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Abstract

Domain or background knowledge is often needed in order to solve difficult problems

of learning medical diagnostic rules. Earlier experiments have demonstrated the util-

ity of background knowledge when learning rules for early diagnosis of rheumatic dis-

eases. A particular form of background knowledge comprising typical co-occurrences

of several groups of attributes was provided by a medical expert. This paper ex-

plores the possibility to automate the process of acquiring background knowledge

of this kind. A method based on function decomposition is proposed that identifies

typical co-occurrences for a given set of attributes. The method is evaluated by

comparing the typical co-occurrences it identifies, as well as their contribution to

the performance of machine learning algorithms, to the ones provided by a medical

expert.
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1 Introduction

When applying machine learning to learn medical diagnostic rules from patient

records, it may be desirable to augment the latter with additional diagnostic knowl-

edge about the particular domain, especially for difficult diagnostic problems. In

machine learning terminology, additional expert knowledge is usually referred to as

background knowledge. While most machine learning approaches have only limited

capabilities of taking into account such knowledge, inductive logic programming [14]

systems can handle different types of background knowledge.

A particular type of medical expert knowledge specifies which combinations of val-

ues (co-occurrences) of a set (grouping) of attributes have high importance for the

diagnostic problem at hand. These combinations of values are called typical co-

occurrences. A medical expert would specify the groupings as well as the typical

co-occurrences associated with them.

Typical co-occurrences are used in expert diagnosis. When asked for some additional

knowledge about the difficult problem of early diagnosis of rheumatic diseases, a

medical expert provided typical co-occurrences for several groupings of attributes.

These were then used by the LINUS [14] system for inductive logic programming in

the domain of early diagnosis of rheumatic diseases [13] from anamnestic data. In

this domain, the task is to diagnose patients into one of eight diagnostic classes, given

sixteen anamnestic attributes. The difficulty of the diagnostic problem itself and

noise in the data make this a very hard problem for machine learning approaches.

A more detailed description of the domain can be found in Section 3.

The medical expert provided six groupings (pairs or triples of attributes) and their

typical co-occurrences (characteristic combinations of values). These are given in

Table 4 in Section 3. For each grouping, LINUS introduces a new attribute which

is considered in the learning process. For a particular patient record (example) this

attribute has as value the typical co-occurrence observed for the patient, if one was
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indeed observed, or has the value “irrelevant” otherwise. A rule induction system,

such as CN2 [3], or any attribute-value learning system can then be applied to the

extended learning problem.

To illustrate the concept, let us consider Grouping 2. It relates the attributes “Spinal

pain” and “Duration of morning stiffness” and the typical co-occurrences are: no

spinal pain and morning stiffness up to 1 hour, spondylotic pain and morning stiff-

ness up to 1 hour, spondylitic pain and morning stiffness longer than 1 hour. An

example rule that uses this grouping and the second co-occurrence is given in Ta-

ble 1. This rule was induced by LINUS using CN2 [13].

[Table 1 about here.]

The background knowledge in the form of typical co-occurrences was shown to have

positive effect on rule induction in several respects. First, rules induced in the pres-

ence of background knowledge perform better in terms of classification accuracy and

information content [13]. Second, it substantially improves the quality of induced

rules from a medical point of view as assessed by a medical expert [13]. Finally,

it reduces the effects of noisy data on the process of rule induction and nearest

neighbor classification [7].

The motivation for our work is based on the following line of reasoning: It is very de-

sirable to have and use background knowledge in the form of typical co-occurrences

in rule induction, as it can greatly improve performance. Typical co-occurrences

are also a natural and useful human concept used by the medical expert. However,

it is well-known that direct knowledge acquisition from experts is an arduous and

error-prone process [9]. This paper therefore proposes a method for automated ac-

quisition of background knowledge in the form of typical co-occurrences. The expert

need only specify the groupings, while the associated co-occurrences are determined

automatically.
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Before proceeding further, let us briefly mention related work. The domain of early

diagnosis of rheumatic diseases has been first treated with a machine learning ap-

proach by Pirnat et al. [16]. Decision tree based approaches have been further

applied to this domain by Karalič and Pirnat [10]. The use of background knowl-

edge in this domain has been investigated by Lavrač et al. in combination with a

decision tree approach [12] and in combination with a rule induction approach [13]

and by Džeroski and Lavrač [7] in combination with nearest neighbor classification.

