
Contributing Authors

Marko Bohanec (marko.bohanec@ijs.si) is a research associate at the De-
partment of Intelligent Systems, J. Stefan Institute, Ljubljana, Slovenia. His
research and development interests are in decision support systems and ma-
chine learning. He has published in journals such as Machine Learning, Acta
Psychologica, and Information & Management.

Ivan Bratko (bratko@fri.uni-lj.si) is professor of computer science at the Fac-
ulty of Computer and Information Science, Ljubljana University, Slovenia. He
heads the AI laboratories at J. Stefan Institute and the University. He is the
chairman of ISSEK, International School for the Synthesis of Expert Knowl-
edge. He has conducted research in machine learning, knowledge-based systems,
qualitative modeling, intelligent robotics, heuristic programming and computer
chess. He is the author of widely adopted text PROLOG Programming for Ar-
ti�cial Intelligence (Addison-Wesley).

Janez Dem�sar (janez.demsar@fri.uni-lj.si) is a research assistant at the Fac-
ulty of Computer and Information Science, University of Ljubljana, Slovenia.
He has graduated in computer science at the same faculty. His research interest
include machine learning and intelligent data analysis.

Bla�z Zupan (blaz.zupan@ijs.si) is a researcher at the Department of Intelli-
gent Systems, J. Stefan Institute, Ljubljana, Slovenia. His research interests
include machine learning, data mining, medical decision making, and medical
informatics.

i

1 FEATURE TRANSFORMATION BY

FUNCTION DECOMPOSITION

Bla�z Zupan 1, Marko Bohanec 1,

Janez Dem�sar 2, and Ivan Bratko 2;1

1 J. Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia

blaz.zupan@ijs.si, marko.bohanec@ijs.si

2 Faculty of Computer Science and Informatics

University of Ljubljana

Tr�za�ska 25, 1000 Ljubljana, Slovenia

janez.demsar@fri.uni-lj.si, bratko@fri.uni-lj.si

Abstract: Function decomposition is a method that decomposes a dataset to

an equivalent hierarchy of less complex datasets. In this chapter we show that

function decomposition can contribute to feature transformation as a method

for (1) discovery of a hierarchy of new features and (2) construction of features

to be added to the original dataset to improve machine learning from that

dataset. A particular advantage of function decomposition is its capability to

identify appropriate subsets of existing features and discover functions that map

each subset to a new feature. These functions are induced from examples and

are not prede�ned in any way.

1.1 INTRODUCTION

While not explicitly intended for feature transformation, some methods for
switching circuit design implicitly deal with this problem. In 1950s and 1960s,
(Ashenhurst, 1952) and (Curtis, 1962) proposed a function decomposition meth-
od that, given a truth table of a Boolean function, develops a hierarchy of less
complex tabulated Boolean functions that are preferably realizable with simple
logic gates. For example, such decomposition was used to �nd the circuit of the
Boolean function in Figure 1.1. Both the hierarchy and the functions themselves
are discovered by the decomposition method and are not given in advance. This

1

2 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

x1 x2 x3 x4 y

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 1 1

1 0 1 1 0

1 1 1 0 1

1 1 1 1 1

x2

x1

x3

x4

y

mx1 mx2

mc1
x1 x2 c1

0 0 0

0 1 0

1 0 0

1 1 1

�� @I

6

mx3 mx4

mc2
x3 x4 c2

0 0 0

0 1 1

1 0 1

1 1 0

�� @I

6

my

c1 c2 y1

0 0 0

0 1 1

1 0 1

1 1 1

�� @I

6

Figure 1.1 A truth table of a Boolean function (upper left), its switching circuit imple-

mentation (lower left), and corresponding feature hierarchy with two intermediate features

c1 = x1 AND x2 and c2 = x3 XOR x4, and the target concept y = c1 OR c2.

is especially important from the viewpoint of feature construction, since the
outputs of such functions (e.g., c1 and c2 from Figure 1.1) can be regarded as
new features not present in the original problem description.

The basic principle of function decomposition is the following. Let a tab-
ulated function y = F (X) use a set of input features X = x1; : : : ; xn. The
goal is to decompose this function into y = G(A;H(B)), where A and B are
subsets of features in X such that A[B = X . G and H are tabulated functions
that are determined by the decomposition and are not prede�ned. Their joint
complexity, determined by some complexity measure, should be lower than the
complexity of F . Such a decomposition also discovers a new feature c = H(B).
Since the decomposition can be applied recursively on H and G, the result in
general is a hierarchy of features. For each feature in the hierarchy, there is a
corresponding tabulated function, such as H(B), that determines the depen-
dency of that feature on its immediate descendants in the hierarchy.

Ashenhurst-Curtis decomposition was intended for switching circuit design
of completely speci�ed Boolean functions. Recently, the decomposition was
extended to handle incompletely speci�ed Boolean functions (Perkowski and
Uong, 1987; Wan and Perkowski, 1992). In the framework of feature extrac-
tion, (Ross et al., 1994b) used a set of simple Boolean functions to show the
decomposition's capability to discover and extract useful features. This chapter
presents an approach to feature transformation that is based on the extension of
the function decomposition method by (Zupan et al., 1997). This method allows
the decomposition to deal with functions that involve nominal (i.e., not neces-
sarily binary) features, and is implemented in a system called HINT(Hierarchy
INduction Tool). Although HINT also supports noise handling (Zupan, 1997),

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 3

this chapter focuses only on function decomposition mechanisms that do not
explicitly deal with noise.

This chapter �rst introduces two basic components of function decompo-
sition: single-step decomposition and search for the best attribute partition.
Next, we show how these components can contribute to three feature trans-
formation and selection tasks: (1) identi�cation and removal of redundant
features, (2) discovery of a hierarchy of new features and (3) construction of
features to be added to the original dataset. The chapter concludes with an
overview of related work and summary.

