database is intended for determining the conditions under

which autolanding would be preferable to manual control of the spacecraft.

MONK1 and MONK2: Well-known six-attribute binary classi�cation problems (Murphy

& Aha 1994, Thrun et al. 1991). Attributes are 2 to 4-valued. MONK1 has an

underlying concept a=b OR e=1 and MONK2 the concept x = 1 for exactly two

choices of attributes x 2 fa; b; c; d; e; fg.

The results of experiments in the form of the learning curves and overall complexities

of discovered functions are given in Figures 2.14 to 2.17. While HINT and C4.5 perform

similarly on LENSES and SHUTTLE, HINT is signi�cantly better in MONK domains for

p > 20%. Interestingly, for LENSES and SHUTTLE the complexity curves are rather of

di�erent shape than of all other domains investigated so far and monotonically increase

with higher p.

The discovered structures for each of the domains again converges to a single speci�c

structure. For all four domains these are shown in Figure 2.18. For LENSES and SHUT-

TLE we did not try to interpret the structures without the domain expert. For MONK1,

HINT discovered the hierarchy very similar to the anticipated one: MONK1 = F1(c1; c2),

c1 = F2(x1; x2), c2 = F3(x5; x6). In F3, x6 is redundant and by removing it c2 becomes x5

while F1 and F2 are equal to the expected disjunctive and equality functions. How such

redundancies are automatically discovered is described in Chapter 3.

For MONK2, because the bound and free sets are disjoint subsets of attributes, it was

impossible to derive concepts comparable to the original concept de�nition. However, the

discovered concept hierarchy is a reformulation of the target concept using functions that

40 Minimal-complexity function decomposition

0 20 40 60 80 100

20

40

60

80

100

�

�
�
�
� � �

�
�

......
......
......
......
......
......
.....
......
......
......
......
...

..........
..........
.........
..........
........
........
........
........
...

.......
.......
.......
.......
.......
.......
..........
..........
..........
..........
.....

�

�

�
�

�
�

�
�

�

......
..
......
..
......
..
......
..
......
..
......
..
......
..
......
..
................

..
......
..
......
..
......
.......
...

........
........
........
................................

........
........

........ C4.5

..................................... HINT

p

class. acc.

0 20 40 60 80 100
0

5

10

15

20

25

� �

�

�
�

�

�

�
�

.......................................
........
........
.......
.......
........
........
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
.......
.................

................
...............
............
.............
.........
.......
.......
.......
.......
.......
.......
........
......
......
......
......
......
......
......
......
..........
.............
.............
.......

�SC

p

Figure 2.14: Results for learning for the LENSES domain.

0 20 40 60 80 100
80

85

90

95

100

�

�
�

�
� � � � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
.........
.........
........
.........
.........
.......
.......
.......
.......
.......
.......
..

..............
..

�

�

�

� � �
� �

�

.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
..
.......
........
........

........
....

.
.....
........
........

........ C4.5

..................................... HINT

p

class. acc.

0 20 40 60 80 100
10

30

50

�

�
�

�

�

� �

�

�

........
........
........
........
........
................
.....................

.............
.........
.........
.........
..........
.........
........
.........
.........
..........
...........
...........
...........
..

............
...........
...........
.........
......
.....
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
..

�SC

p

Figure 2.15: Results for learning for the SHUTTLE domain.

0 20 40 60 80 100
40

60

80

100

�

�

�
� � � � � �

.....
......
......
......
.....
......
......
......
......
.....
......
.......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
........
..........
..........
..........
...............
........................

...

�
� �

�

�
�

� �
�

........
........
........
........

........
......
..
......
..
......
..
......
..
........
........
.......
.........

........
........

........ C4.5

..................................... HINT

p

class. acc.

0 20 40 60 80 100
0

10

20

30

�

� �
� � � � � �

......
......
......
......
......
......
......
......
......
......
......
..

�SC

p

Figure 2.16: Results for learning for the MONK1 domain.

2.7 Experimental evaluation 41

0 20 40 60 80 100
40

60

80

100

� �

�

�

�

� � � �

..................
..................

........
......
......
......
......
......
......
......
......
.......
.....
......
......
......
.....
......
......
......
.....
......
......
.......
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
......
.................
..

...

� � �
�

� � �
�

�
........

........
........
................................

.................................
.......
........

........ C4.5

..................................... HINT

p

class. acc.

0 20 40 60 80 100
10

30

50

70

�

�

�

�

� � � � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
......
......
......
......
......
......
......
........
.......
.......
.......
.......
.......
.......
...

...

�SC

p

Figure 2.17: Results for learning in the MONK2 domain.

count 1's.

The results indicate that the domains LENSES and SHUTTLE are di�erent than

MONK1 and MONK2 from the viewpoint of decomposition. Namely, when compared

to C4.5, for MONK1 and MONK2 HINT performs much better than in case of LENSES

and SHUTTLE. Furthermore, for MONK1 and MONK2 the complexity curves settle to

some value while those of LENSES and SHUTTLE this can not be observed. The possible

explanation for such behavior may be that LENSES and SHUTTLE do not possess a

structure that would be recognizable by decomposition and would have a positive e�ect

on classi�cation accuracy.

2.7.4 Further experiments on MONK1 and MONK2

HINT was further tested on the data sets for MONK1 and MONK2 that were used in

the detailed study of 25 machine learning algorithms (Thrun et al. 1991). The summary

of experimental results for this study are given in Appendix D. For both MONK1 and

MONK2, the training set was the same as our original data set described above. The two

test sets used in the study consisted of 432 examples that completely covered the attribute

space.

For MONK1, the accuracy of HINT is 100%. This score was in the study (Thrun et

al. 1991) achieved by 9 learners (three variants of AQ17, Assistant Professional, mFOIL,

CN2, two variants of Backpropagation, and Cascade Correlation).

For MONK2, the accuracy of HINT is 97.7%, which was in the study outscored by

4 learners which achieve accuracy 100% (AQ17-DCI, two variants of Backpropagation,

and Cascade Correlation). It should be noted that these results were obtained by HINT

without tuning in less than 0.3 seconds of CPU time on HP J210 workstation. When,

42 Minimal-complexity function decomposition

LENSES/3

c1/3 c2/3

age/3 prescr/2 astigm/2 tears/2

(a) LENSES

SHUTTLE/2

visibility/2 c3/2

c1/3 c4/3

stability/2 serr/4 magnitude/4 c2/3

sign/2 wind/4

(b) SHUTTLE

MONK1/2

c2/2 c3/2

a/3 b/3 e/4 f/2

(c) MONK1

MONK2/2

c3/3 c4/4

e/4 f/2 c1/3 c2/3

a/3 b/3 c/2 d/3

(d) MONK2

Figure 2.18: Structures discovered for ML-repository domains

2.7 Experimental evaluation 43

for example, the training examples were preprocessed by HINT to remove the redundant

attributes (see Chapter 3), HINT misclassi�ed just one example in the test set and thus

achieved the accuracy of 99.77%.

2.7.5 Conduction-block of partially demyelinated �ber

This section demonstrates how decomposition can be used to analyze neurophysiological

data. The data was obtained by using a physiologically realistic model of the myelinated

axon of a neuron developed at Baylor College of Medicine in Houston. The model is

given in the form of a system of multiple cross-coupled parabolic partial di�erential equa-

tions that are solved by an implicit numerical integration method. The model is used

to predict the functional implications of neuronal structural and biophysical properties

(Halter & Clark 1991, Halter, Carp & Wolpaw 1995) and has recently been employed to

guide laboratory experiments and a study of pathophysiologic signi�cance of abnormal

myelination.

In this example, we used a supervised decomposition to analyze the data used to study

the inuence of six nerve �ber properties (attributes) to the conduction of action potential.

The attributes and class are listed in Table 2.10. Table 2.10 also gives the range of the

values for aff and nl, and the ranges of orders of magnitude in which k conc, na conc,

scm, and leak were scaled from their normal values. A dataset consisting of 3000 random

samples was generated using the physiologically-realistic nerve �ber model and consisted

of 3000 random samples.

block a two valued class indicating whether or not the nerve �ber conducts

aff number of a�ected (demyelinated) internodes, [1; 6]

nl number of myelin layers in the internode, [0; 100]

k conc concentration of K+ channel density in the internode, [�2; 2]

na conc concentration of Na+ channel density in the internode, [�2; 2]

scm speci�c conductivity of the myelin in the internode, [�2; 2]

leak nodal leakage through all the nodes of the �ber, [�2; 2]

Table 2.10: Class and attributes for the conduction-block domain.

From the original dataset a set with 2543 examples was derived where each of the

attributes was discretized using 5 intervals. The method used a genetic algorithm (Zupan,

Halter & Bohanec to appear in 1997) to �nd the discretization intervals that minimize

the classi�cation error when new example set is used to classify the instances of original

set. If several examples from the original set are discretized to the same set of attribute

44 Minimal-complexity function decomposition

free set bound set �

aff, nl, scm k conc, na conc, leak 12

nl, scm, leak aff, k conc, na conc 15

k conc, na conc, leak aff, nl, scm 16

nl, na conc, scm aff, k conc, leak 16

k conc, na conc, scm aff, nl, leak 17

k conc, scm, leak aff, nl, na conc 17

aff, nl, leak k conc, na conc, scm 17

nl, k conc, scm aff, na conc, leak 17

na conc, scm, leak aff, nl, k conc 18

aff, scm, leak nl, k conc, na conc 18

aff, na conc, scm nl, k conc, leak 18

aff, k conc, leak nl, na conc, scm 18

aff, k conc, scm nl, na conc, leak 18

aff, k conc, na conc nl, scm, leak 18

aff, nl, na conc k conc, scm, leak 18

aff, nl, k conc na conc, scm, leak 18

nl, k conc, na conc aff, scm, leak 19

aff, na conc, leak nl, k conc, scm 19

nl, na conc, leak aff, k conc, scm 20

nl, k conc, leak aff, na conc, scm 20

Table 2.11: Partition selection measure (partition matrix column multiplicity) for unde-

composed discretized condition-block example set.

values, they are represented by a single example in the new set. Such a new example

describes the class that is the majority class of the corresponding examples of the original

set. The discretization method is further described in (Zupan, Halter & Bohanec to appear

in 1997). When used to classify the items in the dataset, the discretized example set was

found to misclassify only 7 instances of the original dataset (0:23%).

The decomposition algorithm checked all the possible partitions and the �rst one found

was aff; nl; scm j k conc; na conc; leak with � = 12. This partition was clearly the best

one for decomposition, and to illustrate this, Table 2.11 lists � for all the partitions with

the cardinality of the bound set of 3.

This decomposition yielded the structure block = G(aff; nl; scm; c1) and c1 = H(na conc,

k conc; leak). The two example sets EF and EG were separately checked for decom-

position. For EF , decomposition with the measure �(aff; c1 j na conc; scm) = 16 was

found and block = G
0(aff; c1; c2) was further decomposed using the partition �(aff j

c1; c2) = 13. EH could also be decomposed, but since all decomposition yielded an inter-

2.7 Experimental evaluation 45

mediate concept with 25 values, i.e. with one value for each combination of attributes in

the bound set, it was decided that the hierarchy discovered so far would be the �nal one.

block

aff c3

c1 c2

k_conc na_conc leak nl scm

Figure 2.19: Discovered concept hierarchy for the conduction-block domain.

The discovered concept hierarchy is presented in Figure 2.19. When interpreted by

the domain expert (J. A. Halter), it was found that the discovered intermediate concepts

are physiologically interpretable and constitute useful intermediate biophysical proper-

ties. Intermediate concept c2, for example, depends on nl and scm, the properties of

the myelin sheath, which are indeed coupled within the realistic model through model-

speci�c function f(nl; scm). c1 couples na conc, k conc, and leak, the axonal properties

and the combined current source/sink capacity of the axon which is the driving force for

all propagated action potentials.

The initial discretized set had 2543 examples, while after the decomposition the dis-

covered concepts c1, c2, c3, and an output concept block are described with signi�cantly

simpler sets 125, 25, 184, and 65 examples. For this reason and for the reason that they

represent physiologically relevant properties, they were easier to interpret than the non-

decomposed sets. For instance, it was found that c2 exhibits monotonic dependency of

c2 to nl and scm. Furthermore, c1 represents a principle known in physiology: for a

conduction of the nerve �ber, an increase of leak will require an increase of na conc.

2.7.6 Generalization of decomposition

When the concept hierarchy is given an attribute-value vector, it derives it correspond-

ing class value by bottom-up derivation of intermediate concepts. For each intermediate

concept, its example set may or may not include the appropriate example to be used for

classi�cation. In the later case, the default rule is used that assigns the value of most

frequently used class (see Section 2.5) to the intermediate concept. The question is, how

good is the generalization of the concept hierarchy without the default rule, i.e., given a

46 Minimal-complexity function decomposition

test set, for how many of its examples the default rule is used.

To answer this question, we use three domains and show the percentage (r) of examples

in the test set for which the default rule was used to derive the value of at least one

concept in the hierarchy (Figure 2.20). Results show that this percentage decreases with

the number of examples used in the training set and converges to 0. The results for other

domains were similar. We conclude that the default rule does not contribute signi�cantly

to the generalization property of decomposition, especially when the training set covers

the attribute space su�ciently well. The default rule may be bene�cial though in the case

of small training sets that relatively sparsely cover the attribute space.

0 20 40 60 80 100
0

25

50

�

�

�
� � � � � �

...

r[%]

p

(a) MONK2

0 20 40 60 80 100
0

1

2

3

�

�

�
� � � � � �

..

r[%]

p

(b) CAR

0 20 40 60 80 100
0

2

4

6

8

�

� � � � � � � �

...

r[%]

p

(c) ENTERPRISE

Figure 2.20: Percentage of examples from the test set r where a default rule was used to

derive the class of at least one concept of the hierarchy.

2.7.7 Comparison of partition selection measures

The examples from previous sections use column multiplicity as the partition selection

measure (CM). We further tested HINT with other complexity-based measures. The

experimental comparison of 	C and 	SC shows a large similarity of these two measures

not just in terms of the ordering of partitions, but also in the similarity of their values.

The examples in Appendix B clearly demonstrate this similarity. For this reason, it seems

su�cient to use 	SC alone to assess the e�ects of complexity based partition selection

measures.

Concerning the classi�cation accuracy and for all the domains used, the di�erences

when the decomposition used either 	CM or 	SC where minor and most often insignif-

icant. This was di�erent for the discovered structures, which were (especially for DEX

domains) to some extent more complex than those discovered with the use of 	CM. How-

2.7 Experimental evaluation 47

ever, when the maximum cardinality b of the bound set was raised from 3 to 4, these

di�erences were less apparent, and both 	CM and 	SC guided decomposition discovered

the same structures for CAR, EMPLOY1, and NURSERY, while the structures for EN-

TERPRISE were very similar. 	SC-guided decomposition still discovered a less similar

structure compared to the original DEX structure for EMPLOY2 and HOUSING, and

this did not change when b was raised to 5 and higher. Interestingly, 	CM-guided decom-

position discovered the same structure for any value of b equal to or larger than 3. In

part, the results of these experiments are shown in Table 2.12.

b CAR EMPLOY1 EMPLOY2 NURSERY HOUSING ENTERPRISE

	CM 3 0.533 0.571 1.833 0.857 1.697 0.833

4 0.533 0.571 1.833 0.857 1.697 0.833

	SC 3 0.533 0.857 1.694 0.929 1.758 1.636

4 0.533 0.571 1.972 0.857 1.833 0.758

Table 2.12: Comparison of structures derived by 	CM and 	SC-guided decomposition with

the original DEX models using the structure dissimilarity coe�cient SDC.

The similarity of the results using 	CM and 	SC is rather surprising. The reason is

that these two measures seem to prefer rather di�erent partitions, where 	SC is more

biased towards the partitions with a larger number of attributes in the bound set. In such

cases, the complexity of �C(G) tends to be smaller than in the cases with fewer bound

attributes, and this decreases the sum �C(G) + �C(H).

Let us illustrate this on an example. Figure 2.21 shows a structure for NURSERY

discovered by 	SC-guided decomposition with b = 4. It is identical to that of Figure 2.13

discovered by 	CM-guided decomposition, except that the intermediate concepts were

discovered in a di�erent order (note the indices). For example, the �rst partition used for

decomposition by 	SC had the bound set <form,children,housing,finance>, while that

of 	CM had <cult hist,advantage>.

The di�erence between partition selection measures can be further illustrated on the

examples in Appendix B. There, the partition selection measures and the corresponding

ranks are given for the initial example sets of LENSES, CAR, and NURSERY. Table 2.13

gives the correlation between these sets of ranks (the correlation was derived using the

same formula as used in Appendix A). As expected, ranks given by 	C and 	SC are

almost the same, while those of 	CM very weakly correlate with the other two, especially

for more complex domains CAR and NURSERY.

48 Minimal-complexity function decomposition

NURSERY/5

c2/5 c3/3

c6/4 c1/3 social/3 health/3

parents/3 has_nurs/5 c5/3 c4/3

housing/3 finance/2 form/4 childs/4

Figure 2.21: The structure discovered for NURSERY using 	SC-guided decomposition

with b = 4.

	C 	SC

	CM 0.76 0.86

	C 0.87

(a) LENSES

	C 	SC

	CM 0.23 0.23

	C 1.00

(b) CAR

	C 	SC

	CM 0.17 0.17

	C 1.00

(c) NURSERY

Table 2.13: Correlation of partition ranks obtained by three di�erent partition selection

measures.

2.8 Summary and discussion 49

2.8 Summary and discussion

This chapter introduced a new machine learning approach based on function decomposi-

tion. A distinguishing feature of this approach is its capability to discover new intermediate

concepts, organize them into a hierarchical structure, and de�ne the relationships between

the attributes, newly discovered concepts, and target concept. In their basic form, these

relationships are speci�ed by newly constructed example sets. In a way, the learning pro-

cess can thus be viewed as a process of generating new, equivalent example sets, which

are consistent with the original example set. The new sets are smaller, have smaller num-

ber of attributes, and introduce intermediate concepts. Generalization also occurs in this

process. The decomposed sets of examples are consistent with the original undecomposed

set.

We have evaluated the decomposition-based learning method on several datasets. In

terms of the classi�cation accuracy, the decomposition signi�cantly outperformed C4.5 in

all but two domains (SHUTTLE and LENSES), where the di�erences were insigni�cant.

The examples also show that the decomposition is useful for the discovery of new inter-

mediate concepts. For example, the decomposition was able to discover an appropriate

concept hierarchy approved by domain experts for most of rather complex DEX real-world

domains.

The classi�cation accuracy results may be biased because we have mostly used the

domains where we anticipated the hierarchies discoverable by decomposition. However,

MONK2 is a counter example where the decomposition is unable to discover the original

de�nition of the target concept, but rather unexpectedly its reformulation.

The decomposition approach as presented in this chapter is limited by that there is no

special mechanism for handling noise. The extensions that allow the decomposition to be

used in such domains are presented in the following chapters.

50 Minimal-complexity function decomposition

Chapter 3

Decomposition-based attribute

selection and discovery of

redundancies

The attributes used in the example sets are usually of di�erent relevance when used to

determine the target concept. For example, to describe the concept \has-u", a patient's

temperature may provide substantially more information about the target concept than

a patient's height. It may thus be be bene�cial to preprocess such an example set and

describe it only with a subset of most relevant attributes. Such preprocessing is called

attribute subset selection, also referred to as feature subset selection. The process aims

at reducing the number of attributes and increasing the coverage of attribute space by

examples, while constructing a new example set that adequately represents the concept

as given by the original set of examples.