The typical co-occurrence acquisition method proposed in this paper uses several

fundamental algorithms from function decomposition. The pioneers of this field

are Ashenhurst [1] and Curtis [5]. They have used function decomposition for the

discovery of Boolean functions. Its potential use within machine learning was first

observed by Samuel [17] and Biermann [2]. A recent report of Perkowski et al. [15]

provides a comprehensive survey of the literature on function decomposition. In

this paper we refer to the decomposition algorithms which use decision tables with

multi-valued attributes and classes and were developed by Zupan et al. [20].

The remainder of the paper is organized as follows. Section 2 describes the method

for acquisition of typical co-occurrences. Section 3 describes the domain of early

diagnosis of rheumatic diseases, and the background knowledge provided by the

expert. Taking the groupings provided by the expert, we apply the proposed method

to determine the typical co-occurrences. The results of these experiments are also

discussed in Section 3. Section 4 proposes a method for assisting the domain expert

in selection of attribute groupings. Section 5 concludes and outlines some directions

for further fork.

2 The method

This section formally and through an example introduces the method that, given a

set of examples represented as attribute-value vectors with assigned classes, derives
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typical co-occurrences for a given set of attributes. The overall data-flow of the

method is shown in Figure 1. The method first converts the set of examples to a

decision table (Step 1). Next, decision table decomposition methods are used to

derive a so-called partition matrix (Step 2). Finally, the typical co-occurrences for

a given set of attributes are derived (Step 3), using an approach based on coloring

the incompatibility graph of the partition matrix.

We first give an example of decision table decomposition and introduce the required

decomposition methodology. The description of the method to acquire a set of typi-

cal co-occurrences is given next. For machine learning in medical domains, the data

is usually represented as a set of examples, and we propose a technique to convert

this representation to a decision table, a representation required by the proposed

method. The section concludes with a brief note about the implementation.

[Figure 1 about here.]

2.1 Decision table decomposition: An example

Suppose we are given a decision table y = F (X) = F (x1, x2, x3) (Table 2) with

three attributes x1, x2, and x3, and class y, and we want to decompose it to decision

tables G and H, such that y = G(x1, c) and c = H(x2, x3). For this decomposition,

an initial set of attributes X is partitioned to a bound set {x2, x3} used with H

and a free set {x1} used with G. Decomposition requires the introduction of a new

attribute c which depends only on the variables in the bound set.

[Table 2 about here.]

To derive G and H from F , we first need to represent a decision table with a

partition matrix (Table 3). A partition matrix uses all possible combinations of

attribute values from the bound set as column labels and those from the free set as
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row labels. Each column in a partition matrix specifies a behavior of the function

F when the attributes in the bound set are constant. Two elements of a partition

matrix are compatible if they are the same or at least one of them is unknown

(denoted by “-”). Two columns are compatible if all of their elements are pairwise

compatible: these columns are considered to represent the same behavior of the

function F .

[Table 3 about here.]

The problem is now to assign labels to the columns of the partition matrix so that

only groups of mutually compatible columns have the same label. Columns with

the same label exhibit the same behavior in respect to F and can use a single

value of the new concept c. Label assignment involves the construction of a column

incompatibility graph, where columns of the partition matrix are nodes and two

nodes are connected if they are incompatible. Column labels are then assigned by

coloring the incompatibility graph. For our example, the incompatibility graph with

one of the possible optimal colorings is given in Figure 2.

[Figure 2 about here.]

For better comprehensibility, we interpret the column labels (colors) as follows: “1”

as hi, “2” as med, and “3” as lo. These labels and the partition matrix straightfor-

wardly determine the function c = H(x2, x3). To determine the function G(x1, c),

we lookup the annotated partition matrix for all the possible combinations of x1 and

c. The final result of the decomposition is represented as a hierarchy of two decision

tables in Figure 3. If we further examine the discovered functions G and H we can

see that G ⊂ MAX and H ⊂ MIN.

[Figure 3 about here.]
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2.2 Acquiring typical co-occurrences from a decision table

In the above example, different colors can be assigned to the same column of a

partition matrix while retaining the minimal number of colors. For example, the

column (med,lo) could be assigned either color 2 or 3, and the column (lo,hi) could

be assigned any of the three colors used. On the other hand, the column (lo,lo)

could only be assigned a single color because of the incompatibilities with (med,hi)

and (hi,hi) which are assigned different colors. While there exists only one distinct

behavior for (lo,lo) with respect to F , there exist several for (med,lo) and (lo,hi).

The combination (lo,lo) of attributes x2 and x3 thus tell us more about the behavior

of the function F and is therefore more typical. Moreover, the columns that can

be assigned only one color form a foundation for such color assignment and will be

called typical columns of the partition matrix (typical nodes of the incompatibility

graph) and will further indicate for typical co-occurrences of attributes in the bound

set.

Therefore, for a given set of attributes for which we want to derive the typical co-

occurrences (bound set) and for a given decision table, we have to first derive a

corresponding partition matrix and its incompatibility graph. The algorithms for

the construction of the partition matrix and incompatibility graph are described in

detail in [20]. The typical co-occurrences derivation method then uses the incompat-

ibility graph and discovers the typical co-occurrences through coloring. Since graph

coloring is an NP-hard problem, the computation time of an exhaustive search algo-

rithm is prohibitive even for small graphs with about 15 nodes. Instead, we use the

simple Color Influence Method of polynomial complexity [15]. The Color Influence

Method sorts the nodes to color by decreasing connectivity and then assigns to each

node a color that is different from the colors of its neighbors so that a minimal num-

ber of colors is used. In this way, the coloring can have a single or several candidate

colors for each node. The number of these candidate colors is used to determine the

typicality of the node. We use the following definition:
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Definition (Typical node n of incompatibility graph IG) A node n ∈ IG is

typical if and only if in the process of coloring using the Color Influence Method it

has only one candidate color to be assigned to.

The above definition is then used to augment the Color Influence Method to both

color the incompatibility graph and discover typical co-occurrences (Algorithm 1).

Input: incompatibility matrix IG

Output: typical co-occurrences for attributes in bound set

while there are no uncolored nodes in IG do

select the uncolored node n ∈ IG with highest connectivity

if there are no colored non-adjacent nodes

or all colored non-adjacent nodes have the same color

then n is typical else n is not typical endif

color n with the first free color different from the colors of adjacent nodes

endwhile

Algorithm 1: Coloring of an incompatibility graph and selection of typical nodes

Let us illustrate the use of Algorithm 1 on the incompatibility graph from Figure 2.

The nodes sorted by decreasing connectivity are

(hi,hi), (med,hi), (lo,lo), (hi,lo), (med,lo), (lo,hi)

First, the node (hi,hi) is selected, determined to be typical (no other nodes have

been colored yet), and assigned the color 1. Next, the node (med,hi) is considered.

There are no colored nodes non-adjacent to it and so this node is typical. Since

the adjacent node (hi,hi) has color 1, the color 2 is assigned to (med,hi). Similarly,

(lo,lo) is also typical and colored with 3 because the colors 1 and 2 have already

been used for the adjacent nodes (hi,hi) and (med,hi). Next, the node (hi,lo) has
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a single colored non-adjacent node (lo,lo) and is thus typical and colored with the

same color 3. The first non-typical node is (med,lo): it has three nodes (med,hi),

(lo,lo), and (hi,lo) that are non-adjacent to it and use different colors 2 and 3.

Among these, the color 3 is then arbitrarily chosen for (med,lo). Similarly, the node

(lo,hi) is found not to be typical and among three candidate colors the color 3 is

arbitrarily assigned to it. Therefore, among six possible combinations of attribute

values the algorithm found four typical co-occurrences: (hi,hi), (med,hi), (lo,lo),

and (hi,lo).

The described method finds a possible set of typical nodes but it does not guarantee

that this is the only such set. An alternative method that would search more ex-

haustively and possibly evaluate all different coloring of the incompatibility graph

may be more complete and propose different sets of typical co-occurrences, but its

(possibly exponential) complexity would limit its applicability.