From the point of view of machine learning, the attribute subset selection attempts to

�nd a subset of attributes under some objective function. Common objective functions

are (John, Kohavi & Peger 1994): prediction accuracy, the complexity of the derived

classi�er, and minimal use of input attributes. The induced classi�er may thus be more

accurate at one hand, and less complex and therefore potentially more transparent on the

other hand. Attribute subset selection may also be useful in the cases where the time com-

plexity of machine learning tools strongly depends on the number of attributes. Function

decomposition, for example, belongs to this category. Speci�cally for the decomposition,

preprocessing by means of attribute selection may allow it to consider also more complex

intermediate concepts that use a higher number of attributes in the bound sets.

Di�erent to relevancy is a notion of attribute redundancy. Namely, an attribute may

52 Decomposition-based attribute selection and discovery of redundancies

be redundant if it is irrelevant, but a highly relevant attribute may be redundant as well.

For example, consider an example set that contains two binary attributes, where one is a

negation of the other. Although both attributes may be relevant, it is su�cient to know

the value of a single one when determining the target concept. A set of most relevant

attributes may thus contain redundant but not irrelevant attributes.

A notion of attribute redundancy is speci�cally important to decomposition. If an

example set includes redundant attributes, this may a�ect the partition selection measure

and mislead the decomposition to prefer the partitions with redundant attributes in the

bound sets. For decomposition, it is therefore important for attribute subset selection

to exclude not only irrelevant but also redundant attributes. For example, a column

multiplicity for attributes x1 and x2 in the bound set, where x2 is redundant, may be

lower (and at most equal to the cardinality of the set of values for x1) than for some other

pair of attributes, although x1 and x2 may not be functionally related.

This chapter describes a function decomposition based attribute subset selection that

removes redundant attributes so that less relevant ones are removed �rst. The method aims

at minimizing the number of attributes and constructing a corresponding example set that

is consistent to the original set of examples. First, section 3.1 describes the decomposition-

speci�c approach to detect and remove redundant attributes. Decomposition may also

handle cases when attribute itself is not redundant, but may be described with fewer

values. The corresponding method is proposed in section 3.2. Both approaches are then

incorporated in the attribute subset selection algorithm given in section 3.3. Section 3.4

experimentally evaluates the proposed method. The chapter concludes by a summary and

discussion.

3.1 Redundancy of attributes

Let us �rst de�ne the redundancy of attributes with respect to the given example set:

De�nition 3.1 Given an example set EF that uses attributes a1; : : : ; an, let E
0
F
be a new

example set that is derived from EF by removing attribute aj. aj is redundant if E
0
F
is

consistent with EF . 2

In other words, if EF partially speci�es a function F (a1; : : : ; an) and E
0
F
a function

F
0(a1; : : : ; aj�1; aj+1 : : : ; an), then aj is redundant if F 0(ei) = F (ei) for every example

ei 2 EF .

By above de�nition, attribute aj is redundant if function F does not depend on it: with

all other attributes constant and varying the value of aj , the value of function F does not

change. In terms of decomposition, this inspires the following treatment of redundancy:

3.1 Redundancy of attributes 53

...............................
.....
..
.....
................................

.....

.....

.....

.....

...
.....
..
.....
................................

.....

.....

.....

.....

...

��
��
a1 ��
��
a2 ��
��
a3

��
��
y

a1 a2 a3 y

lo lo lo lo

lo lo hi lo

lo hi hi hi

hi lo lo hi

hi hi lo hi

hi hi hi hi

��� @@I6

6

a3
a1 a2 lo hi

lo lo lo lo

lo hi - hi

hi lo hi -

hi hi hi hi

��
��
a1 ��

��
a2

��
��
y

a1 a2 y

lo lo lo

lo hi hi

hi lo hi

hi hi hi

��� @@I

6

Figure 3.1: Discovery of redundant attribute a3 and its removal from the training set.

Theorem 3.1 LetEF be an example set that partially speci�es y = F (X) = F (a1; : : : ; an).

Let AjB be a disjoint partition of attributes in X such that B = haji and A = X n haji.

Then aj is redundant if �(AjB) = 1.

Proof: To prove this theorem, we refer to the single-step decomposition as de�ned in

Chapter 2. There, a function y = F (X) represented with a set of examples EF was

decomposed to functions y = G(A; c) and c = H(B). �(AjB) denoted the number of

values that are used by c in order for G and H to be consistent with F . When �(AjB) = 1,

c uses a single value (jjcjj = 1) and H is a constant. Such c can therefore be removed from

examples EG that partially de�ne G. EG is then a new set of examples and can be used

instead of EF . 2

Example 3.1 Figure 3.1 shows an example set with redundant attribute a3. The redun-

dancy is discovered by evaluating the column multiplicity of the corresponding partition

matrix. Since �(ha1; a2ijha3i) = 1, a3 is redundant and a new example set is constructed

that uses only the attributes a1 and a2. 2

Discovered redundancy can either indicate a true redundancy of attribute, or can

simply mean that a training set is insu�cient to pinpoint the need for such attribute.

Moreover, removing one redundancy can make other redundant attributes non-redundant.

Example 3.2 An example in Figure 3.2 explains this case. There, x1 and x2 were both

found redundant when considered separately. But once one of the attributes, say x2, is

removed, the other attribute (x1) becomes non-redundant. 2

The decomposition-based redundancy de�nition can be simply modi�ed to denote the

redundancy of the set of attributes:

54 Decomposition-based attribute selection and discovery of redundancies

...............................
.....
..
.....
................................

.....

.....

.....

.....

...
.....
..
.....
................................

.....

.....

.....

.....

...

��
��
a1 ��

��
a2

��
��
y

a1 a2 y

lo lo lo

hi hi hi

��� @@I

6
a2

a1 lo hi

lo lo -

hi - hi

��
��
a1

��
��
y

a1 y

lo lo

hi hi

6

6

Figure 3.2: a1 and a2 are both redundant in the original training set, but removal of a2
makes a1 non-redundant.

De�nition 3.2 Let EF be an example set that partially speci�es y = F (X) = F (a1; : : : ; an).

Let AjB be some disjoint partition of attributes in X. The attributes in the set B are

redundant if �(AjB) = 1. 2

According to the above de�nition, one may be tempted to use it in order to �nd the

largest set of attributes B that are redundant and can be removed from the original exam-

ple set. However, such an exhaustive search may be prohibitively complex even for small

domains because of the large number of partitions to consider. Such an approach would

then be similar to the FOCUS algorithm of Almuallim & Dietterich (1991), which was

originally de�ned for noise-free Boolean domains. As an alternative, section 3.3 presents

a sub-optimal approach where only one attribute at a time is checked for redundancy and

removed if found redundant.

3.2 Redundancy of attribute values

Most often, attribute subset selection methods, for example like the one proposed in

(Kohavi & John 1997), focus only on the relevancy of the attributes, but do not speci�cally

consider their value sets. An attribute may however be described by a set of values of which

some are irrelevant. Furthermore, some attribute values may exhibit the same behavior

with respect to the target concept. In both cases, it may be bene�cial to derive the

minimal description of attributes and construct a corresponding set of examples. Again,

we propose to handle such cases by a single-step decomposition.

Let EF be an example set that partially speci�es y = F (X) = F (a1; : : : ; an). Let

AjB be a disjoint partition of attributes in X such that B = haji and A = X n haji. If

�(AjB) < jjaj jj, then aj can be replaced with a new attribute a0
j
, such that y = G(A; a0

j
)

and a
0
j
= H(aj). G and H are functions represented with sets EG and EH and derived by

the single-step decomposition.

Note that EG is a new set of examples that replaces EF , while EH is a mapping from

3.3 Attribute and attribute values subset selection algorithm 55

...............................
.....
..
.....
................................

.....

.....

.....

.....

...
.....
..
.....
................................

.....

.....

.....

.....

...

��
��
x1 ��

��
x2

��
��
y

x1 x2 y

lo lo lo

lo med lo

lo hi hi

hi hi hi

��� @@I

6
x2

x1 lo med hi

lo lo lo hi

hi - - hi

x0

2
lo' lo' hi

��
��
x2

��
��
x
0
2

��
��
y

��
��
x1

x2 x0

2

lo lo'

med lo'

hi hi

x1 x0

2
y

lo lo' lo

lo hi hi

hi hi hi

6

6

��� @@I

6

Figure 3.3: Discovery of redundant values of attribute x2 (lo and med are replaced by lo').

the set of values of aj to the new and reduced set of values of a0
j
. In the case where an

attribute has a value de�ned but never used in the original example set, the corresponding

column in the partition matrix is empty and such value is not considered by decomposition

and consequently not represented in the example set EH .

Example 3.3 Figure 3.3 shows an example where a2 can be described with fewer values

that are used in the original set. Namely, its values lo and med exhibit the same behavior in

respect to the target concept, i.e., the two corresponding columns in the partition matrix

are compatible. In other words, with all other attributes constant, changing a2 from lo

to med or vice versa never changes the value of y. Thus, lo and med can be replaced by a

single value lo'. 2

3.3 Attribute and attribute values subset selection algo-

rithm

The above two sections described the detection and removal of either redundant attribute

or its values. Example 3.2 also demonstrated that removing one redundant attribute may

cause the other, previously redundant attribute, to become non-redundant. Therefore,

the selection of attributes may depend on the order in which redundant attributes are

removed.

Most often, the attribute subset selection algorithms remove the attributes in the

order of their relevancy. The measures that estimate the relevance of the attributes have

been extensively studied within statistics and machine learning. In our implementation

56 Decomposition-based attribute selection and discovery of redundancies

incorporated within program HINT, the user can choose between any of the following:

information gain (Quinlan 1979), GINI index of diversity (Breiman, Friedman, Olshen &

Stone 1984), gain-ratio measure (Quinlan 1986b), and ReliefF and MDL-based measures

(Kononenko 1994, Kononenko 1995).

The attribute subset selection method is given as Algorithm 3.1. R(ai) is the relevance

estimated for attribute ai, such that if R(ai) > R(aj), the attribute ai is more relevant

than aj . Note that the relevancy and redundancy of attributes are re-evaluated every

time some redundancy is discovered and removed. The method falls under the category of

�lter algorithms (John et al. 1994) of which the aim is solely the reduction of number of

attributes used. It is di�erent from other attribute subset selection algorithms in attempt

not only to select a subset of attributes but also to minimize the number of attribute

values.

Input: Initial set of examples EF describing a single output concept y using attribute set X

Output: A set consistent to the initial set of examples with

potentially fewer attributes and/or reduced attribute value sets

mark(ai) TRUE for every ai 2 X

while 9ai such that mark(ai) do

for every ai 2 X with mark(ai) do

derive R(ai)

B haii, A X n haii

redundant(ai) �(AjB) < jjaijj

end for

if 6 9 redundant(ai) then stop

select ai with lowest R(ai), such that redundant(ai)

B haii, A X n haii

decompose EF to EG and EH , such that y = G(A; a0
i) and a

0
i = H(B)

if jja0
ijj = 1 then

remove attribute a0
i from G

X A

else

X A [ha0
ii

mark(a0
i) FALSE

end if

EF EG

end while

Algorithm 3.1 Attribute and attribute's values subset selection algorithm

3.4 Experimental evaluation 57

3.4 Experimental evaluation

3.4.1 DEX domains

DEX example sets introduced in section 2.7.2 were a subject to feature subset selection

and redundancy removal. For neither of six datasets a completely redundant attribute was

found. However, several redundancies in terms of the number of values used for speci�c

attribute were detected. The proposed feature subset selection algorithm used information

gain to estimate the relevancy of attributes.

domain attribute #values values merged

CAR doors 4! 3 2, 3, (4, 5-more)

EMPLOY1 exper 5! 4 none, 0-1, 1-5, (6-10, more)

degree 4! 3 prim.school, high sch., BSc, (MSc, PhD)

age 5! 4 (18-20,>55) 21-25, 26-40, 41-55

EMPLOY2 exper 6! 4 none, 0-1, (1-5, 6-10), more

degree 4! 3 prim.school, high sch., BSc, (MSc, PhD)

ENT prd 5! 4 (e,d),c,b,a

prf 3! 2 (neg, zero, pos)

liq 3! 2 lt 1.0, 1-1.24, (1.25-1.5, ge 1.5)

p-a 5! 4 (e, d), c, b, a

NURSERY childreen 4! 3 1,2,(3,more)

social 3! 2 (none,med),hi

HOUSING earnings 3! 2 (below-ave,ave),high

family 5! 3 single,married,(family,extend.family,single-wage)

suitab 3! 2 (high,normal),low

employed 3! 2 one,(two,more)

Table 3.1: Attributes of DEX models whose descriptions were found redundant in the

number of values they use. The third column indicates the original and reduced number

of values for speci�c attribute. The values of original attributes that are represented with

single attribute value in the reduced set are given in brackets.

Figure 3.1 gives the results. For example, for domain CAR, it was discovered that the

concept does not distinguish between the cars with 4 or more doors, and that these two

values can be merged into a single value of the new attribute doors'. More interesting is

a redundancy discovery with EMPLOY1 and attribute age. There, the �nal concept did

not distinguish between the youngest and the oldest applicants: attribute values 18-20

58 Decomposition-based attribute selection and discovery of redundancies

and >55 can be represented with a single value instead.

The attribute value redundancies for DEX models are listed in Figure 3.1 and show

that the attribute value minimization may not be regarded only as a data preprocessing,

but may be a discovery by itself. When a data engineer (Marko Bohanec) was asked to

comment on redundancies from Figure 3.1, he indeed recognized most of them as those

that were intentionally used in DEX models with future extension and specialization of

model functions in mind.

3.4.2 MONK1

MONK1 training set from section 2.7.4 was used to investigate the utility of decomposition-

based feature subset selection. Three attributes were discovered to be redundant: f, c,

and d (in this order) and for attribute e an attribute e' with only two values instead of

four was derived. The example set obtained by attribute subset selection was then given

to decomposition, and the resulting concept structure is presented in Figure 3.4. This

structure is relatively easy to interpret: the target concept can be represented as a=b OR

e=1, which is exactly the function originally used to generate the examples for MONK1.

Preprocessing by means of attribute and values selection therefore removed the \truly"

irrelevant attributes and found the appropriate transformation of values of e.

��
��
a ��

��
b

��
��
e

��
��
e'

��
��
MONK1

��
��
c1

a b c1

1 1 1
1 2 0
1 3 0
2 1 0
2 2 1
2 3 0
3 1 0
3 2 0
3 3 1

e e'

1 1
2 0
3 0
4 0

c1 e' MONK1

0 0 0
0 1 1
1 0 1
1 1 1

��� @@I

��� @@I

6 6

6

6

Figure 3.4: MONK1 concept structure as discovered by HINT. Original example set was
preprocessed by attribute subset selection.

3.4 Experimental evaluation 59

3.4.3 Protein secondary structure prediction

Determination of 3D protein structure is of great importance for the prediction of their

function in pharmacology and medicine. So far, there are over 50.000 known proteins, but

the structure is known for about 500 only. Experimental methods for protein structure

determination (X-ray di�raction, NMR) are expensive and time consuming.

An ongoing project at Center for Applied Mathematics and Theoretical Physics, Uni-

versity of Maribor, Jo�zef Stefan Institute, and National Institute of Chemistry, Ljubljana,

has a long-term goal of the prediction of 3D protein structure for a given amino-acid se-

quence, on the basis of a database of known protein structures. The project started with

a design of Symbolic Protein Data Base, that now includes selected proteins with known

structure and their symbolic descriptions in terms of their relevant properties (Mozeti�c &

Hodo�s�cek 1997).

A short-term goal of this project is the prediction of a secondary structure for a given

primary structure (sequence of amino-acids). One of the approaches is to use learning from

examples. There, the problem to start with is to appropriately formulate the learning task:

which attributes to use and what concepts to learn. The �rst attempt focused on selection

of attributes to determine the secondary structure. This section describes the preliminary

results with the decomposition-based attribute subset selection.

Three di�erent example sets were investigated. For all three, the goal was to determine

the structure at speci�c amino-acid in the protein chain. Each example used a set of

attributes that describe the k surrounding amino-acids. k is referred to as a window size:

for the window of k, the attributes are given for the central amino-acid of the window

plus k previous and k next amino-acids in the chain. In all three case, the example set

included over 51000 examples that specify the corresponding structure of amino-acid at

the center of a window, which can be either helix, sheet, or random.

The �rst example set used a widow of 9. The set used 19 (9+1+9=19) attributes

giving only the names of amino-acids. As there are 20 di�erent amino-acids, the attributes

were 21-valued (one additional value for \unknown"). Attribute subset selection by HINT

excluded all the attributes but those from the window of 4, and thus constructed an

example set consistent to the original set but containing only 9 attributes.

The second example set used a window of 5, but besides the amino-acid name used

additional 9 di�erent attributes to describe each amino-acid. The total number of at-

tributes used was thus (5 + 1 + 5) � (9 + 1) = 110. After feature subset selection, only 9

attributes remained. These were all the attributes giving the names of the amino-acids in

the window of 4.

The last experiment used an example set with the window of 5, where each amino-acid

60 Decomposition-based attribute selection and discovery of redundancies

was described with 9 attributes as in the previous data set. The names of amino-acids

were not given. The original set thus used (4+1+4)�9 = 81 attributes. Attribute subset

selection reduced this set to 21 attributes, most of them describing the amino-acids closer

to the center of the window (see Figure 3.2). Again, only the attributes within the window

of 4 remained.

Furthermore, it was noticed that the attributes that used higher number of values

remained. That could be accounted to the fact that HINT used information measure to

estimate the relevancy of attributes, which is biased toward such attributes (Kononenko

1995). However, when an alternative and di�erently biased MDL-based measure was

used instead, the results of attribute subset selection were not signi�cantly di�erent. A

possible explanation that is also consistent with the results of the second experiment is that

attributes with higher number of values remain because they better distinguish between

di�erent amino-acids, and therefore better approximate the attribute containing its name.

Overall, the conclusion using the above attribute subset selection analysis are:

� the attributes within the window of 4 seem su�cient,

� among all the attributes studied the amino-acid names seem most relevant.

The results and conclusions above are preliminary. However, the result regarding

the windows size was expected and can be explained by physical properties of proteins.

Further experiments will address the classi�cation performance of di�erent classi�ers, and

a performance-based attribute selection. The �rst experiments of this type con�rmed the

above conclusions.

relative position -5 -4 -3 -2 -1 0 1 2 3 4 5

attributes 0 1 1 3 4 3 5 2 1 1 0

Table 3.2: The number of the remaining attributes in the third experiment that describe

an amino-acid at a given position within a window.

3.5 Summary and discussion

In machine learning, the use of attribute subset selection aims at constructing example

sets on which inductive learners perform better (Kohavi & John 1997). For decomposition,

the data preprocessing by means of subset selection may be necessary. For example, when

considering di�erent partitions, several bound sets as a whole may be found redundant. If

not equipped with subset selection techniques, the decomposition would select one such set

3.5 Summary and discussion 61

arbitrarily, and subsequently remove it because of its corresponding column multiplicity

of 1. Instead, attribute subset selection removes the redundant attributes based on their

relevancy. Furthermore, the process may result in the example sets with fewer attributes,

which can reduce the running time of decomposition or allow it to consider bigger bound

sets and consequently more complex intermediate concepts.

The proposed method falls into category of �lter approaches to attribute subset se-

lection which minimize the number of attributes independently of inducer (Kohavi &

John 1997). A di�erent, wrapper approach, instead removes one candidate attribute at a

time and tests the performance (classi�cation accuracy, complexity) of the inducer on the

resulting example set. If this has degraded, a di�erent attribute is considered for removal.

We can use both induction by decomposition and attribute redundancy estimation by

decomposition for the wrapper approach as well. The concern is however the complex-

ity, which in wrapper approach increases by a factor of O(n2). For this reason, we have

implemented only the �lter approach.

The attribute subset selection as introduced in this chapter was based on decomposition-

based de�nition of redundancy of either attribute or their values. We consider these as the

main contributions of the proposed approach. The techniques developed do not include any

particular mechanisms for noise handling. However, in the next chapter a decomposition

that can deal with noise is introduced, and section 4.2.7 shows how to straightforwardly

extend the method proposed here to (1) handle noise and (2) remove the attribute so as

to minimize the expected classi�cation error.