2.3 Derivation of a decision table from a set of examples

The typical co-occurrence derivation method requires domain data in the form of

a decision table. Decision tables require nominal attributes and for a specific com-

bination of attribute values define at most one class. However, the data sets from

medical domains often include continuous attributes and may use several examples

with the same attribute values but possibly different classes. Therefore, we need a

method that, given a set of domain examples, would derive a corresponding decision

table. For all continuous attributes, we assume that a discretization is given or can

be derived from the examples.

The method is given in Algorithm 2. It searches through the set of examples E

whose attribute values are the same if nominal or discretize to the same value if

continuous. For such sets of examples E ′, a majority class value is found and a

corresponding entry is added to the decision table. The examples from E ′ are then
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removed from E and the process repeated until there are no more examples in E.

Input: Set of examples E = {ei}, Discretization for continuous attributes

Output: Decision table DT

while E 6= ∅ do

select ej ∈ E

find E ′ = {ek; ek ∈ E} such that

1) for all discrete attributes, ek has the same value as ej

2) for all continuous attributes, ek’s discretized value is the same as ej’s

E ′ ← E ′ ∪ {ej}
c← a majority class value of examples in E ′

add ej with discretized continuous values and with class c to DT

E ← E \ E ′

endwhile

Algorithm 2: Derivation of a decision table from a set of examples

2.4 Implementation

The typical co-occurrences extraction method was implemented as HINTTCO, an

extension of the Hierarchy Induction Tool HINT [20] for learning concept hierarchies

from examples by decision table decomposition. Both HINT and HINTTCO run on a

variety of UNIX platforms, including HP/UX, SunOS and IRIS.
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3 Extraction and validation of typical co-occurrences

in early diagnosis of rheumatic diseases

3.1 The domain

The data on early diagnosis of rheumatic diseases used in our experiments originate

from the University Medical Center in Ljubljana [16] and comprise records on 462

patients. The multitude of over 200 different diagnoses have been grouped into

three, six, eight or twelve diagnostic classes. Our study uses eight diagnostic classes:

degenerative spine diseases, degenerative joint diseases, inflammatory spine diseases,

other inflammatory diseases, extraarticular rheumatism, crystal-induced synovitis,

non-specific rheumatic manifestations, and non-rheumatic diseases.

For each patient, sixteen anamnestic attributes are recorded: sex, age, family anam-

nesis, duration of present symptoms (in weeks), duration of rheumatic diseases (in

weeks), joint pain (arthrotic, arthritic), number of painful joints, number of swollen

joints, spinal pain (spondylotic, spondylitic), other pain (headache, pain in muscles,

thorax, abdomen, heels), duration of morning stiffness (in hours), skin manifesta-

tions, mucosal manifestations, eye manifestations, other manifestations, and ther-

apy. The continuous attributes (age, durations and numbers of joints) have been

discretized according to expert suggestions. For the continuous attributes that ap-

pear in groupings, the discretizations can be read out from Table 4. For example,

from Table 4.1 we can see that the attribute “Duration of morning stiffness” has

been discretized into two intervals: up to 1 hour and longer than 1 hour.

3.2 The background knowledge

In an earlier study [12], a specialist for rheumatic diseases has provided his knowl-

edge about typical co-occurrences of six groupings of attributes. The groupings and
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the co-occurrences are given in Table 4, where a bullet in the column marked “spe-

cialist” and the row marked X means that tuple X is a typical co-occurrence for

the corresponding Grouping. For example, Table 4.1 specifies Grouping 1, which

relates the attributes “Joint pain” and “Duration of morning stiffness”, with typical

co-occurrences suggested by HINTTCO: no joint pain and morning stiffness up to 1

hour, arthrotic pain and morning stiffness up to 1 hour, arthritic pain and morning

stiffness up to 1 hour.

3.3 The experiments

To evaluate our method for typical co-occurrences acquisition, we took the dataset

and the six groupings described above, the latter without the typical co-occurrences

provided by the expert. We then applied our method to produce the typical co-

occurrences. For each grouping, the typical co-occurrences produced by HINTTCO are

listed in the column labeled “HINTTCO” of the corresponding table. For example,

HINTTCO suggests that the typical co-occurrences for Grouping 1 should be: no joint

pain and morning stiffness up to 1 hour, arthrotic pain and morning stiffness up to

1 hour, arthritic pain and morning stiffness up to 1 hour.

The groupings with the new typical co-occurrences suggested by HINTTCO are then

provided as background knowledge to LINUS [14] in addition to the 462 training

examples (patient records). LINUS then introduces a new attribute for each group-

ing (as explained in the introduction). The 462 examples augmented with the six

new attributes (thus having in total 22 attributes) are then fed to the rule induction

system CN2 [3] and to a nearest neighbor classifier [19, 8, 4]. The goal of this was

to evaluate the usefulness of the new attributes and in this way the usefulness of the

typical co-occurrences proposed by HINTTCO.

The number of occurrences of each grouping (i.e., the new attribute correspond-

ing to that grouping) in the set of rules induced by CN2 is listed in the column
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marked fCN2. The mutual information between the grouping and the diagnostic

class, calculated as a weight for nearest neighbor classification [19] is listed in the

column marked fNN . The mutual information [18] between an attribute and the

class tells us how useful the attribute is for classification. The two measures have

been used in earlier experiments to assess the utility of background knowledge in

machine learning [13, 7].

[Table 4 about here.]

3.4 The results

For groupings 1, 2, 5, and 6, the typical co-occurrences derived by HINTTCO corre-

spond reasonably well to those proposed by the specialist for rheumatic diseases.

For these groups, while using the same (groupings 1, 2, and 6) or slightly higher

number of co-occurrences (grouping 5), two thirds or more of the co-occurrences

originally proposed by the specialist were discovered by HINTTCO. This is different

to grouping 4, where less than one half of the co-occurrences match and to grouping

3, where there are no matches.

In terms of the mutual information evaluation metrics fNN , the co-occurrences de-

rived by HINTTCO score higher for all but the grouping 4. A similar behavior is

observed when the number of appearances in CN2 induced rules fCN2 is used as an

evaluation metrics. There, HINTTCO scores equal or higher for all but the groupings

1 and 4.

Overall, compared to the co-occurrences proposed by the specialist, HINTTCO per-

formed well for groupings 1, 2, 5, and 6. There are slight differences in the proposed

co-occurrences, which, in turn, contribute to higher values of the evaluation metrics.

For grouping 3, there is a complete mismatch between the co-occurrences proposed

by the specialist and those derived by HINTTCO. The co-occurrences derived by
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HINTTCOscore higher on both metrics (4 to 1 on fCN2). However, the weights as-

signed by mutual information suggest that this grouping might be substantially less

important for classification than the others (fCN2 of 0.096 and 0.080).

It is grouping 4 where the of co-occurrences derived by HINTTCO seem to be less

appropriate than those proposed by the specialist. However, note that for this

grouping the specialist proposed six co-occurrences while HINTTCO discovered only

four. Instead of using HINTTCO to derive only the typical co-occurrences for which

the corresponding number of colors in the partition matrix is one, we can use this

number as a measure of appropriateness for a certain combination of attribute values

to be used as a typical co-occurrences. The lower the number of colors, the better

the corresponding combination. For grouping 4, the number of possible colors for

the columns in the partition matrix is shown in Table 5. It indicates that (No pain,

Spondylotic) and (No pain, Spondylitic) are the next best candidates for typical co-

occurrences. Interestingly, both are also proposed by the specialist. Their inclusion

to the set of typical co-occurrences derived by HINTTCO makes this set very similar to

that of the specialist, and also increases the mutual information weight from 0.743

to 0.887.

[Table 5 about here.]

With the above extension, we can therefore conclude that HINTTCO discovered typical

co-occurrences that were comparable to those proposed by the expert both in terms

of similarity and usefulness as background knowledge for machine learning. This

is important since HINTTCO is not meant to be a stand-alone tool for unsupervised

discovery of background knowledge, but should rather provide support to the expert

by (1) proposing a set of co-occurrences and (2) weighting different combinations of

attribute values to indicate how important it is that they are included in such a set.