The results of experimental evaluation of the proposed method are encouraging. In all

cases considered, the algorithm's behavior in terms of which attributes were removed and

which value sets minimized were explainable. The decomposition-based attribute subset

selection was found not only to be useful for attribute reduction, but also as a tool for

preliminary data analysis.

62 Decomposition-based attribute selection and discovery of redundancies

Chapter 4

Minimal-error function

decomposition

The minimal-complexity function decomposition described in Chapter 2 imposes the con-

straint of consistency over the example sets it can handle: there can not exist a pair of

examples with the same attribute values but of di�erent class. The real-world data, how-

ever, most often violates this constraint. Its inconsistency may be contributed to either

noise or the incompleteness of the description language (Clark & Niblett 1987). Other

properties of data that the minimal-complexity decomposition could not deal with further

include missing attribute values and uncertainty.

This chapter proposes a di�erent decomposition method that is based on the mini-

mization of classi�cation error. It was designed with a purpose to appropriately handle

noise, but the example set representation schema the algorithm uses allows to handle other

real-world data properties mentioned above.

The new decomposition algorithm requires a new representation schema for the set of

examples, where each example de�nes a distribution of classes rather than a single class.

This representation is introduced in section 4.1. Section 4.2, which is the core of this

chapter, describes the minimal-error decomposition algorithm. Following are two sections

that deal with various data properties and show (1) how to transform such data to the

examples of the new representation schema in order to be used for the decomposition (sec-

tion 4.3), and (2) once a concept hierarchy has been derived, classify such data (section

4.4). Notes on implementation are given in section 4.5. The new decomposition algo-

rithm is experimentally evaluated in section 4.5. Section 4.7 summarizes the method and

experimental results.

64 Minimal-error function decomposition

4.1 Representing examples with class distributions

The requirement of example set consistency by the minimal-complexity decomposition can

be contributed to the speci�c use of partition matrix: as de�ned in Chapter 2, each entry

of partition matrix can hold just a single class value. Consequently, each combination of

attribute values in the example set can have a single associated class value.

To alleviate such a constraint, we rede�ne the entries of partition matrix to instead

represent the class distributions. Class distribution is a vector of which the i-th element

gives the number of examples in the corresponding example set that de�ne the i-th class

and that use the same attribute values as the corresponding partition matrix entry.

Example 4.1 Let us illustrate this representation on a simple example. Consider the

example set from Table 4.1.a where each example de�nes a single class. The set is in-

consistent because of the examples with attributes values hmed,lo,loi, and also includes

several other examples that use same attribute values. Table 4.1.b gives an equivalent ex-

ample set that uses class distributions. The distributions are given in parenthesis where,

for example, a vector (0,2,1) denotes that a corresponding example represents two exam-

ples from the original set with class med and one example with class hi. Note that in this

new example set with class distributions there are no examples with the same attribute

values. Such set can then straightforwardly be represented with a partition matrix. This

is for our example given in Table 4.3.a. 2

The example set that uses class distributions can then be regarded as a transformation

of some possibly inconsistent example set: for each combination of attribute values used

in the original set, the corresponding example with class distribution is introduced, such

that the i-th element of class distribution vector is equal to the number of examples in

the original set that describe the i-th value of class.

From the point-of-view of decomposition, the most important property of the set of

examples with class distributions is the uniqueness of the examples in regard to their

attribute values. As introduced in the next section, not only will the new decomposition

be able to consider such sets, but will also use the same representation for the discovered

example sets.

4.2 Minimal-error decomposition algorithm

This section introduces a decomposition algorithm that is driven by error-minimization:

given the initial set of examples, it tries to decompose it to a system of example sets with

minimized classi�cation error of the obtained classi�er. The method was inspired by a

4.2 Minimal-error decomposition algorithm 65

x1 x2 x3 y

lo lo hi lo

lo hi lo lo

lo hi hi hi

med lo lo med

med lo lo hi

med lo lo med

med hi lo med

med hi lo med

med hi hi hi

hi lo lo hi

hi lo hi med

hi hi lo hi

hi hi hi hi

hi hi hi hi

(a)

x1 x2 x3 y

lo lo hi (1,0,0)

lo hi lo (1,0,0)

lo hi hi (0,0,1)

med lo lo (0,2,1)

med hi lo (0,2,0)

med hi hi (0,0,1)

hi lo lo (0,0,1)

hi lo hi (0,1,0)

hi hi lo (0,0,1)

hi hi hi (0,0,2)

(b)

Table 4.1: An inconsistent set of examples where several examples have the same value of

attributes (left) and its representation with examples that use class distributions (right).

noise-handling approach to decision tree pruning (section 4.2.1). Section 4.2.2 describes

minimal-error single-step decomposition. This method is essentially di�erent from the

corresponding minimal-complexity algorithm (section 2.2), as it does not construct an in-

compatibility graph but rather uses a reduction of the partition matrix by means of column

merging. On the other hand, the overall minimal-complexity and minimal-error decom-

position algorithms are rather similar, with the exception of partition selection measures

and the decomposability condition (section 4.2.4). The new decomposition algorithm esti-

mates the error using them-error estimate, where the parameterm has to be appropriately

assessed from the data. The corresponding method is given in section 4.2.6. The section

concludes with a note on complexity of the minimal-error decomposition algorithm.

4.2.1 Related work on noise handling

The real-world data most often contains errors that are due to the nature of data collection

or measurement. For example, errors occur because of imperfect measuring equipment or

because of mistakes at data entry. Early machine learning systems often made a \noiseless

domain assumption" and introduced the classi�ers that were consistent with the learning

set of examples. However, when the domains contained noise, the induced classi�ers

66 Minimal-error function decomposition

were unnecessary complex and did not perform well. An alternative to such induction

system was proposed by Clark & Niblett (1987), who suggested to instead induce less

complex classi�ers that possibly misclassify some examples but potentially perform better

on the unseen examples. Their method, speci�c to the rule induction system CN2, used a

signi�cance test to judge which rules to retain in the classi�er.

For another, nowadays probably most popular machine learning paradigm of top-

down induction of decision trees, the early noise handling mechanisms were described by

Quinlan (1986a) and Kononenko, Bratko & Ro�skar (1984) (pruning of decision tree during

the construction), and by Niblett & Bratko (1986) and Cestnik & Bratko (1991) (pruning

the decision tree after it has been constructed).

The pruning method of Cestnik & Bratko (1991) is based on the Bayesian approach

to estimate probabilities. Consider a set of N examples, of which nc represent a class c

with the apriori probability pc. Based on this examples, the probability p that the new,

previously unseen example will be of class c is:

p =
nc + pcm

N +m
(4.1)

This formula is referred to as the m-probability estimate and was proposed by Cestnik

(1990). He demonstrated that several machine learning classi�ers (naive Bayesian classi-

�er, decision trees) perform signi�cantly better when the induction uses the m-probability

estimate instead of other known estimates like relative frequency or the Laplace's law of

succession (Niblett & Bratko 1986).

The m-probability estimate can also be used to estimate the error when classifying a

new example to the class c. Given an example set as above, the m-error estimate is:

" = 1�
nc + pcm

N +m
(4.2)

The value of parameter m is domain dependent. Cestnik & Bratko (1991) propose that m

should be adjusted to some essential properties of the learning domain, e.g., to the noise

level. The value of m can be either de�ned by a domain expert or derived directly from

the set of examples (see section 4.2.6).

Cestnik & Bratko (1991) used the m-error estimate for decision tree pruning. Their

approach was based on the pruning method of Niblett & Bratko (1986). They all used the

following idea. Given a set of examples E0, let the condition at a node of the decision tree

splits it to the sets E1 and E2. Let each set represent a class with the lowest estimated

error, and let this error be an error associated with each set. Let the estimated errors

of the sets E0, E1, and E2 be "0, "1, and "2, respectively, and let p1 and p2 be the

probabilities of sets E1 and E2, respectively. The Niblett-Bratko pruning rule states that

4.2 Minimal-error decomposition algorithm 67

if "0 < p1"1 + p2"2, the tree has to be pruned at node n. Originally, the method used the

Laplace error estimate, which was by Cestnik & Bratko (1991) replaced by the m-error

estimate.

The pruning methods Niblett & Bratko (1986) and Cestnik & Bratko (1991) aim to

minimize the expected error of the decision tree, and is thus referred to as minimal-error

pruning. In the following sections, we present the decomposition that is driven by the

same goal: given a set of examples, the minimal-error decomposition tries to decompose

it in order to minimize the expected classi�cation error of the obtained classi�er.

4.2.2 Single-step decomposition

Similar to the single-step decomposition algorithm from Chapter 2, the minimal-error

single-step decomposition decomposes a set of examples EF to sets EG and EH , where

these sets partially describe the functions y = F (X), y = G(A; c), and c = H(B), re-

spectively. AjB is a non-trivial disjoint partition of attributes X. Speci�cally for the

minimal-error decomposition, the example sets EF , EG, and EH use class distributions.

De�nition 4.1 Let EF be a set of examples with class distributions that represents the

function y = F (x1; : : : ; xn). Each example ei 2 EF is given with the value of attributes

x1; : : : ; xn and has associated a class distribution vector di = (d1
i
; : : : ; d

jjyjj
i

). 2

Let us start by de�ning the estimated error of example set EF that represents the

function y = F (x1; : : : ; xn). Consider �rst a single example ei 2 EF . If, on the base of

this example, one decides to classify to class yk, the estimated error of such classi�cation

by m-error estimate is

"(ei; k) = 1�
d
k

i
+ p(yk)mX
j

d
j

i
+m

(4.3)

where p(yk) is the apriori probability of class yk as estimated from the class distributions

of example set EF .

p(yk) =

jjEF jjX
i=1

d
k

i

jjEF jjX
i=1

jjyjjX
j=1

d
j

i

(4.4)

68 Minimal-error function decomposition

We further de�ne the probability of example ei in the set EF :

p(ei) =

jjyjjX
k=1

d
k

i

jjEF jjX
l=1

jjyjjX
j=1

d
j

l

(4.5)

When example ei is used for classi�cation, it classi�es to the class yk that minimizes the

estimated error "(ei; k). The estimated error for an example ei is thus

"(ei) = min
k

(ei; k) (4.6)

The overall classi�cation error estimated for the example set EF is then the sum of

products of errors estimates and probabilities of examples in EF :

"(EF) =

jjEF jjX
i=1

p(ei) "(ei) (4.7)

Example 4.2 Table 4.2 shows the probabilities and the m-error estimates for the exam-

ples from the set given in Table 4.1.b. Value 2 for the parameter m was used. Also given

are apriori class probabilities as estimated from this example set. For instance, to compute

p(y = lo) one must �rst observe that the sum of all elements of distribution vectors is 14,

and that the sum of all elements of distribution vectors for class lo is 2. Therefore, p(y =

lo) = 2
12

= 0:143. Let us now, for instance, compute the m-error estimate for example e4.

The estimated error when e4 would classify to class lo is "(e4; 1) = 1� 0+0:143�2
3+2

= 0:943,

when it would classify to class med is "(e4; 2) = 1� 2+0:357�2
3+2

= 0:457, and when it would

classify to class hi is "(e4; 3) = 1 � 1+0:5�2
3+2

= 0:5. Therefore, since "(e4; 2) is the lowest,

e4 classi�es to med and its estimated error is "(e4) = 0:457. To derive the error that this

example contributes to the set EF , we have to multiply "(e4) with the probability p(e4)

of this example. Since the sum of values of distribution vector for e4 is 3, it follows that

p(e4) =
3
14

= 0:214 and consequently p(e4)"(e4) = 0:214 � 0:457 = 0:098. Note also that

the overall m-error estimate for this set of examples is 0:393. 2

For the purpose of the minimal-error single-step decomposition, we again represent

the set EF using the partition matrix. For our example set in Table 4.1.b and for the

partition AjB = hx1ijhx2; x3i, the partition matrix PAjB is given in Table 4.3.a. This

time, we label each column of PAjB with its unique column index l. Again, the column

labels represent the value of the new intermediate concept c. We can then represent the

examples from Table 4.1.b with an equivalent set of examples in Table 4.4.a, where each

4.2 Minimal-error decomposition algorithm 69

i x1 x2 x3 di p(ei) "(ei) p(ei)"(ei)

1 lo lo hi (1,0,0) 0.071 0.571 0.041

2 lo hi lo (1,0,0) 0.071 0.571 0.041

3 lo hi hi (0,0,1) 0.071 0.333 0.024

4 med lo lo (0,2,1) 0.214 0.457 0.098

5 med hi lo (0,2,0) 0.143 0.322 0.046

6 med hi hi (0,0,1) 0.071 0.333 0.024

7 hi lo lo (0,0,1) 0.071 0.333 0.024

8 hi lo hi (0,1,0) 0.071 0.429 0.031

9 hi hi lo (0,0,1) 0.071 0.333 0.024

10 hi hi hi (0,0,2) 0.143 0.250 0.036P
= 0:393

(a)

yk p(yk)

lo 0.143

med 0.357

hi 0.5

(b)

Table 4.2: The m-error estimates and class probabilities for the example set from Table

4.1.

combination of values of attributes in the set B was replaced by a corresponding partition

matrix column label. We will refer to such set of examples as the initial set of examples

E0. Note that because of equivalence of the sets E0 and EF , their estimated errors are

the same: "(E0) = "(EF).

The main idea of the single-step decomposition is based on partition matrix column

merging. Suppose that for PAjB in Table 4.3.a we merge the columns with indices 1 and 3.

The columns 1 and 3 are then replaced with a single column, where, row by row, the class

distributions of columns 1 and 3 have been summed up. This results in a new partition

matrix (Table 4.3.c) with one column less, which in turn represents a new example set E1

(Table 4.4.b). Example set E1 can be regarded as a transformation of the set E0 with the

examples that belong to either columns 1 or 3 and have equal values of the attributes in

A merged.

Let us now compute the estimated error for the set E1. This is "(E1) = 0:3629, which

is less than the error of the initial example set "(E0) = 0:3933. In other words, partition

matrix column merging may result in a new example set with the decreased estimated

error.

The potential decrease of estimated error of the example set after merging of two

columns provides the motivation for the core of the new single-step decomposition algo-

rithm. Using the successive steps of PAjB column merging, the algorithm aims to derive

the partition matrix with a corresponding example set of the lowest estimated error.

70 Minimal-error function decomposition

The minimal-complexity single-step decomposition is described as follows. At each

step, all pairs of columns (li; lj) are considered for merging, and the error "(li; lj) of each

new corresponding example set that would be derived by merging the columns li and lj is

computed. The pair of columns is then selected which yields the new example set Ek+1

with the lowest estimated error. If this error is lower than or equal to the estimated error

of the example set before merging, i.e., if "(Ek+1) � "(Ek), then the merge is performed.

Else, the merging stops. We refer to the partition matrix obtained as a reduced partition

matrix.

Note that to estimate the error for every new set of examples obtained by column

merging, we can instead assign the error to each of the columns of PAjB . Let B(ei) be a

column index for the example ei. Then, the estimated error of column l of PAjB is:

"(PAjB;l) =
X

B(ei)=l

p(ei) "(ei) (4.8)

Let us denote the partition matrix after k successive column merging as PAjB(k). The

error estimate for its corresponding example set Ek is then

"(Ek) =
X
l

"(PAjB;l(k)) (4.9)

When merging two columns li and lj of PAjB(k) resulting in a new column lij of PAjB(k+1)

with the error estimate "(PAjB;lij (k)), the error of new example set Ek+1 is computed as

"(Ek+1) =
X

l 6=li&l 6=lj

"(PAjB;l(k)) + "(PAjB;lij (k)) (4.10)

To compute the error of the new set Ek+1, it is therefore su�cient to compute the error

of the new merged column lij , since the error estimates of other columns in the above

equation were already computed in the previous merging steps.

The method for partition matrix column merging is presented as Algorithm 4.1. The

algorithm is sub-optimal and greedy, as at each step considers the merging of only a pair

of columns.

Example 4.3 Table 4.3 shows a sequence of column merging for our example partition

matrix. The value 2 of the parameter m was used to compute the error estimates. Each

partition matrix has at its right side a corresponding error estimation for the new matrix

when two of its columns are merged. The partition matrix that results by merging of the

best best candidate pair of rows is displayed in bold. Note that the merging stops after 2

steps: merging the columns 1 and 2 of the partition matrix in Table 4.3.e would result in

an increase of the estimated error (0:3959 > 0:3486). 2

4.2 Minimal-error decomposition algorithm 71

x2 lo lo hi hi

x1 x3 lo hi lo hi

lo - (1,0,0) (1,0,0) (0,0,1)

med (0,2,1) - (0,2,0) (0,0,1)

hi (0,0,1) (0,1,0) (0,0,1) (0,0,2)

l 1 2 3 4

"(PAjB;l) 0.1267 0.0714 0.1119 0.0833

(a) PAjB(0) with " = 0:3933

2 3 4

1 0.4076 0.3510 0.3929

2 0.3886 0.4195

3 0.4152

(b) "(li; lj)

x2 lo hi lo hi

x1 x3 lo lo hi hi

lo (1,0,0) (1,0,0) (0,0,1)

med (0,4,1) - (0,0,1)

hi (0,0,2) (0,1,0) (0,0,2)

l 1 2 3

"(PAjB;l) 0.1963 0.0714 0.0833

(c) PAjB(1) with " = 0:3510

2 3

1 0.3486 0.3726

2 0.3772

(d) "(li; lj)

x2 lo hi lo hi

x1 x3 lo lo hi hi

lo (2,0,0) (0,0,1)

med (0,4,1) (0,0,1)

hi (0,1,2) (0,0,2)

l 1 2

"(PAjB;l) 0.2563 0.0833

(e) PAjB(2) with " = 0:3486

2

1 0.3956

(f) "(li; lj)

Table 4.3: The sequence of column merging of partition matrix. The reduced partition

matrix (e) is obtained by merging the columns of the initial partition matrix (a). Estimated

error for partition matrix that would be derived by merging the columns li and lj of

corresponding matrix is given on the right-hand side.

72 Minimal-error function decomposition

Input: Initial partition matrix PAjB(0)

Output: Reduced partition matrix PAjB(k) obtained by k steps of column merging

compute "(PAjB;li(0)) for every column li of PAjB(0)

k 0

do

for every pair of columns (li; lj) in PAjB(k) do

compute "(PAjB;lij (k))

"(li; lj) =
P

l6=li&l6=lj
"(PAjB;l(k)) + "(PAjB;lij (k))

end for

select (li; lj) with minimal "(li; lj)

if "(li; lj) � "(PAjB;l(k)) then

derive PAjB;l(k + 1) by merging columns li and lj of PAjB;l(k)

"(PAjB;l(k + 1)) "(li; lj)

k k + 1

end if

while "(li; lj) � "(PAjB;l(k))

Algorithm 4.1 Partition matrix column merging for single-step decomposition

The reduced partition matrix PAjB(k) is therefore the one in which, by merging any

pair of its columns, the estimated error of the corresponding example set does not decrease

or stay at the same level. It is now straightforward to use PAjB(k) to construct the new

example sets EG and EH . In fact, EG is exactly the example set that corresponds to the

reduced partition matrix and is therefore equal to Ek. The example set EH is derived as

a mapping of values of attributes in B to the corresponding labels of columns. For each

combination of values of attributes in set B with a non-empty column of initial partition

matrix, there is an example ei 2 EH which represents a single class that is equal to the

corresponding column label l of the reduced partition matrix. A distribution vector of

this example ei has a single non-zero element d
l

i
, which is equal to the sum of elements of

distribution vectors that belong to corresponding column of initial partition matrix.

Example 4.4 For our example set EF from Table 4.1.b and its �nal partition matrix in

Table 4.3.e, the example sets EG and EH are given in Table 4.5.a and 4.5.b, respectively.

For each example, these Tables give a class distribution and a class each example classi�es

to. EH actually represents a function c = MIN(x2; x3) and EG a function y = MAX(x1; c).

c is a new intermediate concept. Note that the derived example sets are not consistent

with the original undecomposed example set from Table 4.1.a. Namely, the derived concept

hierarchy misclassi�es the examples hi = F (med; lo; lo) and med = F (hi; lo; hi). These

4.2 Minimal-error decomposition algorithm 73

x1 c y

lo 2 (1,0,0)

lo 3 (1,0,0)

lo 4 (0,0,1)

med 1 (0,2,1)

med 3 (0,2,0)

med 4 (0,0,1)

hi 1 (0,0,1)

hi 2 (0,1,0)

hi 3 (0,0,1)

hi 4 (0,0,2)

(a)

x1 c y

lo 1 (1,0,0)

lo 2 (1,0,0)

lo 3 (0,0,1)

med 1 (0,4,1)

med 3 (0,0,1)

hi 1 (0,0,2)

hi 2 (0,1,0)

hi 3 (0,0,2)

(b)

Table 4.4: An initial set of examples E0 (a) and a set E1 after columns 1 and 3 of PAjB

in Table 4.3.a have been merged (b). Furthermore, E0 and E1 correspond to partition

matrices in Tables 4.3.a and 4.3.c, respectively.

examples were intentionally included in the original example set to demonstrate the ability

of the new single-step decomposition algorithm to handle noise. 2

As was the case for the single step decomposition algorithm of Chapter 2, in the

implementation of the minimal-error single-step decomposition the partition matrix is used

only implicitly. Again, the reason for this is the usual sparseness of the machine learning

datasets and more memory e�cient implementation when merging is done directly on

the set of examples. That is, the single step decomposition starts with the example set

E0 = EF . Next, it replaces the attributes in B with the new attribute c and its initial

values which correspond to the partition matrix column indices. Instead of joining the

two columns of partition matrix explicitly, it merges just the corresponding examples in

this example set. For e�ciency of such procedure, the original example set is sorted by

the values of attributes in A. The result of such merging is the new example set EG, while

EH is obtained by remembering which of the original columns are now represented with

merged columns of the reduced partition matrix.

4.2.3 Properties of minimal-error single-step decomposition

Theorem 4.1 Let EF be an example set decomposed to EG and EH using the attribute

partition AjB. Then the estimated classi�cation error of the decomposed system y =

G(A; c) and c = H(B) is lower than or equal to that of original example set EF .

74 Minimal-error function decomposition

x2 x3 distribution c

lo lo (4 0) 0

lo hi (2 0) 0

hi lo (4 0) 0

hi hi (0 4) 1

(a) EH with interpreta-

tion c = MIN(x2; x3)

x1 c distribution y

lo 0 (2 0 0) lo

lo 1 (0 0 1) hi

med 0 (0 4 1) med

med 1 (0 0 1) hi

hi 0 (0 1 2) hi

hi 1 (0 0 2) hi

(b) EG with interpretation

y = MAX(x1; c)

Table 4.5: Example sets EG (left) and EH (right) that are decompositions of the set EF

from Table 4.1.b.

Proof: The estimated error "(EG) is equal to "(EF) only in the case when no columns

of PAjB can be merged. Namely, it is the condition for PAjB column merging that the

estimated error does not increase. Therefore, "(EG) � "(EF), since the entries in reduced

PAjB directly correspond to examples in EG. The sole role of the function c = FH(B)

in such system is then to de�ne to which of the merged columns does an example with

speci�c values of attributes in B belong to. 2

Theorem 4.2 Each of the example sets EG and EH that are derived by decomposition of

EF uses less attributes and includes fewer or equal number of examples than the original

set EF .

Proof: The proof for the decreased number of attributes is the same as for Theorem

2.3. EH would include the same number of examples as EF only if the corresponding

partition matrix has a single entry per column and merging would not take place. In

other cases, when at least two columns are merged, EH contains fewer examples than EF ,

i.e., jjEH jj < jjEF jj. The number of examples in EG is equal to the number of nonempty

entries in the partition matrix, which, when not reduced, is in turn equal to the number

of examples in EF . When merging takes place, the number of nonempty entries never

increases but may decrease since some non-empty entries may be merged. Therefore,

jjEGjj � jjEF jj. 2

Theorem 4.3 The decomposition of y = F (X) to y = G(A; c) and c = H(B), where

functions are represented with EF , EG, and EH , respectively, preserves the class proba-

bility of class variable y when estimated from examples EF and EG.

4.2 Minimal-error decomposition algorithm 75

Proof: This follows from the way the decomposition handles the class distribution vectors.

Namely, when merging two columns of partition matrix, the new class distributions are

introduced only when two distributions are merged. Since this is done by summing up of

two distributions, (1) the overall sum of all elements of the distributions remains the same,

and (2) the overall sum of the distribution vector elements for particular class remains

the same. Since this two de�ne the class probabilities (Eq. 4.4), the latter is not changed

after a single step decomposition. 2

4.2.4 Decomposition algorithm

The decomposition algorithm that can be used on the (possibly noisy) example sets with

class distribution is essentially the same as the one described in Chapter 2 (Algorithm

3.1). The only di�erence is the core of the algorithm, which is now the minimal-error

single-step decomposition algorithm.

The minimal-error single-step decomposition algorithm derives the intermediate con-

cept with speci�c number of values. In Chapter 2, this number was then used to compute

di�erent measures for partition selection and decomposability of the example set. Simi-

larly, the same measures can be used to guide the decomposition of examples with class

distributions as well. However, as a new single-step decomposition aims at minimizing

the estimated classi�cation error, we are inclined to design an overall decomposition with

the same goal. The overall algorithm is then still the same as Algorithm 2.1, with the

following changes. We assign each candidate partition AjB an error "(AjB) which is equal

to the estimated error of the reduced partition matrix "(PAjB;l(k)) for that partition. The

new partition selection measure is then:

	"(AjB) = "(AjB) = "(PAjB;l(k)) (4.11)

The best partition is therefore the one that minimizes the expected error of the example

set. Similarly, we can de�ne the decomposability criteria of a set EF as:

	"(AjB) < "(EF) (4.12)

The above criteria states that EF is decomposable only if the partition AjB has a corre-

sponding reduced partition matrix with lower estimated error than that of EF . In other

words, EF is decomposable by partition AjB, if at least one column merging of PAjB takes

place.

Example 4.5 In the example presented in section 4.2.2 we have used the partition AjB =

hx1ijhx2; x3i and for it derived a reduced partition matrix with " = 0:3486. This error is

76 Minimal-error function decomposition

also the corresponding partition selection measure, i.e., 	"(hx1ijhx2; x3i) = 0:3486. For

the other two nontrivial partitions, these measures are 	"(hx2ijhx1; x3i) = 0:3705 and

	"(hx3ijhx1; x2i) = 0:3558. Therefore, the best partition to be used for decomposition

is hx1ijhx2; x3i. Using this partition the example set is also decomposable, since the

estimated error of reduced partition matrix is lower than the error of the original example

set (0:3486 < 0:3933). 2

4.2.5 Complexity of the minimal-error decomposition algorithm

The two decomposition algorithms, i.e., the one described in this chapter and the one

introduced in the Chapter 2, are of the same complexity except for the complexity of the

single-step decomposition.

Suppose that partition matrix has k columns, and the function being decomposed

ci = Fi(X) is represented with a set EF of N examples. The single-step decomposition

�rst sorts the examples of EF (O(N logN)), estimates the error of each column of partition

matrix (O(N jjcijj)), tests all pairs of columns for merging (O(Nkk
2
jjcijj)), and if for the

best pair with the lowest error estimate this is lower then the error of the current partition

matrix, merges the two columns (O(Nkjjcijj)). The whole procedure is repeated at most

k � 1 times. The complexity of the single-step decomposition algorithm is therefore:

O

�
N logN + (k � 1)(N jjcijj+Nkk

2
jjcijj+Nkjjcijj)

�
= O

�
N logN + k

4
N jjcijj

�
(4.13)

Let kmax be the maximal number of columns of any partition matrix considered by

decomposition. Let jjcijjmax be the maximal number of classes used by the target or any

concept discovered by decomposition. Using the derivation of the number of partitions to

evaluate and the number of single-step decompositions to perform from section 2.3.4, the

overall complexity of the decomposition algorithm is:

O

�
n
b+1(N logN + k

4
maxN jjcijjmax))

�
(4.14)

The time complexity of the minimal-error decomposition algorithm is therefore higher

than that of the minimal-complexity decomposition algorithm. Comparison of Eq. 4.14

and Eq. 2.12 shows that this can be contributed to the term k
4
max

N jjcijjmax of Eq. 4.14,

which has its corresponding terms Nkmax + k
2
max in Eq. 2.12.

Again, the algorithm's complexity is polynomial in N , n, and kmax, and to reduce the

execution time, bound sets with just a few attributes should be used. Lower values for b

do not only reduce the number of partitions being evaluated for decomposition, but also

reduce kmax.

4.2 Minimal-error decomposition algorithm 77

4.2.6 Selection of parameter m

The minimal-error decomposition bases its estimation of error on the m-error estimate

(Eq. 4.2). m is the parameter of the estimation method, and, kept constant through the

process of decomposition, a parameter of the minimal-error decomposition method itself.

Originally, Cestnik (1990) introduced m as a domain dependent parameter related to the

level of noise in the domain: if little noise is expected, m should be small and should

grow if the amount of noise is substantial. Further interpretations of the m-probability

estimate and m were proposed by Cestnik & Bratko (1991). They observed that the

m-probability estimate combines the apriori probability and the new evidence obtained

from N examples, such that apriori probability was obtained from m prior examples and

estimated with relative frequency. In other words, m can be related to the number of

examples needed to estimate the probability of the class they represent.

Experimental study of Cestnik & Bratko (1991) indicated that the performance of the

classi�er may to a large extent depend on the choice ofm. They propose two approaches to

select m. In the �rst one, m can be adjusted by the domain expert that has a knowledge

about the noisiness of the data, i.e., that knows how truthworthy particular sources of

data are. The second approach involves two example sets obtained from original learning

set called growing set and pruning set, where growing set is used for learning and pruning

set for testing. Then, the inducer learns on the growing set with di�erent values of m. For

each m, the performance of induced classi�er is evaluated on the pruning set. Finally, m

which yields a classi�er of best performance is used to induce a classi�er from the complete

learning set.

The implementation and a detailed study of the second approach applied for the top-

down induction of decision trees is presented in (Mladeni�c 1995). To estimatem, Mladeni�c

uses an optimization technique that assesses the performance of the classi�er induced using

a speci�c value of m by the k-fold cross validation: given a learning set, this is randomly

split to k mutually exclusive subsets (folds) of approximately equal size. The decision tree

is then induced and tested k times, each time using the k-th subset for testing and all

other subsets for learning. The overall accuracy for a speci�c choice of m is then estimated

as the average accuracy from k subsets. Usually, k = 10 is used. Note that the core idea

is again to determine m from the learning set only.

The derivation of m is then de�ned as an optimization that uses the accuracy esti-

mated by k-fold cross-validation as an optimization criterion. Mladeni�c applied di�erent

optimization algorithms (greedy search, simulated annealing, etc.) and by experimental

study observed their similar performance.

We use a similar approach to select the value of m for decomposition. In the current

78 Minimal-error function decomposition

implementation, no optimization algorithm is used and instead a prede�ned set ofm values

are evaluated on the learning set. Consequently, m that yields the best concept structures

in terms of classi�cation accuracy is selected. In our experiments (section 4.6), 10-fold

cross-validation was used.

Although such approach has a nice property of automatical selection of the value form,

its drawback is the increased running time. Namely, for each m the decomposition has to

be run 10 times for each of di�erent candidate values of m to be tested. Nevertheless, for

the decomposition to be completely automatic, this method is still used in our experiments.

However, for practical uses, one should probably combine the automatic search with the

adjustment of parameter m by the domain expert.

4.2.7 On (un)supervised decomposition and attribute subset selection

The minimal-error decomposition can be either applied in supervised or unsupervised

mode. Again, the motivation and approaches to these are the same as given in section

2.4. In the experiments at the end of this chapter we use the decomposition only in the

unsupervised mode. However, we strongly believe that in the detailed studies and analysis

of a particular dataset a supervised decomposition has to be a method of choice.

In regard to the attribute subset selection and discovery of redundancies, the methods

described in Chapter 3 can be directly applied. The only di�erence is that instead of using

the minimal-complexity the method now uses minimal-error single-step decomposition.

The method can be further extended so that, instead of the proposed measures for attribute

relevance, only the potentially redundant attributes are considered and the one which

yields a partition matrix of the highest estimated error is removed.

4.3 Representing imperfect data by examples with class dis-

tributions

The real-world data most often includes noise and/or uses incomplete description language

to describe the examples. Noise, for example, may occur because of imperfect measuring

equipment used to collect the data. The incompleteness of description language may

contribute to the existence of the examples with same attribute values but di�erent class.

Another common problem, in particular with data in medical domains (Diamantidis

& Giakoumakis 1996) are also missing attribute values. There, the attribute values are

either unavailable (say some expensive medical test was not made for that subject) or

they are irrelevant. These two cases are usually referred to as the problem of don't know

4.3 Representing imperfect data by examples with class distributions 79

and don't care values. It is important for a machine learning tool to distinguish between

these two cases and appropriately deal with them.

In the previous chapters the decomposition assumed that all examples are equally

important. However, there may be cases where additional information about the weight

of each example is provided. Furthermore, each example may describe not just one but

rather several classes, each with its own factor of belief. Such cases may be common if

human is involved in assigning the classes to each of the examples. For example, a patient

may be given several possible diagnoses, each with the corresponding belief.

Lavra�c & D�zeroski (1994) refer to the data that has any combination of the properties

above as imperfect data. This section shows how such data can be transformed in the set

of examples that use class distributions and can be further used for decomposition.

4.3.1 Noisy and inconsistent data

The conversion from noisy and inconsistent set of examples to the set that uses class

distributions was discussed in section 4.1. Let us here further illustrate the approach by

a simple example. Suppose that we are given the following inconsistent example set:

med, lo, lo med

med, lo, lo hi

med, lo, lo med

This set can be represented with a single example that uses class distribution and is de�ned

as:

med, lo, lo (0,1,2)

4.3.2 Uncertain data

We distinguish among the uncertainty of examples, their classes, and their values of at-

tributes. For the later, we examine the case of missing attribute values that may be either

treated as don't-knows or don't-cares.

Uncertainty of examples

Each example in the original example set may be assigned a degree of con�dence to which

it is believed that such example really represents the assigned class. This may also be

regarded as the weight of the example. For instance, consider the example set

med, lo, lo med/3

80 Minimal-error function decomposition

med, lo, lo hi/2

med, lo, hi med/0.5

where the numbers beside the classes denote the corresponding weight of the example.

The corresponding set of examples with class distributions is

med, lo, lo (0,3,2)

med, lo, hi (0,0.5,0)

Again, the conversion is straightforward, with the weight of each example being used to

form the distribution vector of the corresponding new example.

Uncertainty of classes

Similarly as above, we can for instance de�ne an example

med, lo, lo lo/0.2, med/0.8

which de�nes two classes with corresponding certainties. Note that this example could be

equivalently represented with two separate examples

med, lo, lo lo/0.2

med, lo, lo med/0.8

An obvious representation with class distribution is

med, lo, lo (0.2,0.8,0)

Missing attribute values

When an example is de�ned with some values of attributes missing, there may be two

cases for each unknown values: either (1) such value is unknown for example due to lack

of measurement, or (2) is not speci�ed because it is irrelevant for that particular example.

The �rst case is most often referred to as the problems of don't-know, and the second as

the problem of don't-care values.

Recent work of Diamantidis & Giakoumakis (1996) states that the distinction of the

two by inductive algorithm may be speci�cally important in the medical domains. They

claim that usually the inductive algorithms treat missing-values as don't-knows, whereas

it may be bene�cial if those that really express don't-cares are treated separately. The

experimental argument they provided was based on a set of medical domains, for which the

missing values were usually treated as don't-knows. They show that by replacing some,

randomly chosen don't-knows with don't-cares, the induction may result in signi�cantly

4.3 Representing imperfect data by examples with class distributions 81

higher classi�cation accuracy. Although such experimentation may look super�cial and a

better experimental setup would involve medical experts that would indeed classify each of

the missing values to two di�erent cases, it provides a motivation for induction algorithm

to treat these cases separately.

Again, we handle both don't-cares and don't-knows by conversion of corresponding

examples to the example set that uses class distributions. We use a similar approach to

handle don't-cares and don't-knows that was used in Assistant (Kononenko et al. 1984,

Cestnik, Kononenko & Bratko 1987). For don't-cares, the conversion is as follows. Let

an example use the attributes a1; : : : ; an with missing values of don't care type. This

example is then represented by an expanded set of
Q

n

i=1 jjaijj examples, each one using its

own combination of values of attributes a1; : : : ; an. For instance, an example

med, -, - lo

of which the attributes and class have domains as de�ned in Example 4.1, is expanded to

examples

med, lo, lo lo

med, lo, hi lo

med, hi, lo lo

med, hi, hi lo

To treat the missing values as don't-knows, the similar expansion to the set of examples

is used, with a distinction that this time a corresponding weight is assigned to each of

the new examples. Suppose that original example with don't-knows represents a class

yk. Let pk(a
j

i
) be a conditional probability of j-th value of i-th attribute for the class ck

estimated from the example set. Let vi be a value of i-th attribute from the set of don't-

know attributes a1; : : : ; an. Let pk(vi) = pk(a
j

i
) be the probability of this value, such that

j = vi. The original example is again expanded to a set of
Q

n

i=1 jjaijj examples, each with

a speci�c combination of the values of don't-know attributes. The weight for each of this

example is then de�ned as
Q

n

i=1 pk(vi).

For example, let the attribute x2 with possible values lo and hi, have estimated prob-

abilities plo(x2 = lo) = 0:2, plo(x2 = hi) = 0:8 and attribute x3 with same set of possible

values have plo(x2 = lo) = 0:5 and plo(x2 = hi) = 0:5. Then, the example

med, -, - lo

has the following corresponding representation using the weighted examples:

med, lo, lo lo/0.1

82 Minimal-error function decomposition

med, lo, hi lo/0.1

med, hi, lo lo/0.4

med, hi, hi lo/0.4

This set can be straightforwardly converted to representation with class distributions as

explained in section 4.3.2.

The main distinction between don't-cares and don't-knows regarding the performance

of the decomposition algorithm is that expanding the examples with don't-cares may be

particularly useful, since they may contribute to a better coverage of the attribute space.

On the other hand, the examples with many don't-knows may be expanded to a large

number of examples of very small weight; these may a�ect very much the algorithms

running time, but not its performance in terms of classi�cation accuracy and concept

structure discovery. Namely, the examples with small weights may play insigni�cant role

both because of being out-weighted by other examples or because of their insigni�cant

a�ect when used for error estimation. A straightforward way to deal with this is to set a

weight limit for an example to be considered. In our experiments, we have used this limit

just for a single domain (HEPA), where the limit was set to 0.001.

4.4 Classi�cation

The minimal-error decomposition derives the example sets with class distribution, but

when used for classi�cation, each example classi�es to a single class. Therefore, the clas-

si�cation algorithm is the same as the one used for concept structures derived by the

minimal-complexity decomposition (see section 2.5).

However, to be able to handle attribute-value vectors with some attribute values miss-

ing, we have to extend this algorithm. The extension �rst assumes that each of the at-

tributes is given by its normalized value distribution vector. Let EF represent a function

c = F (x1; : : : ; xm). Let each attribute xi be given with a normalized distribution of its

values di, such that
Pjjxijj

j=1 d
j

i
= 1. For missing attribute values and in case of don't-cares,

the value of attribute xi is then represented with a value distribution vector with elements

equal to 1=jjxijj. In case of don't-knows, the corresponding distribution vector is equal to

a vector of apriori probabilities of attribute values as estimated from the learning set that

was originally used for decomposition.