It would then be up to the expert to decide which of the proposed co-occurrences

are meaningful and should be used.
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As an overall evaluation of the typical co-occurrences suggested by HINTTCO, let us

consider the performance and size of the rules induced by CN2 from the dataset

generated by LINUS. The performance measures used were the accuracy and infor-

mation content [11, 6] (as measured on the training set) of the rules induced (using

the significance test in CN2). Also observed were the total number of rules induced

and the number of rule conditions used. The results (Table 6) indicate that both the

accuracy and information content are higher when LINUS uses background knowl-

edge in the form of typical co-occurrences. Moreover, while typical co-occurrences as

proposed by HINTTCO yield rules of higher accuracy and slightly higher information

content than rules obtained when expert defined co-occurrences are used, they also

result in a less complex classifier in terms of number of rules and their conditions.

[Table 6 about here.]

4 Computer-assisted selection of

attribute groupings

In the experiments described above HINTTCO assumed the set of attributes for which

to derive typical co-occurrences were given in advance. A possible extension of this

approach is to propose not only co-occurrences but also the set of attributes for which

the background knowledge in the form of co-occurrences should be defined. The idea

is straightforward and is illustrated with Algorithm 3. The algorithm examines all

groupings of attributes from a candidate set (e.g., all pairs and triples) and for each

grouping derives the set of typical co-occurrences. Each grouping is then assigned

a weight, which estimates the usefulness of the grouping for the classification. The

groupings, sorted by decreasing weight, are then presented to the user who decides

which of the proposed groupings are meaningful and are in his opinion suitable for

use as background knowledge.
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Input: set of examples

Output: sorted list of attribute groupings with assigned weights

derive a decision table from the set of examples

for all the pairs (and triples) of attributes do

derive the typical co-occurrences

derive the corresponding weight

endfor

sort the groupings by descending weights and present them to the user

Algorithm 3: Derivation of groups of (two and three) attributes for which

background knowledge in the form of typical co-occurrences might be useful for

machine learning

We have used this idea to obtain a list of sorted groupings of two attributes for the

data on early diagnosis of rheumatic diseases. The groupings were ranked according

to the mutual information [18] between an attribute obtained from grouping and

the diagnostic class. While all five two-attributes grouping from Table 4 originally

proposed by the expert ranked in the upper half of the sorted list of groupings, the

Grouping 4 and Grouping 2 were ranked within the best six groupings, which were:

1. “Spinal pain” and “Swollen joints”

2. “Number of painful joints” and “Spinal pain”

3. “Spinal pain” and “Skin manifestations”

4. “Joint pain” and “Spinal pain” (Grouping 4)

5. “Spinal pain” and “Therapy”

6. “Spinal pain” and “Morning stiffness” (Grouping 2)

Note that six highest ranked all include “Spinal pain”. This may be contributed to

by the high mutual information between this attribute and class itself, which is also

the highest of all nominal attributes used in the rheumatic diseases dataset.
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For an additional experiment, we have used the six groupings above and their typical

co-occurrences as proposed by HINTTCO for background knowledge, which was then

used by LINUS. The corresponding CN2 induced rules had an information content

of 30% and classification accuracy of 51.2%. While the information content is similar

to that when groupings are proposed by expert, the classification accuracy is lower.

This indicates that the involvement of an expert in the selection of groupings may

not only have a positive effect on the comprehensibility of rules, but also on their

classification performance.

5 Conclusions

Background knowledge in the form of typical co-occurrences has positive effect on

machine learning results in terms of the performance and the quality of induced rules

from a medical point of view. We have developed a method that proposes typical

co-occurrences through functional decomposition of a given set of examples. While

medical diagnosis background knowledge of this type has been previously completely

specified by a medical expert, our approach offers the possibility to automate the

background knowledge acquisition process by proposing typical co-occurrences to

the expert, who would then consider them in the light of his expert knowledge.

Experiments indicate that the use of typical co-occurrences identified by our method

improves the performance of machine learning as compared to the use of typical

co-occurrences provided by a medical expert. While potentially useful attribute

groupings can also be identified automatically, experiments indicate that expert in-

volvement in the selection process is probably necessary to achieve high performance.

For further work, a more careful evaluation of the background knowledge acquired

through using our method is needed. This should include an evaluation of the quality

of induced rules from a medical point of view. An evaluation of the performance

in terms of classification accuracy on unseen cases is also desirable, but requires a
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slightly more complicated experimental setup: typical co-occurrences would have

to be determined for each partition of the dataset into training and testing cases.