The goal is now to determine the value of c = F (d1; : : : ;dm), i.e., its class distribu-

tion dc. To derive dc, we �rst construct a set of
Q

m

i=1 jjxijj attribute-value vectors with

all possible combinations of attribute values. Each such vector ek with attribute values

4.4 Classi�cation 83

hx
k

1 ; : : : x
k

m
i is then assigned a weight wk

wk =
mY
i=1

d
x
k
i

i
(4.15)

Note that since di are normalized, the sum of weights
P

k
wk is equal to 1. Only the

attribute-value vectors with non-zero weight are considered. For each such k-th vector, a

corresponding value of c denoted by c
k is determined by either:

� �nding an example in ei 2 EF with the same value of the attributes; the value vkc is

then the value of c that example ei classi�es to,

� if such example is not found, the default rule is used which assigns vk
c
the most

probable of the values of c as estimated from the set of examples EF .

The elements of resulting c value distribution are then computed as

d
i

c
=
X
vkc=i

wk (4.16)

and then normalized to be further used in the derivation of the higher-level concepts in

the hierarchy.

Example 4.6 Consider a system of functions y = G(x1; c) and c = H(x2; x3) which are

represented by decomposition-derived example sets in Table 4.5. Let us determine the

value of y for x1 = hi, x2 = hi, and x3 not de�ned and treated as don't-care. First,

we need to derive c = H(hi;). The attribute x3 is then represented with a distribution

(0:5; 0:5). Using the values of x2 and x3 the set of vectors with non-zero weight and their

corresponding c values from example set EG are:

k x2 x3 wk c
k

1 hi lo 0.5 0

2 hi hi 0.5 1

The distribution for values of c is then (0.5,0.5). This, together with a value of x1, is

now used to derive y. The attribute-vectors, their weights, and corresponding values of y

needed for this derivation are:

k x1 c wk c
k

1 hi lo 0.5 hi

2 hi hi 0.5 hi

The resulting normalized distribution for y is therefore (0; 0; 1), so the �nal value of y

is hi. 2

84 Minimal-error function decomposition

4.5 Implementation

The error-guided decomposition is implemented within the program HINT(Hierarchy IN-

duction Tool), which is thus a common environment for minimal-complexity and minimal-

error decompositions. Further details on HINT are given in Appendix F.

4.6 Experimental evaluation

In this section, we experimentally assess the performance of the minimal-error decompo-

sition to discover the structures inherited in the data, and the performance of discovered

concept hierarchies in terms of classi�cation accuracy. In particular, we investigate how

this performance is a�ected by noise in the data.

To address both issues, we have selected three typical domains used in section 2.7:

MM4, CAR, and SHUTTLE. Originally, these are noiseless domains, but were for the

study in this section corrupted with class noise.

Next, the decomposition performance on the domain MONK3 is evaluated. This do-

main, like MONK1 and MONK2 (see section 2.7.4), was originally used in the study of

classi�cation accuracy of several machine learning algorithms (Thrun et al. 1991). We

compare the results obtained in this study to the classi�cation accuracy of the minimal-

error decomposition and also compare the structure discovered to the original de�nition

of the problem.

To a further extent, it is hard to evaluate the performance of minimal-error decompo-

sition and compare it to other machine learning methods. Namely, for most of real-world

domains available (for example, those at UCI Machine Learning Repository (Murphy &

Aha 1994)), insu�cient description is provided for someone not familiar with the domain to

evaluate the appropriateness of the concept structures derived by HINT. For such domains

we could only evaluate HINT's ability to handle imperfect data by means of classi�cation

accuracy. We have selected seven medical domains and compared the performance of

HINT to those of other inducers investigated in the study of Kononenko, �Simec & Robnik

�Sikonja (1997).

4.6.1 MM4, CAR, and SHUTTLE

For the domains MM4, CAR, and SHUTTLE from section 2.7 we repeated similar exper-

iments to derive the learning curves and to observe how the concept structures di�er from

the anticipated ones (for MM4 and CAR only). This time, however, we have corrupted

the learning sets with 10%, 20%, or 30% of class noise. This e�ectively means that, for

4.6 Experimental evaluation 85

example, with 10% of class noise the class of 10% of examples in the learning set was set

arbitrarily.

Again, the results were averaged across 10 experiments for each size of the learning

set. For each of this experiments, the value of m was determined solely on the base of

the learning set using 10-fold cross-validation technique discussed in section 4.2.6. The

possible set from which m were selected included 27 di�erent values: 0.1 to 0.9 with steps

of 0.1, 1 to 3 with steps of 0.2, 4 to 10 with steps of 1. To determine each data point in

the learning curve of HINT, decomposition was therefore run 10 � 27 = 270 times. This

number could be signi�cantly reduced if the user would be involved in setting more speci�c

set of m values, but since we were interested in the performance of purely unsupervised

decomposition, we refrained to do that.

To evaluate the classi�cation accuracy of HINT, the results were compared to those

obtained by C4.5. C4.5 was run with the default options, with exception of option -c

(pruning con�dence level), for which the value was estimated by a 10-fold cross validation

method on learning set. The -c values tried ranged from 10% to 90% with steps of 10%

(the default is 25%), and the one that yielded the best overall accuracy by 10-fold cross

validation was used to build a classi�er. For the classi�cation the pruned C4.5 trees were

used. The signi�cance of the di�erence between C4.5 and HINT was determined using

a paired t-test with � = 0:01 (99% con�dence level). Where no inducer is signi�cantly

better, the learning curves use the symbols � for HINT and � for C4.5. When HINT is

signi�cantly better, the symbol � is used, while when this is true for C4.5, the data points

are marked with ◆ .

The learning curves for CAR are given in Figure 4.1. They are quite similar to those

with noiseless example sets and minimal-complexity decomposition (see Figure 2.10), but

the convergence to 100% classi�cation accuracy is slower. As the noise level increases, this

seems to most a�ect the performance of HINT with small learning sets. Nevertheless, for

this domain, HINT's classi�cation was signi�cantly better than C4.5's in most cases.

CAR's structure dissimilarity coe�cient when derived concept hierarchies are com-

pared to the original DEX model are given in Figure 4.2. For all levels of noise, the

decomposition converged to the same concept structure. This was exactly the same as

the one for the noiseless case (see Figure 2.12). With higher percentage of class noise,

the convergence is slower, and the standard deviations of structure dissimilarity index are

higher.

Compared to the CAR domain, similar conclusion can be drawn about the convergence

of learning curves for MM4. The structure dissimilarity index for MM4, which compares

the derived structure to the anticipated one (Figure 2.8), does not exhibit any recognizable

86 Minimal-error function decomposition

0 20 40 60 80 100
70

80

90

100

�

�

� �
� � � � �

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......
.....
......
......
......
......
......
.........
...........
............
...........
...........
...

�

�
�
� �

� �
� �

......
..
......
..
......
..
.......
.
.......
.
........
........
........
........
........
........
........

....
........
........

........ C4.5

.......................HINT

p

class. acc.

0 20 40 60 80 100
70

80

90

100

�

�

�
�
� � � � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
........
.........
........
........
......
......
......
......
......
...............
........................

..
.

�

�

�
�
�
�
� �

�

......
..
......
..
......
..
.......
.
......
..
........
........
........
........
........
........
........
........ ...

.....
.

........ C4.5

.......................HINT

p

class. acc.

0 20 40 60 80 100
70

80

90

100

�

�

�
�

�
� � � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
.......
.......
.......
........
......
......
......
......
......
.....
......
.........
........
.........
..............
..................

..

�

�

�
�
� �

� �
�

......
..
......
..
......
..
......
..
.......
.
.......
..
.......
........
........
........
........
........
........
........

........
....

........ C4.5

.......................HINT

p

class. acc.

Figure 4.1: Learning curves for CAR with 10%, 20%, and 30% of class noise.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

�

�

� � � � � � �

..

SDC

p

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

�
�

�

� � � �
� �

..

SDC

p

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

�

�

�

�
�

� � � �

.......
.......
.......
.......
...

SDC

p

Figure 4.2: Structure disssimilarity index for CAR domain and 10%, 20%, and 30% noise.

0 20 40 60 80 100
60

70

80

90

100

�

�
�
�
�
�
� � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
.........
.........
.........
.......
.......
.......
........
........
........
........
..........
.........
.........
..........
..........
..

...........
...

�

� �
� � � �

� �

......
..
......
..
.......
.

........
........ ...

.....
......
....

........ C4.5

.......................HINT

p

class. acc.

0 20 40 60 80 100
60

70

80

90

100

�

�
�
� �
� �
�

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
........
.......
.......
.........
.........
..........
............................

.......
.......
.......
.......
...................

.............
.........
.........
..

�
�
� � �

� � �

........
........
........
........
........

......
.

.....

........ C4.5

.......................HINT

p

class. acc.

0 20 40 60 80 100
60

70

80

90

100

�

�
� � �

� �
� �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
......
.......
.......
.......
...................

...............................
...............
................
.............
............
.........
................................

�
�
�
� �

� � � �

........
.......
.
........
........
........
........

......
........

........

........ C4.5

.......................HINT

p

class. acc.

Figure 4.3: Learning curves for MM4 with 10%, 20%, and 30% of class noise.

4.6 Experimental evaluation 87

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

� �

�

� � �

�

�

�
.............................

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..

......
......
......
......
......
.......
.......
.......
.......
.......

SDC

p

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

�

�

� �

� �

�

�

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

SDC

p

0 20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

�

�

� �

�

�
�

�

�

......................................
......
......
......
......
..

.......
......
.......
.......................................

......
......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

SDC

p

Figure 4.4: Structure disssimilarity index for MM4 domain and 10%, 20%, and 30% noise.

dependence on the size of learning set. However, the averages of SDC are around 0.6, which

was also the expected value (compare with the corresponding graph in Figure 2.7).

For the SHUTTLE domain, Figure 4.5 gives the learning curves for di�erent values of

class noise. This time, the minimal-error decomposition does not outperform C4.5, and

when learning sets are small, C4.5 is signi�cantly better. This is interesting to compare to

noiseless case and minimal-complexity decomposition: there, HINT also performed rela-

tively worse that with other domains like MM4 and CAR. A possible explanation may be

that SHUTTLE does not possess a structure that would be recognizable by decomposition

and that would be bene�cial in terms of a decomposition-induced classi�er. We should

not forget, though, that in both cases unsupervised decomposition was used, and that

such problems may still bene�t from the interaction of the domain expert.

0 20 40 60 80 100
60

70

80

90

100

�

�
� �
�
� � �

�

.....
.....
......
.....
.....
.....
.....
.....
.....
.....
........
.......
.......
.......
.............
...................

..........
..........
..........
........
........
...

.........
.........

◆
◆ �

� � � � �
�

........
........
........

....
........

..
......
........

........ C4.5

.......................HINT

p

class. acc.

0 20 40 60 80 100
60

70

80

90

100

�

�

� �
� � �

� �

.....

.....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.................................

.......
.......
.......
..

..........
...........
.......................

◆

◆ � ◆ � � �
�
�

.......
.
.......
.
........

........
........

........
........

........ C4.5

.......................HINT

p

class. acc.

0 20 40 60 80 100
60

70

80

90

100

�
�

� � �
�
�
� �

......
......
......
......
......
.......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..

............
.............
............
.........
........
.........
..

◆
◆

◆ ◆ � � �
� �

........
........
........
........
........

...
......
........

........ C4.5

.......................HINT

p

class. acc.

Figure 4.5: Results for learning in SHUTTLE domain

As described above, for every learning set HINT derived a value of m which minimized

the classi�cation error as estimated by 10-fold cross validation on the learning set. Table

4.6 gives these values when averaged over all experiments with the same noise level for

88 Minimal-error function decomposition

each domain. As expected, for all the domains used in this section the value ofm increases

with noise level.

domain 10% 20% 30%

MM4 0.9 �0.6 2.0 �1.1 3.6 �1.9

CAR 0.7 �0.3 1.3 �0.6 1.7 �0.5

SHUTTLE 1.4 �0.5 2.6 �0.3 2.8 �0.7

Table 4.6: Discovered values for m for di�erent noise levels

4.6.2 MONK3

The detailed study of 25 machine learning algorithms in (Thrun et al. 1991) mentioned in

section 2.7.4 used also a domain MONK3 with the target concept de�ned as:

MONK3 = e=3 AND d=1 OR e6=4 AND b6=3

This binary classi�cation problem uses two 2-valued attributes (c and f), three 3-

valued attributes (a, b, and d), and a 4-valued attribute e. The problem de�ned in the

study was to learn this concept from a sample with 122 examples where 5% of examples

were subject to class noise. To test the classi�er, a set of 432 examples that covered

the complete attribute space and are consistent with the target concept de�nition were

provided.

HINT used attribute subset selection and decomposition, both driven by error-minimization.

Using only the examples in the learning set, HINT derived the value of m = 0:4 to be the

most appropriate for this domain. The concept structure induced with this value of m

(Figure 4.6.b) correctly classi�ed all the examples in the test set. This score was in the

study of Thrun et al. (1991) achieved only by a few machine learning tools (see Appendix

D).

It is also interesting to observe the example sets HINT discovered. These are given in

Table 4.7. First, note that the irrelevant attributes a, c, and f are not present and were

removed by the HINT's attribute subset selection algorithm. Next, the example sets for

b', d', and e' reveal that HINT successfully found the groups of values which are relevant

to the target concept. The interpretation of examples for the intermediate concept c1

reveals that c1=2 if e=4, c1=1 if d=1 and e=3, and c1=0 otherwise. Then, MONK3=1 if c1=2, or

if c1=1 and b6=3, which is an equivalent rede�nition of the original concept for MONK3.

Further experiments show that for MONK3 HINT induces the same and appropriate

concept structure when 0:4 � m � 0:6. This structure is given in Figure 4.6.b. When

4.6 Experimental evaluation 89

m < 0:4, the discovered structures are more complex and less accurate. Figure 4.6.a gives

a structure discovered with m = 0:2 that misclassi�ed 4:63% of examples in the test set.

When m > 0:6, HINT discovers less complex but again less accurate concept structures.

For example, when m = 0:7, the structure discovered is the one at Figure 4.6.b, with the

misclassi�cation rate of 2:78%.

MONK3/2

e’/3 c2/5

e/4 b/3 c1/4

a/3 d/3

(a) m = 0:2

MONK3/2

b’/2 c1/3

b/3 d’/2 e’/3

d/3 e/4

(b) m = 0:4

MONK3/2

e’/2 b’/2

e/4 b/3

(c) m = 0:7

Figure 4.6: Concept structures for MONK3 discovered by HINT when di�erent values of

m were used.

4.6.3 Seven medical domains

To further compare the performance of HINT to other machine learning tools, this section

uses seven medical datasets. Although used in many di�erent studies, because of the

recency and inclusion of several learning algorithms we have chosen to compare the results

with those of Kononenko et al. (1997).

The medical datasets used are:

PRIM: the problem of locating a primary tumor in patients with metastases,

BREA: the problem of predicting the recurrence of breast cancer �ve years after the

removal of the tumor,

LYMP: the problem of determining the type of cancer in lymphografy,

RHEU: the diagnostic problem in rheumatology,

HEPA: the prognostics of survival of patients su�ering from hepatitis,

90 Minimal-error function decomposition

b b'

1 0 (8 0)

2 0 (7 0)

3 1 (0 8)

d d'

1 0 (40 0)

2 1 (0 38)

3 1 (0 44)

e e'

1 0 (32 0 0)

2 0 (31 0 0)

3 1 (0 28 0)

4 2 (0 0 31)

d' e' c1

1 2 2 (0 0 20)

1 1 0 (20 0 0)

1 0 0 (42 0 0)

0 2 2 (0 0 11)

0 1 1 (0 8 0)

0 0 0 (21 0 0)

b' c MONK3

1 2 0 (11 1)

1 1 1 (0 2)

1 0 0 (27 0)

0 2 0 (19 0)

0 1 1 (1 5)

0 0 1 (4 52)

Table 4.7: Decomposed example sets for the concept structure from Figure 4.6.b for

domain MONK3 discovered by HINT. For each example the majority class and class dis-

tribution vector is given.

DIAB: the diagnostic data for diabetes,

HEART: diagnosis of heart diseases.

Originally, PRIM, BREA, LYMP, and RHEU are the datasets from University Medical

Center in Ljubljana, Slovenia, HEPA was provided by Gail Gong from Carnegie-Mellon

University, and DIAB and HEART were obtained from StatLog database (Michie et al.

1994).

Most of the datasets include continuously-valued attributes. We use the same attribute

discretization as used in the study of Kononenko et al. (1997).

Basic description of the medical datasets is given in Figure 4.8. It should be further

noted that these datasets include noise, and most include examples with missing values

as well.

The classi�cation accuracy evaluation method was the same as in (Kononenko et al.

1997): each set was randomly split to the learning set that included 70% of examples and

to test set with 30% of examples. For each domain, the results are an average of 30 such

experiments.

The performance of HINT is compared to several other classi�ers. The results are taken

from (Kononenko et al. 1997) and were not obtained using the same learning and test sets.

Assistant-I, Assistant-R, and LFC all induce decision trees. Assistant-I uses information

gain and Assistant-R uses ReliefF as an attribute selection criterion. LFC is a decision-tree

4.6 Experimental evaluation 91

domain #class #atts. #val/att. #examples maj. class (%)

PRIM 22 17 2.2 339 25

BREA 2 10 2.7 288 80

LYMP 4 18 3.3 148 55

RHEU 6 32 9.1 355 66

HEPA 2 19 3.8 155 79

DIAB 2 8 8.8 768 65

HEART 2 13 5.0 270 56

Table 4.8: Basic description of the medical datasets

inducer additionally equipped with constructive induction algorithm (Lookahead Feature

Construction). Other two classi�cation tools used are the naive Bayesian classi�er and

the k-nearest neighbor algorithm. For further details on these methods see (Kononenko

et al. 1997).

The classi�cation accuracy results are shown in Table 4.9. HINT was run in two

di�erent ways: for the �rst, HINT found an appropriate value of m from the given set of

values(from 0.1 to 0.9 with steps of 0.1, from 1 to 3 with steps of 0.2, from 4 to 10 with

steps of 0.5, and from 11 to 20 with steps of 1) as described in section 4.2.6. Another

technique tried to estimate the performance of HINT if one would know the appropriate

value of m in advance: for all 30 experiments, HINT was run using a constant value for m.

Such evaluation was repeated for the same set ofm values as given above, and classi�cation

accuracy of experiments with m that yielded the best result is shown. We will denote the

later experimental setup with HINT
�. In all cases, HINT preprocessed the example sets

with attribute subset selection algorithm as proposed in Chapter 3.

We were especially interested to compare the performance of HINT to that of Assistant

and LFC tools. The reason is that these are all state-of-the-art symbolic inducers, i.e.,

induce a classi�er in the form of decision tree that can be further used to reason about the

properties that are hidden in the data. HINT performs worse than these inducers for PRIM

and LYMP domains, better for RHEU, DIAB, and HEART domain, and comparable for

BREA and HEPA domain. Overall, it can be concluded that none of these learning

methods exhibits a clear advantage over the others.

The Bayesian classi�er performed better than any of symbolic learners used. Kononenko

et al. (1997) contribute this success to the property of medical data sets where attributes

are typically conditionally independent given the class.

Also note that HINT� always performed better than HINT, though for most of domains

92 Minimal-error function decomposition

the di�erences were rather small. This result was expected, as HINT may have di�culties

to estimate m when datasets sparsely cover the attribute space. The values of m found

by HINT and the value used for the best set of experiments by HINT� are given in Table

4.10.

PRIM BREA LYMP RHEU HEPA DIAB HEART

HINT 35.9�5.4 78.0�3.9 74.1�6.5 65.8�4.4 78.1�5.1 72.9�2.5 78.5�4.7

HINT
� 36.9�4.9 79.5�3.4 74.1�7.6 66.3�4.0 79.0�5.6 73.7�2.8 79.6�4.6

Assistant-I 40.8�5.1 76.8�4.6 77.0�5.5 64.8�4.0 77.2�5.3 71.1�2.8 77.6�4.5

Assistant-R 38.9�4.7 78.5�3.9 77.0�5.9 63.8�4.9 82.3�5.4 71.5�2.6 77.6�4.5

LFC 37.1�4.9 76.1�4.3 82.4�5.2 60.6�4.7 79.0�5.3 69.2�3.0 77.3�5.2

naive Bayes 48.6�4.1 78.7�4.6 84.7�4.2 66.5�4.0 86.1�3.9 76.3�2.4 84.5�3.0

k-NN 42.1�5.0 79.5�2.7 82.6�5.7 66.0�3.6 82.6�4.9 73.9�2.5 82.9�3.7

Table 4.9: Classi�cation accuracy of di�erent learning systems on medical datasets

PRIM BREA LYMP RHEU HEPA DIAB HEART

HINT 4.7�2.4 6.4�3.7 3.7�2.8 5.9�1.0 4.1�2.2 6.0�2.8 2.5�3.1

HINT
� 4.0 14.0 3.2 9.0 6 7.0 2.0

Table 4.10: The value of m derived by HINT using cross-validation on the learning set

(�rst row), and the value of m consistently used for 30 experiments that yield the best

classi�cation accuracy (second row).

To further study the e�ects of m on performance of HINT, we have used DIAB and

HEPA domains and the experimental setup of HINT�. The results are shown on Figures

4.7 and 4.8. Classi�cation accuracy �rst raises with m, and then settles down after some

value of m. A higher value of m that are not given in these �gures are required for

the accuracy to drop down again. As expected, the number of attributes that remain

after preprocessing by attribute selection decreases with m. Similar is true for the overall

complexity of discovered functions. This is consistent with the use of m for minimal-error

pruning of decision trees (Cestnik & Bratko 1991), where with higher value of m the

resulting trees are less complex.

The concept structures discovered for the medical domains from this section are given

in Appendix E. Because of the unavailability of the domain experts, we could not inter-

pret these structures. Nevertheless, one can notice that they all use substantially fewer

attributes than included in the original example sets. For example, structure for RHEU

4.6 Experimental evaluation 93

0 2 4 6 8 10
60

70

80

�

�
�
�

��
��� ��� ��� ���

�

.....
.....
.....
.....
.....
.....
.....
.......
......
......
........
.......
........
.....
.....
.....
.....
.....
.....................

.......
...................

...
.................

m

class. acc.

(a)

0 2 4 6 8 10
2

4

6

8 �
�

�

�

��

�

��� ��� ���
�

��

...
..

..
......
......
...

m

n

(b)

0 2 4 6 8 10
0

100

200

300

400

500
�

�

�

�

��
�
�� ��

�
��� �

�
� �

...
............................

..
....................................

m

	SC

(c)

Figure 4.7: Classi�cation accuracy (a), number of attributes used (b), and the complexity

of the concept structure (c) for DIAB as a function of m.

0 2 4 6 8 10

80

90

�
��
��
��������� ��� �

�
� �

�
� ��� �

.....
.....
........
........
.....
...........
......
..............
........................

..
..

........
...

m

class. acc.

(a)

0 2 4 6 8 10
0

2

4

6

8

10

�

��
�
��
�
������� �

�� ��� ��� �
�� �

..
...

............
...........................

m

n

(b)

0 2 4 6 8 10
0

20

40

60

80

100

�

�

�
�

����
����

�� ��
� ��� ��� �

�� �

...
...

..............
..............................

m

	SC

(c)

Figure 4.8: Classi�cation accuracy (a), number of attributes used (b), and the complexity

of the concept structure (c) for HEPA as a function of m.

94 Minimal-error function decomposition

uses only 11 attributes instead of 32, and DIAB only 3 instead of 8. Therefore, for these

domains, the critical phase may be the attribute subset selection that removed the redun-

dant attributes.

We have also measured with how many of examples from the test sets the default rule

has to be used to derive the value of at least one concept in the hierarchy. On the average,

at least a single use of default rule was required for less than 1% of examples in the test

set for all of the domains from this section. The exception was the RHEU domain, where

the default rule was used for approximately 3% of the examples in the test set.

To conclude, let us note that the presented set of experiments used HINT in the

unsupervised mode. The real challenge for decomposition would rather its use in the data-

exploratory process with a medical expert at the side. Such process may more e�ciently

reveal the potential intermediate concepts that may be hidden in these medical domains.

We expect that such supervised approach to decomposition may not only result in more

meaningful and appropriate structures, but may also improve the performance of HINT in

terms of classi�cation accuracy.

4.7 Summary and discussion

The development of decomposition method from this chapter was motivated by the inabil-

ity of the minimal-complexity decomposition to handle noise and inconsistent data. The

resulting minimal-error decomposition algorithm is, compared to the minimal-complexity

variant, substantially di�erent in the techniques for single-step decomposition, heuristics

for partition selection measure, and decomposability criteria. Overall, though, the fun-

damental principle of decomposing the set of examples to smaller and more manageable

sets remains. This is demonstrated also by the overall decomposition algorithm, which is

the same for the two approaches. Consequently, the attribute subset selection algorithm

introduced in the previous chapter can be with no di�erence used in the minimal-error

decomposition to detect and remove the redundancies, and can therefore be used on noisy

and inconsistent data as well.

The minimal-error decomposition requires a representation of examples that use class

distributions. Eventually, this not only allows to extend the decomposition algorithm,

but also to appropriately handle a wider variety of data properties: inconsistencies, noise,

and uncertainty. Most often, these are also the properties of real-world data, and in this

sense the minimal-error decomposition can be used on a wider range of domains than its

minimal-complexity variant.

It has to be noted that a combined variant of the algorithms can be considered as well.

4.7 Summary and discussion 95

For example, a single-step decomposition may be driven by error minimization, while some

complexity-based measure may be used for partition selection.

The experimental evaluation again con�rmed that decomposition may, even in the

presence of noise, perform well both in terms of the classi�cation accuracy and the deriva-

tion of meaningful concept hierarchies. For example, for MONK3, the decomposition

not only correctly classi�ed all the examples in the test set, but also induced an inter-

pretable and appropriate concept structure. The toughest test on decomposition in regard

to its classi�cation accuracy performance were seven di�erent medical domains. There,

the sparse coverage of attribute space may present the problem for decomposition. Still,

the classi�cation accuracy was overall comparable to that of state-of-the-art symbolic

inducers.

96 Minimal-error function decomposition

Chapter 5

Conclusion

5.1 Summary and discussion of decomposition method

The dissertation proposes a new machine learning paradigm that is based on function

decomposition. Given a set of training examples, the proposed decomposition induces a

de�nition of the target concept in terms of a hierarchy of intermediate concepts and their

de�nitions. This e�ectively decomposes the problem into smaller, less complex problems

by decomposing an initial set of examples to smaller and more manageable sets.

The core of the decomposition algorithm is a single-step decomposition: given a set of

examples EF that partially specify a function ci = F (X) it decomposes EF to example sets

EG and EH . The new sets partially describe the functions ci = G(A; cj) and cj = H(B).

X is an initial set of attributes, and A and B its nontrivial partitions. cj is a new,

intermediate concept.

The overall decomposition algorithm uses the single-step decomposition to (1) �nd the

best partition of attribute set X to sets A and B, (2) to determine if EF is decomposable

using sets A and B and (3) to decompose EF to EG and EH . Since the decomposition

can be applied recursively on EG and EH , the result in general is a hierarchy of concepts.

Two di�erent approaches to decomposition are proposed. The minimal-complexity

approach aims at deriving a �nal set of examples that represent functions of minimal

complexity. The minimal-error approach aims to derive a hierarchy of concepts with

minimal estimated classi�cation error.

The proposed approaches to decomposition are further di�erent in the type of data they

can handle. The minimal-complexity approach can appropriately handle only the exam-

ple sets that are consistent. On the other hand, the minimal-error approach allows to

decompose imperfect examples sets that potentially include noise, missing values, and un-

98 Conclusion

certainty. In this sense, the minimal-error decomposition approach is more general than

the minimal-complexity variant. However, the minimal-error decomposition algorithm

is of higher computational complexity, and for this reason one may prefer the minimal-

complexity method when dealing with consistent set of examples. Both approaches can

handle continuous attributes by discretization.

Both decomposition approaches can be used to detect and remove potential redundancies

in the data. These include either the redundancies of attributes or redundancies of at-

tribute values. The dissertation proposes to include this redundancy handling mechanism

into the attribute subset selection algorithm that aims to (1) reduce the number of at-

tributes used in a non-decomposed example set and thus speed-up the decomposition, and

(2) make a judged decision based on attribute relevancy on which attributes to exclude

from the dataset. Namely, both decomposition approaches can detect and handle the

redundancies of the set of attributes while the decomposition takes place, but if several

such sets exist, the one to exclude would be chosen arbitrarily.

5.2 Discussion of experimental results

The dissertation experimentally evaluates the proposed methods. There are two evalua-

tion criteria considered: (1) the decomposition's ability to derive a comprehensible and

meaningful concept structure, and (2) the classi�cation accuracy of the derived concept

structure.

To assess the �rst one, arti�cial and real-world example sets were used for which the

structure was either known in advance (DEX models), anticipated (di�erent functions,

including those of MONK domains), or could be evaluated by a domain expert (an ex-

ample from neurophysiology). The experiments for the minimal-error decomposition used

a selection of training sets that were used to evaluate the minimal-complexity variant,

this time spoiled with a class noise. For both variants of decomposition, the experimen-

tal evaluation showed that decomposition can discover useful and interpretable concept

hierarchies that were in most cases at least similar if not equal to those expected.

The classi�cation accuracy of the decomposition was compared to the state-of-the-art

inducer C4.5. The comparison showed that decomposition generalizes well and can, in

some cases, even have a signi�cantly better classi�cation accuracy than C4.5. Relative to

C4.5, the classi�cation performance of decomposition seems to be better when training

sets better cover the attribute space. The learning curves of C4.5 are more \at" than

those of decomposition, which tend to a higher extent to lean downward with the decreased

training set sizes. Speci�c to noise-handling, this sensitivity to attribute space coverage

5.3 Contributions 99

seems to increase with the level of noise in the data.

The experiments further indicated an interesting parallel between minimal-complexity

and minimal-error approaches: on speci�c domain and in regard to C4.5, the two ap-

proaches seem to perform similarly. For example, when the minimal-complexity algorithm

performed better compared to C4.5, the minimal-error approach on the same domain

spoiled with class noise performed better as well. On the other side, where there was no

signi�cant di�erence between C4.5 and minimal-complexity decomposition, similar was

noticed for the minimal-error approach.

The possible explanation of this phenomena is that the decomposition as a paradigm

prefers the datasets that have some inherent structure that the decomposition is able to

discover. Most often it is hard to apriori know if such a structure exists. For instance,

in MONK2 domain, based on the de�nition of the concept, it was anticipated that such

structure could not be discovered by decomposition and one would consequently expect for

decomposition not to perform well in this case. However, the decomposition discovered a

structure which was an equivalent reformulation of the originally expressed target concept,

and in terms of classi�cation accuracy performed signi�cantly better than C4.5.

5.3 Contributions

The contributions of the dissertation include:

� the minimal-complexity decomposition approach to inductive concept learning of

discrete functions, which is inspired by a Boolean function decomposition approach

to design of digital circuits and extended by:

{ a new method for handling multi-valued attributes,

{ improved decomposition heuristics, which include partition selection measures,

decomposability criteria, and an extension of graph coloring approach by using

the degree of compatibility.

� the minimal-error decomposition approach to inductive concept learning of discrete

functions that features:

{ the decomposition of example sets that use class distribution,

{ the minimal-error approach to single-step decomposition,

{ the minimal-error de�nition of partition selection measure and decomposability,

{ mechanisms to handle inconsistent and noisy data, and data with missing values

and uncertainty,

100 Conclusion

{ a possibility to derive structures of di�erent complexity by accordingly setting

the m parameter,

� the attribute subset selection algorithm that uses the decomposition-based discovery

and redundancy removal,

� the implementation of the proposed methods in the program called HINT(Hierarchy

INduction Tool),

� the experimental assessment of the decomposition algorithms both from the view-

point of the classi�cation accuracy and the discovery of concept structures; in brief,

the experiments show that:

{ the decomposition can discover useful and interpretable structures,

{ the decomposition can inductively learn concepts with at least comparable clas-

si�cation accuracy to those build by other machine learning tools,

{ the minimal-error decomposition can e�ciently handle noise and missing data.

The dissertation contributes to machine learning as a new inductive concept learning

paradigm, and as such to the related research areas of

� knowledge discovery in databases and data-mining as a \divide-and-conquer" paradigm

that can be used either in supervised or unsupervised mode, and that decomposes a

data analysis problem to more manageable subproblems while deriving the concept

structure which characterizes the data and may be a discovery by itself,

� intelligent data analysis for the reasons as above, with an example for potential use

in intelligent data analysis in medicine as given in Section 2.7.5,

� decision support as a method to induce decision models from data.

Within machine learning, it contributes an approach to

� constructive induction as a method to construct new features that are not prede�ned;

other constructive induction methods most often use a background knowledge of

constructive operators (known functions),

� structured induction as a means of automating the discovery of structure and its

associated functions.

5.4 Further work 101

5.4 Further work

The dissertation opens new avenues for both practical use of the decomposition on real-

world problems and for further improvements and extensions of the method. From the

methodological point of view, we propose the following extensions and improvements of

the decomposition method:

� The use of the background knowledge to constraint the possible set of partitions be-

ing considered, and to propose the preferred functions. Inclusion of such background

knowledge may also help to alleviate the decomposition's problem of sensitivity to

smaller training sets, and may help to derive more transparent concept hierarchies.

The background knowledge on functions does not need to be exact, but may specify

only the function's type, for example monotone or symmetric functions.

� The use and appropriately handling of typed attributes, i.e., the decomposition

should distinguish between nominal and ordinal attributes.

� A heuristic approach to determine the best partition: currently, the decomposition

considers all possible bound sets of limited size. A heuristics to propose a candidate

partition without performing an exhaustive search may result in substantial reduc-

tion of time-complexity. The method may be based on some of existing partition

construction approaches that were developed for Boolean function decomposition

(Perkowski 1995).

� An extension of decomposition that appropriately handles continuously-valued at-

tributes, but does not require to discretize them in advance; the work of Dem�sar,

Zupan, Bohanec & Bratko (1997) may be a starting point for such extension.

� Instead of the default rule (see section 2.5) to classify the new instance where no

corresponding examples are found within some of the decomposed example sets, we

may use the decomposed example sets as an input to an inductive learner, obtain

the corresponding classi�er for each of the concepts in the structure, and use them

for the classi�cation.

� For the decomposition methods proposed the attribute partitions were disjoint,

which limited the concept structure to a tree. To derive more complex concept

structures (in the form of acyclic graphs), the extension of the method, a non-

disjoint decomposition, that handles non-disjoint partitions is required. Two vari-

ants of non-disjoint decompositions are presented in (Perkowski 1995) and (Zupan

102 Conclusion

& Bohanec 1996). Both show that a non-disjoint decomposition may be a straight-

forward extension of the disjoint decomposition.

Another focus of the further work is to enhance HINT's capabilities to assist in the

interpretation of derived example sets. Any of existing machine learning tools may be

used for this. A possible alternative is also to use the appropriate tools included in a DEX

decision support system (Bohanec & Rajkovi�c 1988). However, the idea that we are most

excited about is the inclusion of decomposition within an Inductive Logic Programming

environment (ILP, see (Lavra�c & D�zeroski 1994)). A decomposition may bene�t from

ILP's ability to e�ciently use the background knowledge, while ILP can bene�t from the

decomposition's ability to derive smaller and less manageable example sets and from its

methodological approach that may be adopted for predicate invention.

Finally and most importantly, the further work will focus on practical applications

of decomposition methods. We plan to use HINT as a data analysis and a knowledge

discovery support tool and address real-world problems, where the concept structures are

not necessary known in advance and where the domain experts are available to assist in

supervised decomposition.

Bibliography

Abu-Mostafa, Y. S. (1988), Complexity in Information Theory, Springer-Verlag, New York.

Almuallim, H. & Dietterich, T. G. (1991), Learning with many irrelevant features, in

`Ninth National Conference on Arti�cial Intelligence', MIT Press, pp. 547{552.

Ashenhurst, R. L. (1952), The decomposition of switching functions, Technical report,

Bell Laboratories BL-1(11), pages 541{602.

Biermann, A. W., Fair�eld, J. & Beres, T. (1982), `Signature table systems and learning',

IEEE Trans. Syst. Man Cybern. 12(5), 635{648.

Bohanec, M., Bratko, I. & Rajkovi�c, V. (1983), An expert system for decision making, in

H. G. Sol, ed., `Processes and Tools for Decision Support', North-Holland.

Bohanec, M., Cestnik, B. & Rajkovi�c, V. (1996), A management decision support system

for allocating housing loans, in P. Humpreys, L. Bannon, A. McCosh & P. Migliarese,

eds, `Implementing System for Supporting Management Decisions', Chapman & Hall,

London, pp. 34{43.

Bohanec, M. & Rajkovi�c, V. (1988), Knowledge acquisition and explanation for multi-

attribute decision making, in `8th Intl Workshop on Expert Systems and their Ap-

plications', Avignon, France, pp. 59{78.

Bohanec, M. & Rajkovi�c, V. (1990), `DEX: An expert system shell for decision support',

Sistemica 1(1), 145{157.

Bohanec, M., Urh, B. & Rajkovi�c, V. (1992), `Evaluating options by combined qualitative

and quantitative methods', Acta Psychologica 80, 67{89.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984), Classi�cation and

regression trees, Wadsworth International Group.

104 BIBLIOGRAPHY

Cestnik, B. (1990), Estimating probabilities: A crucial task in machine learning, in `Proc.

9th European Conference on Arti�cial Intelligence ECAI90', pp. 147{149.

Cestnik, B. & Bratko, I. (1991), On estimating probabilities in tree prunning, in `Proc.

European Workshop on Symbolic Learning EWSL-91'.

Cestnik, B., Kononenko, I. & Bratko, I. (1987), Assistant 86: A knowledge-elicitation tool

for sophisticated users, in I. Bratko & N. Lavra�c, eds, `Progress in Machine Learning',

Sigma Press, pp. 31{45.

Clark, P. & Niblett, T. (1987), Induction in noisy domains, in I. Bratko & N. Lavra�c, eds,

`Progress in Machine Learning', Sigma Press, Wilmslow, pp. 11{30.

Curtis, H. A. (1962), A New Approach to the Design of Switching Functions, Van Nostrand,

Princeton, N.J.

Dem�sar, J. (1996), `Decomposition of real functions'. B. Sc. Thesis (in Slovene).

Dem�sar, J., Zupan, B., Bohanec, M. & Bratko, I. (1997), Constructing intermediate con-

cepts by decomposition of real functions, in `Proc. European Conference on Machine

Learning, ECML-96', Prague.

Diamantidis, N. & Giakoumakis, E. G. (1996), `Don't care values in induction', Arti�cial

Intelligence in Medicine 8, 505{514.

Efstathiou, J. & Rajkovi�c, V. (1979), `Multiattribute decisionmaking using a fuzzy heuris-

tic approach', IEEE Trans. on Systems, Man and Cybernetics 9, 326{333.

Goldman, J. (1994a), Pattern theoretic knowledge discovery, Technical report, GSRP

Wright Laboratories.

Goldman, J. A. (1994b), Pattern theoretic knowledge discovery, in `6th Int'l IEEE Con-

ference on Tools with AI'.

Halter, J. A., Carp, J. S. & Wolpaw, J. W. (1995), `Operantly conditioned motoneuron

plasticity: possible role of sodium channels', J. Neurophysiology 73(2), 867{871.