Finally, experiments with an active involvement of a domain expert in both attribute

grouping and typical co-occurrence selection should be conducted.
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Table 1:

IF Duration_of_present_symptoms > 6.5 months

AND Duration_of_rheumatic_diseases < 5.5 years

AND Number_of_painful_joints > 16

AND grouping2(Spinal_pain,Duration_of_morning_stiffness) =

’spondylotic & up to 1 hour’

THEN Diagnosis = Degenerative_spine_diseases
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Table 2:

x1 x2 x3 y

lo lo lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med med lo med
med hi lo med
med hi hi hi
hi lo lo hi
hi hi lo hi
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Table 3:

x2 lo lo med med hi hi
x1 x3 lo hi lo hi lo hi
lo lo - - med lo hi
med - - med - med hi
hi hi - - - hi -
color 3 3 3 2 3 1
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Table 4:

Joint pain,
Morning stiffness specialist HINTTCO

No pain, ≤ 1 hour • •
Arthrotic, ≤ 1 hour • •
Arthritic, ≤ 1 hour •
No pain, > 1 hour
Arthrotic, > 1 hour
Arthritic, > 1 hour •

fCN2 2 1
fNN 0.345 0.353

1)

Spinal pain,
Morning stiffness specialist HINTTCO

No pain, ≤ 1 hour • •
Spondylotic, ≤ 1 hour • •
Spondylitic, ≤ 1 hour •

No pain, > 1 hour
Spondylotic, > 1 hour
Spondylitic, > 1 hour •

fCN2 3 3
fNN 0.545 0.643

2)

Sex, Other pain specialist HINTTCO

male, no •
male, muscles •
male, thorax •
male, heels •
male, other •
female, no •

female, other •
other 7 combinations

fCN2 1 4
fNN 0.080 0.096

3)

Joint pain, Spinal pain specialist HINTTCO

No pain, No pain • •
Arthrotic, No pain • •
Arthritic, No pain • •

No pain, Spondylotic •
Arthrotic, Spondylotic •
Arthritic, Spondylotic
No pain, Spondylitic •
Arthrotic, Spondylitic
Arthritic, Spondylitic •

fCN2 9 8
fNN 0.908 0.743

4)

Joint pain, Spinal pain,
Painful joints specialist HINTTCO

No pain, No Pain, 0 • •
No pain, No Pain, 1≤joints≤5 •

No pain, Spondylotic, 0 • •
No pain, Spondylitic, 0 • •

Arthrotic, No pain, 1≤joints≤5 • •
Arthrotic, No pain, 5<joints≤30 • •

Arthrotic, Spondylotic, 1≤joints≤5 •
Arthrotic, Spondylotic, 5<joints≤30 •

Arthritic, No pain, 1≤joints≤5 • •
Arthritic, No pain, 5<joints≤30 • •

Arthritic, Spondylitic, 1≤joints≤5 •
other 25 combinations

fCN2 7 9
fNN 0.757 0.834

5)

Swollen joints,
Painful joints specialist HINTTCO

0, 0 • •
0, 1≤joints≤5 • •
0, 5<joints≤30 •

0, 30< •
1≤joints≤10, 0 • •

1≤joints≤10, 1≤joints≤5 •
1≤joints≤10, 5<joints≤30 • •

1≤joints≤10, 30<
10<, 0

10< 1≤joints≤5,
10<, 5<joints≤30

10<, 30<

fCN2 1 1
fNN 0.331 0.392

6)
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Table 5:

Joint pain, Spinal pain # colors

No pain, No pain 1
Arthrotic, No pain 1
Arthritic, No pain 1
No pain, Spondylotic 2
Arthrotic, Spondylotic 1
Arthritic, Spondylotic 3
No pain, Spondylitic 2
Arthrotic, Spondylitic 3
Arthritic, Spondylitic 4
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Table 6:

Accuracy Inf. content # Rules # Conditions

w/o background knowledge 51.7% 22% 30 102
co-occurrences by expert 52.4% 30% 38 120
co-occurrences by HINTTCO 56.5% 31% 35 106
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