Halter, J. A. & Clark, J. W. (1991), `A distributed-parameter model of the myelinated

nerve �ber', J. Theo. Biol. 148, 345{382.

John, G. H., Kohavi, R. & Peger, K. (1994), Irrelevant features and the subset selection

problem, in `Machine Learning: Proceedings of the Eleventh International Confer-

ence', Morgan Kaufmann Publishers, San Francisco, CA, pp. 121{129.

BIBLIOGRAPHY 105

Kohavi, R. & John, G. H. (1997), `Wrappers for feature subset selection', Arti�cial Intel-

ligence Journal . to appear.

Kononenko, I. (1994), Estimating attributes, in F. Bergadano & L. D. Raedt, eds, `Proc.

of the European Conference on Machine Learning (ECML-94)', Vol. 784 of Lecture

Notes in Arti�cial Intelligence, Springer-Verlag, Catania, pp. 171{182.

Kononenko, I. (1995), On biases in estimating the multivalued attributes, in `Proc. Intl.

Joint Conference on Arti�cial Intelligence (IJCAI-95)', Montreal, pp. 1034{1040.

Kononenko, I., Bratko, I. & Ro�skar, E. (1984), Experiments in automatic learning of

medical diagnostic rules, in `Proc. ISEEK Workshop', Bled.

Kononenko, I., �Simec, E. & Robnik �Sikonja, M. (1997), `Overcoming the myopia of induc-

tive learning algorithms with ReliefF', Applied Intelligence Journal 7(1), 39{56.

Lavra�c, N. & D�zeroski, S. (1994), Inductive logic programming: techniques and applica-

tions, Ellis Horwood.

Luba, T. (1995), Decomposition of multiple-valued functions, in `25th Intl. Symposium

on Multiple-Valued Logic', Bloomigton, Indiana, pp. 256{261.

Mallach, E. G. (1994), Understanding decision support systems and expert systems, Irwin.

Michalski, R. S. (1983), A theory and methodology of inductive learning, in R. Michal-

ski, J. Carbonnel & T. Mitchell, eds, `Machine Learning: An Arti�cial Intelligence

Approach', Kaufmann, Paolo Alto, CA, pp. 83{134.

Michalski, R. S. (1986), Understanding the nature of learning: issues and research di-

rections, in R. Michalski, J. Carbonnel & T. Mitchell, eds, `Machine Learning: An

Arti�cial Intelligence Approach', Kaufmann, Los Atlos, CA, pp. 3{25.

Michie, D. (1995), Problem decomposition and the learning of skills, in N. Lavra�c &

S. Wrobel, eds, `Machine Learning: ECML-95', Notes in Arti�cial Intelligence 912,

Springer-Verlag, pp. 17{31.

Michie, D., Spiegelhalter, D. J. & Taylor, C. C., eds (1994), Machine learning, neural and

statistical classi�cation, Ellis Horwood.

Mladeni�c, D. (1995), Domain-tailored machine learning, Master's thesis, Faculty of Elec-

trical Engineering and Computer Science, University of Ljubljana.

106 BIBLIOGRAPHY

Mozeti�c, I. & Hodo�s�cek, M. (1997), Symbolic protein data base, Technical report, Institute

Jo�zef Stefan, IJS-DP 7505.

Murphy, P. M. & Aha, D. W. (1994), UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/mlrepository.html]. Irvine, CA: University of Califor-

nia, Department of Information and Computer Science.

Niblett, T. & Bratko, I. (1986), Learning decision rules in noisy domains, in `Expert

Systems 86', Cambridge University Press, pp. 15{18. (Proc. EWSL 1986, Brighton).

Olave, M., Rajkovi�c, V. & Bohanec, M. (1989), An application for admission in public

school systems, in I. T. M. Snellen, W. B. H. J. van de Donk & J.-P. Baquiast,

eds, `Expert Systems in Public Administration', Elsevier Science Publishers (North

Holland), pp. 145{160.

Perkowski, M. A. (1995), A survey of literature on function decomposition, Technical

report, GSRP Wright Laboratories, Ohio OH.

Pfahringer, B. (1994), Controlling constructive induction in CiPF, in F. Bergadano & L.

D. Raedt, eds, `Machine Learning: ECML-94', Springer-Verlag, pp. 242{256.

Quinlan, J. R. (1979), Discovering of rules by induction from large collections of examples,

in D. Michie, ed., `Expert systems in micro-electronic age', Edinburgh University

Press.

Quinlan, J. R. (1986a), Learning from noisy data, in `Proc. International Machine Learning

Workshop', University of Illinois at Urbana Champaign, pp. 58{64.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann Pub-

lishers.

Quinlan, R. (1986b), `Induction of decision trees', Machine Learning 1(1), 81{106.

Ragavan, H. & Rendell, L. (1993), Lookahead feature construction for learning hard con-

cepts, in `Proc. Tenth International Machine Learning Conference', Morgan Kaufman,

pp. 252{259.

Rajkovi�c, V. & Bohanec, M. (1991), Decision support by knowledge explanation, in H.

G. Sol & J. Vecsenyi, eds, `Environments for supporting Decision Process', Elsevier

Science Publishers B.V.

BIBLIOGRAPHY 107

Ross, T. D., Noviskey, M. J., Axtell, M. L., Gadd, D. A. & Goldman, J. A. (1994),

Pattern theoretic feature extraction and constructive induction, Technical report,

Wright Laboratory, USAF, WL/AART, WPAFB, Ohio, OH.

Ross, T. D., Noviskey, M. J., Gadd, D. A. & Goldman, J. A. (1994), Pattern theoretic

feature extraction and constructive induction, in `Proc. ML-COLT '94 Workshop on

Constructive Induction and Change of Representation', New Brunswick, New Jersey.

Saaty, T. L. (1993), Multicriteria decision making: The analytic hierarchy process, RWS

Publications.

Samuel, A. (1959), `Some studies in machine learning using the game of checkers', IBM J.

Res. Develop. 3, 221{229.

Samuel, A. (1967), `Some studies in machine learning using the game of checkers II: Recent

progress', IBM J. Res. Develop. 11, 601{617.

Shapiro, A. D. (1987), Structured induction in expert systems, Turing Institute Press in

association with Addison-Wesley Publishing Company.

Shapiro, A. D. & Niblett, T. (1982), Automatic induction of classi�ciation rules for a

chess endgame, in M. R. B. Clarke, ed., `Advances in Computer Chess 3', Pergamon,

Oxford, pp. 73{92.

Shortli�e, E. H. (1993), `The adolescence of AI in medicine: will �eld come of age in the

'90s?', Arti�cial Intelligence in Medicine 5(2), 93{106.

Spackman, K., Elert, J. D. & Beck, J. R. (1993), The CIO and the medical informati-

cist: alliance for progress, in `Proc. Annual Symposium on Computer Applications

in Medical Care', pp. 525{528.

Spiegel, M. R. (1991), Theory and Problems of Probability and Statistics, McGraw-Hill.

Stahl, I. (1991), An overview of predicate invention techniques in ILP, in `ESPRIT BRA

6020: Inductive Logic Programming'.

Thrun et al., S. B. (1991), A performance comparison of di�erent learning algorithms,

Technical report, Carnegie Mellon University CMU-CS-91-197.

Zupan, B. (1997), HINT script language: Description with examples, Technical report, J.

Stefan Institute, Ljubljana, Slovenia.

108 BIBLIOGRAPHY

Zupan, B. & Bohanec, M. (1996), Learning concept hierarchies from examples by function

decomposition, Technical report, IJSDP{7455, J. Stefan Institute, Ljubljana. URL

ftp://ftp-e8.ijs.si/pub/reports/IJSDP-7455.ps.

Zupan, B., Dem�sar, J. & Bohanec, M. (1997), Structure dissimilarity coe�cient: de�nition

and experiments, Technical report, Institute Jo�zef Stefan.

Zupan, B., Halter, J. A. & Bohanec, M. (to appear in 1997), Concept discovery by function

decomposition and its application in neurophysiology, in N. Lavra�c, E. Keravnou &

B. Zupan, eds, `Intelligent Data Analysis in Medicine and Pharmacology', Kluwer.

Appendix A

Quantitative assessment of

structure similarities

During the development and testing of decomposition method, there has often been a need

to compare two structures, i.e., to determine their degree of similarity. Since qualitative

comparison by means of visual inspection can be very time consuming and not practical

when many such comparisons are needed, we designed a quantitative and computable

measure of dissimilarity of two structures. In this appendix we �rst propose the structure

dissimilarity coe�cient (SDC) and then experimentally demonstrate its appropriateness.

A.1 Structure dissimilarity coe�cient

Given a concept structure S and its two leaf nodes vi and vj, let their distance d(vi; vj) be

equal to the number of nodes one has to traverse to come from vi to vj. For example, for

the structure A in Figure A.1.a, the three example distances are: dA(a; c) = 2, dA(b; c) = 1,

and dA(a; d) = 3.

Given two structures Sa and Sb with leaf nodes Va and Vb, respectively, their set of

common leaf nodes is V = Va\Vb, The structure dissimilarity coe�cient for structures Sa

and Sb is then

SDC(Sa; Sb) =
1

n(n� 1)

X
vi2V

X
vj2V;j 6=i

jdSa(vi; vj)� dSb(vi; vj)j (A.1)

where n is the number of leaf nodes in V . The bigger the structure dissimilarity coe�cient,

the less similar are two structures. Identical structures have SDC = 0.

For example, let us consider the structures A and B from Figure A.1. Their matrices

with the leaf node distances are given in Figures A.2.a and A.2.b, and the absolute values

110 Quantitative assessment of structure similarities

A

c1 c2

a c3 d e

b c

(a)

A

c4 c5

a b c d e

(b)

A

c6 c7

b c a d e

(c)

Figure A.1: Three example structures

of the di�erence of the elements of these matrices are given in Figure A.2.c. The mean

value of the o�-diagonal elements of the later is structure dissimilarity coe�cient and is

equal to 0.6. The pairwise dissimilarity coe�cient for structures A, B, and C from Figure

A.1 are given in Table A.1. From these (and also by the visual inspection) it may be

concluded the most similar structures of the three are A and B, and the least are B and

C.

a b c d e

a 0 2 2 3 3

b 2 0 1 4 4

c 2 1 0 4 4

d 3 4 4 0 1

e 3 4 4 1 0

(a) dA

a b c d e

a 0 1 1 3 3

b 1 0 1 3 3

c 1 1 0 3 3

d 3 3 3 0 1

e 3 3 3 1 0

(b) dB

a b c d e

a 0 1 1 0 0

b 1 0 0 1 1

c 1 0 0 1 1

d 0 1 1 0 0

e 0 1 1 0 0

(c) jdA � dBj

Figure A.2: Leaf node distances their absolute di�erence for the structures A and B

A B C

A 0 0.6 1.0

B 0.6 0 1.2

C 1.0 1.2 0

Table A.1: Dissimilarity coe�cients for the structures from Figure A.1

A.2 Experimental evaluation 111

A.2 Experimental evaluation

To assess the appropriateness of the structure dissimilarity coe�cient, we have designed

the following experiment. Given were six di�erent sets, each of eleven di�erent structures

and a single reference structure. Three individuals (Marko Bohanec, Janez Dem�sar, and

Bla�z Zupan) were asked to rank the structures of each set according to their similarity to

the reference structure. The corresponding ranks were also derived using SDC.

The complete set of structures and ranks is presented in (Zupan, Dem�sar & Bohanec

1997). We here give a single set of structures (Figures A.4 to A.7) and their reference

structure (Figure A.3). The reference structure is the original HOUSING model (see

section 2.7.2) and the structures in the set where obtained by HINT when using various

(more or less successful) heuristics. The corresponding ranks are given in Table A.2.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

SDC 8 6 9 4 7 5 10 11 2 3 1

MB 10 8 10 5 9 5 4 5 1 2 3

BZ 9 6 10 4 10 4 7 8 1 2 2

JD 10 7 11 4 9 5 7 6 1 2 2

Table A.2: Structures #1 to #11 in Figure A.4 to A.7 ranked by their similarity to

structure in Figure A.3

To mutually compare such sets of ranks each set was �rst normalized, such that when

m structures were given the same rank i, the new rank is i+ m�1
2

. Then, the correlation

coe�cient rXY was computed for each pair of rank sets X and Y and their elements

xi 2 X and yi 2 Y (Spiegel 1991, page 263):

rXY =
n
P
xiyi � (

P
xi)(

P
yi)q

[n
P
x2
i
� (
P
xi)2][n

P
y2
i
� (
P
yi)2]

(A.2)

n is the number of ranks in each set.

The correlations for ranks in Table A.2 are given in Table A.3. The lowest correlation

was that between the ranks of SDC and MB, and the highest between ranks of BZ and

JD. Overall, ranks obtained by SDC correlate well with the other ranks, and they are are

comparable to the correlations between MB, BZ, and JD.

Table A.4 shows the averaged results over six structure sets used in this experimental

study. The correlation between SDC and other sets of ranks is relatively high and again

comparable with correlations between MB, BZ, and JD. We can thus conclude that SDC

may be an appropriate measure to approximately assess the likeness of the two structures.

112 Quantitative assessment of structure similarities

r SDC MB BZ JD

SDC 1.00 0.59 0.83 0.78

MB 0.59 1.00 0.88 0.91

BZ 0.83 0.88 1.00 0.95

JD 0.78 0.91 0.95 1.00

Table A.3: Correlation coe�cients for ranks from Table A.2

SDC MB BZ JD

SDC 1.000 �0:000 0.662 �0:226 0.828 �0:073 0.771 �0:074

MB 0.662 �0:226 1.000 �0:000 0.814 �0:159 0.829 �0:141

BZ 0.828 �0:073 0.814 �0:159 1.000 �0:000 0.934 �0:043

JD 0.771 �0:074 0.829 �0:141 0.934 �0:043 1.000 �0:000

Table A.4: The average and standard deviations of correlation coe�cients between ranks

of six sets of structures

However, the likeness of two structures is domain and user dependent and should be

assessed by human where necessary. For this reason, we use SDC in this dissertation

merely to show the convergence of decomposition to a single structure and to estimate

whether this was di�erent or the same to the anticipated one.

y/9

house/4 status/3 soc_health/4

stage/3 present/3 solving/2 earnings/3 employed/3 children/3 health/2 social/4

ownership/5 suitab/3 cult_hist/2 advantage/2 fin_sources/2 family/5 age/2

Figure A.3: Reference structure

A.2 Experimental evaluation 113

y

fin_sources c10

advantage c9

cult_hist c8

earnings c7

children c6

employed c5

family c4

age c3

health c2

suitab c1

ownership stage

y

employed c10

health c9

c7 c8

stage c6 age c5

ownership suitab children c4

family c3

earnings c2

advantage c1

cult_hist fin_sources

y

fin_sources c10

advantage c9

cult_hist c8

earnings c7

children c6

family c5

age c4

health c3

employed c2

suitab c1

ownership stage

Figure A.4: Structures #1, #2, and #3

y

c2 c10

advantage c1 c5 c9

cult_hist fin_sources earnings children employed c8

age c7

c4 c6

stage c3 health family

ownership suitab

y

employed c10

family c9

children c8

earnings c7

age c6

health c5

stage c4

suitab c3

ownership c2

advantage c1

cult_hist fin_sources

y

c3 c10

advantage c1 c8 c9

cult_hist fin_sources earnings children family c7

employed c6

c4 c5

suitab c2 health age

ownership stage

Figure A.5: Structures #4, #5, and #6

114 Quantitative assessment of structure similarities

y

c5 c10

employed c4 family c9

age c3

health c2

suitab c1

ownership stage

c6 c8

earnings children cult_hist c7

advantage fin_sources

y

c5 c10

suitab c4 health c9

ownership stage employed c8

children c7

age c6

family c3

c1 c2

cult_hist advantage fin_sources earnings

Figure A.6: Structures #7 and #8

y

c9 c10

c4 c5 c6 c8

ownership suitab stage c2

fin_sources c1

cult_hist advantage

employed c3 family c7

earnings children health age

y

c2 c5

employed c7 c4 c9

earnings children c1 c8 health age

family c6 stage c3

ownership suitab cult_hist advantage fin_sources

y

c2 c5

employed c7 c4 c10

earnings children c1 c9 health age

family c6 stage c3

ownership suitab fin_sources c8

cult_hist advantage

Figure A.7: Structures #9, #10, and #11

Appendix B

Three examples for partition

selection measures

This appendix presents an evaluation of attribute partitions for three example domains

LENSES, CAR, and NURSERY and their complete set of examples as described in section

2.7.2. For LENSES and NURSERY, the partitions with up to 3 attributes and for CAR

with up to 4 attributes in the bound sets are presented. For each partition, the partition

selection measures 	CM, 	C, and 	SC are shown together with its rank according to these

measures. The results are discussed in section 2.7.7.

Partition 	CM 	C 	SC
<astigm,tears>|<age,prescr> 3 1 25.94 1 25.51 1
<prescr,tears>|<age,astigm> 4 5 32.77 6 31.38 5
<prescr,astigm>|<age,tears> 4 5 32.77 6 31.38 5
<age,tears>|<prescr,astigm> 4 5 41.45 10 38.04 10
<age,astigm>|<prescr,tears> 3 1 32.28 4 31.11 3
<age,prescr>|<astigm,tears> 3 1 32.28 4 31.11 3
<tears>|<age,prescr,astigm> 3 1 25.94 1 25.91 2
<astigm>|<age,prescr,tears> 4 5 32.09 3 31.90 7
<prescr>|<age,astigm,tears> 5 9 36.81 9 36.25 9
<age>|<prescr,astigm,tears> 5 9 35.44 8 33.81 8

Table B.1: Partitions for LENSES

116 Three examples for partition selection measures

Partition 	CM 	C 	SC
<doors,persons,lug boo,safety>|<buying,maint> 4 2 891.42 16 891.36 16
<maint,persons,lug boo,safety>|<buying,doors> 12 26 2620.50 46 2613.39 46
<maint,doors,lug boo,safety>|<buying,persons> 9 14 2611.60 42 2606.44 42
<maint,doors,persons,safety>|<buying,lug boo> 12 26 3470.20 49 3456.00 49
<maint,doors,persons,lug boo>|<buying,safety> 9 14 2611.60 42 2606.44 42
<buying,persons,lug boo,safety>|<maint,doors> 12 26 2620.50 46 2613.39 46
<buying,doors,lug boo,safety>|<maint,persons> 9 14 2611.60 42 2606.44 42
<buying,doors,persons,safety>|<maint,lug boo> 12 26 3470.20 49 3456.00 49
<buying,doors,persons,lug boo>|<maint,safety> 9 14 2611.60 42 2606.44 42
<buying,maint,lug boo,safety>|<doors,persons> 4 2 1171.40 25 1171.22 25
<buying,maint,persons,safety>|<doors,lug boo> 4 2 1171.40 25 1171.22 25
<buying,maint,persons,lug boo>|<doors,safety> 7 9 2037.40 38 2035.26 38
<buying,maint,doors,safety>|<persons,lug boo> 6 7 2317.80 41 2315.37 41
<buying,maint,doors,lug boo>|<persons,safety> 5 6 1934.00 37 1932.76 37
<buying,maint,doors,persons>|<lug boo,safety> 7 9 2701.00 48 2696.85 48
<persons,lug boo,safety>|<buying,maint,doors> 10 20 730.81 8 730.80 8
<doors,lug boo,safety>|<buying,maint,persons> 7 9 626.45 4 626.45 4
<doors,persons,safety>|<buying,maint,lug boo> 10 20 857.66 12 857.57 12
<doors,persons,lug boo>|<buying,maint,safety> 6 7 546.59 3 546.58 3
<maint,lug boo,safety>|<buying,doors,persons> 13 31 1081.10 22 1080.66 21
<maint,persons,safety>|<buying,doors,lug boo> 16 35 1299.70 28 1298.60 28
<maint,persons,lug boo>|<buying,doors,safety> 23 48 1798.70 34 1793.68 34
<maint,doors,safety>|<buying,persons,lug boo> 21 44 2108.70 39 2101.26 39
<maint,doors,lug boo>|<buying,persons,safety> 17 37 1730.80 31 1727.34 31
<maint,doors,persons>|<buying,lug boo,safety> 17 37 1730.80 31 1727.34 31
<buying,lug boo,safety>|<maint,doors,persons> 13 31 1081.10 22 1080.66 21
<buying,persons,safety>|<maint,doors,lug boo> 16 35 1299.70 28 1298.60 28
<buying,persons,lug boo>|<maint,doors,safety> 24 49 1869.00 35 1863.21 35
<buying,doors,safety>|<maint,persons,lug boo> 21 44 2108.70 39 2101.26 39
<buying,doors,lug boo>|<maint,persons,safety> 17 37 1730.80 31 1727.34 31
<buying,doors,persons>|<maint,lug boo,safety> 19 41 1920.20 36 1914.96 36
<buying,maint,safety>|<doors,persons,lug boo> 3 1 342.47 2 342.47 2
<buying,maint,lug boo>|<doors,persons,safety> 7 9 760.77 10 760.73 10
<buying,maint,persons>|<doors,lug boo,safety> 8 13 860.70 13 860.60 13
<buying,maint,doors>|<persons,lug boo,safety> 10 20 1347.90 30 1346.96 30
<lug boo,safety>|<buying,maint,doors,persons> 10 20 796.02 11 796.02 11
<persons,safety>|<buying,maint,doors,lug boo> 12 26 875.48 14 875.48 14
<persons,lug boo>|<buying,maint,doors,safety> 15 33 979.87 18 979.87 18
<doors,safety>|<buying,maint,persons,lug boo> 15 33 882.34 15 882.34 15
<doors,lug boo>|<buying,maint,persons,safety> 11 25 736.91 9 736.91 9
<doors,persons>|<buying,maint,lug boo,safety> 10 20 696.57 7 696.57 7
<maint,safety>|<buying,doors,persons,lug boo> 9 14 654.00 5 654.00 5
<maint,lug boo>|<buying,doors,persons,safety> 19 41 1010.90 19 1010.93 19
<maint,persons>|<buying,doors,lug boo,safety> 17 37 948.26 17 948.25 17
<maint,doors>|<buying,persons,lug boo,safety> 21 44 1080.90 21 1080.74 23
<buying,safety>|<maint,doors,persons,lug boo> 9 14 654.00 5 654.00 5
<buying,lug boo>|<maint,doors,persons,safety> 22 47 1100.20 24 1100.19 24
<buying,persons>|<maint,doors,lug boo,safety> 20 43 1041.30 20 1041.26 20
<buying,doors>|<maint,persons,lug boo,safety> 26 50 1251.30 27 1250.70 27
<buying,maint>|<doors,persons,lug boo,safety> 4 2 339.42 1 339.42 1

Table B.2: Partitions for CAR

117

Partition 	CM 	C 	SC

<form,childs,housing,finance,social,health>|<parents,has nur> 4 4 8050.00 11 8049.92 11
<has nur,childs,housing,finance,social,health>|<parents,form> 12 33 30106.00 50 30092.19 48
<has nur,form,housing,finance,social,health>|<parents,childs> 9 23 22589.00 38 22583.58 38
<has nur,form,childs,finance,social,health>|<parents,housing> 9 23 30102.00 49 30092.19 48
<has nur,form,childs,housing,social,health>|<parents,finance> 6 7 30098.00 47 30092.19 48
<has nur,form,childs,housing,finance,health>|<parents,social> 6 7 20075.00 27 20072.83 27
<has nur,form,childs,housing,finance,social>|<parents,health> 7 12 23418.00 41 23413.89 41
<parents,childs,housing,finance,social,health>|<has nur,form> 17 40 25612.00 44 25597.86 44
<parents,form,housing,finance,social,health>|<has nur,childs> 13 35 19601.00 25 19595.75 25
<parents,form,childs,finance,social,health>|<has nur,housing> 13 35 26103.00 45 26092.05 45
<parents,form,childs,housing,social,health>|<has nur,finance> 9 23 27096.00 46 27088.46 46
<parents,form,childs,housing,finance,health>|<has nur,social> 9 23 18084.00 24 18081.31 24
<parents,form,childs,housing,finance,social>|<has nur,health> 10 30 20089.00 30 20085.05 30
<parents,has nur,housing,finance,social,health>|<form,childs> 3 1 5665.10 5 5665.05 5
<parents,has nur,childs,finance,social,health>|<form,housing> 7 12 17575.00 19 17573.03 19
<parents,has nur,childs,housing,social,health>|<form,finance> 8 20 30101.00 48 30092.19 48
<parents,has nur,childs,housing,finance,health>|<form,social> 8 20 20082.00 29 20078.74 29
<parents,has nur,childs,housing,finance,social>|<form,health> 9 23 22589.00 38 22583.58 38
<parents,has nur,form,finance,social,health>|<childs,housing> 7 12 17575.00 19 17573.03 19
<parents,has nur,form,housing,social,health>|<childs,finance> 6 7 22580.00 37 22577.20 37
<parents,has nur,form,housing,finance,health>|<childs,social> 6 7 15068.00 15 15066.43 15
<parents,has nur,form,housing,finance,social>|<childs,health> 7 12 17575.00 19 17573.03 19
<parents,has nur,form,childs,social,health>|<housing,finance> 3 1 15053.00 14 15052.59 14
<parents,has nur,form,childs,finance,health>|<housing,social> 6 7 20075.00 27 20072.83 27
<parents,has nur,form,childs,finance,social>|<housing,health> 7 12 23418.00 41 23413.89 41
<parents,has nur,form,childs,housing,health>|<finance,social> 4 4 20069.00 26 20067.48 26
<parents,has nur,form,childs,housing,social>|<finance,health> 5 6 25084.00 43 25080.73 43
<parents,has nur,form,childs,housing,finance>|<social,health> 3 1 10042.00 12 10042.29 12
<childs,housing,finance,social,health>|<parents,has nur,form> 13 35 6709.50 7 6709.31 7
<form,housing,finance,social,health>|<parents,has nur,childs> 10 30 5192.90 3 5192.86 3
<form,childs,finance,social,health>|<parents,has nur,housing> 10 30 6814.80 8 6814.72 8
<form,childs,housing,social,health>|<parents,has nur,finance> 7 12 7093.40 9 7093.33 9
<form,childs,housing,finance,health>|<parents,has nur,social> 7 12 4795.00 1 4795.03 1
<form,childs,housing,finance,social>|<parents,has nur,health> 8 20 5469.40 4 5469.39 4
<has nur,housing,finance,social,health>|<parents,form,childs> 9 23 5776.00 6 5775.93 6
<has nur,childs,finance,social,health>|<parents,form,housing> 21 46 17646.00 22 17639.04 22
<has nur,childs,housing,social,health>|<parents,form,finance> 24 48 30123.00 51 30092.18 47
<has nur,childs,housing,finance,health>|<parents,form,social> 24 48 20147.00 33 20135.86 33
<has nur,childs,housing,finance,social>|<parents,form,health> 25 50 20981.00 34 20967.54 34
<has nur,form,finance,social,health>|<parents,childs,housing> 21 46 17646.00 22 17639.04 22
<has nur,form,housing,social,health>|<parents,childs,finance> 18 41 22617.00 40 22605.57 40
<has nur,form,housing,finance,health>|<parents,childs,social> 18 41 15144.00 17 15139.42 17
<has nur,form,housing,finance,social>|<parents,childs,health> 19 44 15978.00 18 15972.95 18
<has nur,form,childs,social,health>|<parents,housing,finance> 9 23 15085.00 16 15082.72 16
<has nur,form,childs,finance,health>|<parents,housing,social> 18 41 20122.00 32 20113.00 32
<has nur,form,childs,finance,social>|<parents,housing,health> 19 44 21234.00 35 21223.69 35
<has nur,form,childs,housing,health>|<parents,finance,social> 12 33 20097.00 31 20091.69 31
<has nur,form,childs,housing,social>|<parents,finance,health> 13 35 21767.00 36 21760.15 36
<has nur,form,childs,housing,finance>|<parents,social,health> 7 12 7865.20 10 7865.02 10
<parents,housing,finance,social,health>|<has nur,form,childs> 13 35 5153.50 2 5153.45 2
<parents,childs,finance,social,health>|<has nur,form,housing> 28 51 14234.00 13 14227.78 13

Table B.3: Partitions for NURSERY

118 Three examples for partition selection measures

Appendix C

Experimental results on DEX

domains

This Appendix includes graphs and structures that are results of experiments with DEX

domains in section 2.7 and were not included in that section. The results included in the

appendix are those of DEX domains EMPLOY1, EMPLOY2, HOUSING, and ENTER-

PRISE. The reader is referred to section 2.7 for the discussion of the results.

0 20 40 60 80 100
90.0

92.5

95.0

97.5

100.0
�
� � � � � � � �

.........
........
.........
..

�
�
�
� �

� �
�
�

.......
.
.......
.
........
........
........
........
........
........
........

.
........
........
........
........
........

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

�

� � � � � � � �

..

SDC

p

0 20 40 60 80 100
100

125

150

175

200

225

250

�

� � � � � � � �

..

�SC

p

Figure C.1: Results for EMPLOY1 domain

120 Experimental results on DEX domains

0 20 40 60 80 100
95.0

97.5

100.0

�

�

� � � � � � �

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.......
......
......
......
......
......
......
..

�

�

�
�
� �

� �
�

......
..
......
..
.....
...
......
..
......
..
......
..
......
...
.......
........
........
........
........ ..
...... .
.......
........
........
........
........

........ C4.5

......................... HINT

p

class. acc.

0 20 40 60 80 100

1.0

1.5

2.0

2.5

�

�

� � � � � � �
......
......
......
......
......
......
...

SDC

p

0 20 40 60 80 100
100

150

200

250

�
�

� � � � � � �

..........
.........
.........
..

�SC

p

Figure C.2: Results for EMPLOY2 domain

0 20 40 60 80 100
70

80

90

100
�
� � � � � � � �

........
.........
........
..............
...

�

�

�
�
� �

� � �

.....
...
.....
...
......
..
......
..
......
..
......
..
......
..
........
........
........
........
........

...
.......

....

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100

1.0

1.5

2.0

� �

�

� � � � � �

............................
......
......
......
......
......
......
.......
......
......
......
......
......
...

SDC

p

0 20 40 60 80 100
0

200

400

600

800

�

�

� � � � � � �

...
.......
......
......
.......
..

�SC

p

Figure C.3: Results for HOUSING domain

0 20 40 60 80 100

70

80

90

100

�

�
� � � � � � �

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..........
..........
..

�

�
�
� �

� �
� �

.......
.
.......
.
.......
....
.....
........
........
........
........ .
.......

....
........

.
......

........ C4.5

.........................HINT

p

class. acc.

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

�

� � � � � � � �

..

SDC

p

0 20 40 60 80 100
0

200

400

� �
� � � � � � �

...............................
............
..

�SC

p

Figure C.4: Results for ENTERPRISE domain

121

EMPLOY1/4

educat/3 per_char/3 age_exp/3

degree/5 for_lang/3 intel/4 work_app/3 exper/5 age/5

comm/4 manag/3

EMPLOY1/4

c4/3 c5/4

intel/4 c3/3 c1/3 c2/3

comm/4 manag/3 degree/5 for_lang/3 exper/5 age/5

Figure C.5: The original (left) and decomposition-derived (right) structure for the EM-

PLOY1 domain.

EMPLOY2/4

educat/3 per_char/3 oth_char/3

for_lang/3 exper/5 formal/3 manag_ab/2 work_app/3 health/2 stabil/0

degree/5 spec/4 inventiv/2 initiati/2

EMPLOY2/4

stabilit/2 c6/3

c4/3 c5/3

inventiv/2 initiati/2 c3/3 c7/4

for_lang/3 c1/2 exper/5 c2/3

manag_ab/2 health/2 degree/5 spec/4

Figure C.6: The original (left) and decomposition-derived (right) structure for the EM-

PLOY2 domain.

HOUSING/9

house/4 status/3 soc_health/4

stage/3 present/3 solving/3 earnings/3 employed/3 children/3 health/2 social/4

ownership/5 suitab/3 cult_hist/2 advantage/2 fin_sources/2 family/5 age/2

HOUSING/9

c9/4 c10/10

c4/3 c5/3 c6/3 c8/4

ownership/5 suitab/3 stage/3 c2/2

fin_sources/2 c1/2

cult_hist/2 advantage/2

employed/3 c3/2 family/5 c7/3

earnings/3 children/3 health/2 age/2

Figure C.7: The original (left) and decomposition-derived (right) structure for the HOUS-

ING domain.

122 Experimental results on DEX domains

ENTERPRISE/5

soc/2 financ/5 economic/5

return/3 liquid/3 for_e/2 product/3 capacity/3

profit/3 prof_AB/3 liq/4 dlq/2

prf/3 fpf/3 p_a/5 dpa/2

prd/5 dpd/2 cap/3 dcp/2

ENTERPRISE/5

c7/3 c10/7

c1/2 c6/3 c8/4 c9/5

liq/4 dlq/2 c2/3 c3/3

prf/3 fpf/3 p_a/5 dpa/2

for_e/2 soc/2 c4/3 c5/3

prd/5 dpd/2 cap/3 dcp/2

Figure C.8: The original (left) and decomposition-derived (right) structure for the EN-

TERPRISE domain.

Appendix D

Results on MONK domains

Table D.1 gives the performance of di�erent learning algorithms on MONK domains as

derived in reported by Thrun et al. (1991). The domains and the corresponding exper-

iments with HINT are described and evaluated in section 2.7.4 (MONK1 and MONK2)

and in section 4.6.2.

124 Results on MONK domains

learner MONK1 MONK2 MONK3

HINT 100 99.8 100

AQ17-DCI 100 100 94.2

AQ17-HCI 100 93.1 100

AQ17-FCLS 92.6 97.2

AQ14-NT 100

AQ15-GA 100 86.8 100

Assistant Professional 100 81.3 100

mFOIL 100 69.2 100

ID5R 81.7 61.8

IDL 97.2 66.2

ID5R-hat 90.3 65.7

TDIDT 75.7 66.7

ID3 98.6 67.9 94.4

ID3, no widowing 83.2 69.1 95.6

ID5R 79.9 69.2 95.2

AQR 95.9 97.9 87.0

CN2 100 69.0 89.1

CLASSWEB 0.10 71.8 64.8 80.8

CLASSWEB 0.15 65.7 61.6 85.4

CLASSWEB 0.20 63.0 57.2 75.2

PRISM 86.3 72.7 90.3

ECOWEB leaf prediction 71.8 67.4 68.2

ECOWEB l.p. & information utility 82.7 71.3 68.8

Backpropagation 100 100 93.1

Backprop. with weight decay 100 100 97.2

Cascade Correlation 100 100 97.2

Table D.1: A classi�cation accuracy of various learning algorithms on MONK domains.

Appendix E

Concept structures for seven

medical domains

In this appendix we present the concept structures derived for seven medical domains from

section 4.6.3. Structures were derived from a complete set of examples, and value of m

used for derivation is that of HINT� from Table 4.10.

PRIM/22

axil/2 c15/7

b/2 c14/5

bm/2 c13/5

perit/2 c12/4

liver/2 c11/3

neck/2 c10/3

med/2 hist’/2

hist/3

Figure E.1: Concept structure for PRIM domain

126 Concept structures for seven medical domains

BREA/2

year’/2 c8/12

year/3 bezg/2 c7/8

obs/2 c6/5

star’/2 lok’/3

star/3 lok/5

Figure E.2: Concept structure for BREA domain

LYMP/4

cstr’/2 c16/3

cstr/8 clym’/2 c15/2

clym/3 nnode’/3 cnode’/2

nnode/8 cnode/4

Figure E.3: Concept structure for LYMP domain

127

RHEU/7

astbsk’/2 c30/30

astbsk/6 tez’/2 c29/29

tez/19 schob’/2 c28/23

schob/7 c22/2 c27/14

sstosk’/3 stvsep’/4 ostbol’/2 c26/14

sstosk/6 stvsep/11 ostbol/7 bolez’/3 c25/12

bolez/19 koza’/3 c24/9

koza/15 misice’/3 c23/9

misice/12 stbolsk’/6 stzad’/4

stbolsk/11 stzad/11

Figure E.4: Concept structure for RHEU domain

HEPA/2

sgot’/2 c17/2

sgot/6 age’/2 c16/2

age/8 ascites/2 bilirubin’/2

bilirubin/6

Figure E.5: Concept structure for HEPA domain

128 Concept structures for seven medical domains

DIAB/2

tric’/2 c6/3

tric/9 age’/2 plasma’/2

age/6 plasma/9

Figure E.6: Concept structure for DIAB domain

HEART/2

peak’/2 c10/2

peak/9 c8/2 c9/3

age’/2 chest’/2 vess’/2 thal’/2

age/8 chest/4 vess/4 thal/3

Figure E.7: Concept structure for HEART domain

Appendix F

HINT: A hierarchy induction tool

The methods proposed in this dissertation were implemented in a system called HINT

(Hierarchy INduction Tool). HINT is written in the C programming language and runs in

various UNIX environments, including HP/UX, SGI Iris, and SunOS. HINT is an interac-

tive, command-driven tool that supports both supervised and unsupervised decomposition.

The series of commands may be stored in scripts, which may facilitate the use of HINT in

case of more complex and longer experiments.

In particular, HINT supports:

� minimal-complexity and minimal-error decomposition,

� attribute and attribute values subset selection,

� setup of decomposition parameters (b, m, etc.),

� de�nition of domain, which include de�nition of attribute names, values and example

sets,

� supervised decomposition by

{ manual selection of best attribute partition,

{ de�nition of target concept structure,

{ manual de�nition of examples for function H which is used by decomposition,

� operations on a single example set and between example sets (copy, move, delete,

etc.)

� classi�cation-accuracy estimation by k-fold cross-validation, hold-out, and leave-one-

out

130 HINT: A hierarchy induction tool

� derivation of learning curves,

� save and restore of structures and example sets from �les; C4.5 data format for

example sets is supported.

The script language used by HINT is given in (Zupan 1997). We here illustrate it by an

example. The domain used is the one from Section 2.2.1. The following gives the attribute

names and their sets of values:

y depends on {x1,x2,x3}

y, x1, x2 in {lo,med,hi}

x3 in {lo, hi}

The set of examples is de�ned with

sel y

example set {

lo lo lo lo

lo lo hi lo

lo med lo lo

lo med hi med

lo hi lo lo

lo hi hi hi

med med lo med

med hi lo med

med hi hi hi

hi lo lo hi

hi hi lo hi

}

Within HINT, the partition selection measures for partitions with size of bound sets

of 2 can be obtained by the following command (\>>" is HINT's prompt):

>> set decomposition 2

>> test decomposition y

Decompose: y = y(x1 x2 x3)

dfc=18 sdtic=28.529325 dtic=28.529325

Part: x3 | x1 x2 : 2x9= 5, 19, 29.84, 28.61263, ok

Part: x2 | x1 x3 : 3x6= 4, 18, 26.435, 25.041918, ok

Part: x1 | x2 x3 : 3x6= 3, 15, 21.189, 20.756516, ok

131

>> set decompose cm

>> decompose y

>> list struct

y/3

x1/3

c1/3

x2/3

x3/2

The resulting example sets can be further examined by:

>> select c1

>> list examples

x2 x3 = c

lo lo 1

lo hi 1

med lo 1

med hi 2

hi lo 1

hi hi 3

>> select y

>> list examples

x1 c = y

lo 2 med

lo 3 hi

lo 1 lo

med 3 hi

med 1 med

hi 1 hi