1.2 SINGLE-STEP FUNCTION DECOMPOSITION

The core of function decomposition method is a single-step decomposition which
decomposes a tabulated function y = F (X) into two possibly less complex tab-
ulated functions G and H , so that y = G(A; c) and c = H(B). The resulting
functions G and H have to be consistent with F . For the purpose of decomposi-
tion, a set of features X is partitioned to two disjoint subsets A and B, referred
to as a free and bound set, respectively. For a given feature partition, the single-
step decomposition discovers a new feature c and a tabular representation of
H and G.

For example, consider a function y = F (x1; x2; x3) as given in Table 1.1.
The input feature x1 and the output feature y can take the values lo, hi; input
features x2 and x3 can take the values lo, med and hi.

x1 x2 x3 y

lo lo lo hi

lo lo med lo

lo med lo lo

lo med med hi

lo med hi lo

lo hi lo lo

lo hi med lo

lo hi hi hi

hi lo lo hi

hi lo med hi

hi med med hi

hi hi med hi

Table 1.1 Tabulated function y = F (x1; x2; x3).

Suppose that we want to discover a description of a new feature c = H(x2; x3).
For this purpose, we represent F by a partition matrix that uses the values of
x1 for row labels, and the combinations of values of x2 and x3 for column labels
(Figure 1.2.a). Partition matrix entries with no corresponding instance in the
tabulated representation of F are denoted with \-" and treated as don't-care.

Each column in the partition matrix denotes the behavior of F for a speci�c
combination of x2 and x3. Columns that have pairwise equal row entries or at
least one row entry is a don't-care are called compatible. The decomposition

4 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

x2 lo lo med med med hi hi hi

x1 x3 lo med lo med hi lo med hi

lo hi lo lo hi lo lo lo hi

hi hi hi - hi - - hi -

c 1 0 0 1 0 0 0 1

(a)

...

...

..

...

...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..

...

...
............

............
............

............
............

............
............

............
...........

............
............

............
............

............
......

..

...

...

...

...
......
.....
.....
......
...........

...
......
.....
.....
......
...........

.....

......
..
......
.....

...
......
.....
.....
......
...........

............
......
.....
.....
.....
...........

..

...
......
.....
.....
......
...........

...
.....
.....
.....
......
............

...
......
.....
.....
......
...........

1

0

0

1

0

0

0

1

lo,lo

lo,med

med,lo

med,med

med,hi

hi,lo

hi,med

hi,hi

(b)

Figure 1.2 Partition matrix (a) and the corresponding incompatibility graph (b) for the

function from Table 1.1. The column lo; hi of partition matrix has no instances and is not

shown. The node labels of the incompatibility graph found by graph coloring are circled.

has to assign each column a label that corresponds to a value of c. If two
columns are compatible, they can be assigned the same label. To preserve the
consistency of original function and its decomposition, di�erent labels have to
be used for incompatible columns.

The partition matrix column labels are found by coloring an incompatibility

graph (Figure 1.2.b). This has a distinct node for each column of the partition
matrix. Two nodes are connected if the corresponding columns of partition ma-
trix are incompatible. For instance, the nodes hi,hi and lo,med are connected
because their corresponding columns are incompatible due to the entries in the
�rst row (hi6=lo).

With optimal coloring of the incompatibility graph, the new feature c obtains
a minimal set of values needed for consistent derivation ofH andG from F . The
optimal coloring of the graph from Figure 1.2.b requires two di�erent colors,
i.e., two abstract values for c. The tabulated functions G and H can then be
derived straightforwardly from the labeled partition matrix.

The resulting decomposition is given in Figure 1.3. The following can be
observed:

The tabulated functions G and H are overall smaller than the original
function F .

By combining the features x2 and x3 we obtained a new feature c and
the corresponding tabulated function H , which can be interpreted as
c = EQUAL(x2; x3). Similarly, the function G that relates x1 and c to y
can be interpreted as y = MAX(x1; c).

The decomposition generalizes some unde�ned entries of the partition
matrix. For example, F (hi; med; hi) is generalized to hi because the
column med; hi has the same label as columns lo,med and hi,med.

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 5

��
��
x2 ��

��
x3

��
��
c

��
��
y

��
��
x1

x2 x3 c

lo lo 1

lo med 0

med lo 0

med med 1

med hi 0

hi lo 0

hi med 0

hi hi 1

x1 c y

lo 0 lo

lo 1 hi

hi 1 hi

hi 0 hi

��� @@I

��� @@I

6

6

Figure 1.3 Decomposition of tabulated function from Table 1.1 that uses a new feature

c = H(x2; x3).

There are two problems when single-step decomposition is dealing with real-
world functions: the partition matrix can become very large, and because of
its incompleteness the optimal coloring of the corresponding incompatibility
graph can be prohibitively complex. HINT solves the �rst problem by avoiding
the explicit construction of partition matrix and deriving the incompatibility
graph directly from the tabulated function (Zupan, 1997). Partition matrix is
thus only a formal construct used for the explanation and analysis of decom-
position algorithm. For the problem of coloring, HINT uses a suboptimal but
e�cient heuristic coloring algorithm (Zupan et al., 1997; Zupan, 1997) based
on the Color Inuence Method by (Perkowski and Uong, 1987) and (Wan and
Perkowski, 1992).

1.3 FINDING THE BEST FEATURE PARTITION

So far, we have assumed that a partition of the features to free and bound sets
is given. However, for each function F there are many possible partitions, each
one yielding a di�erent feature c and a di�erent pair of functions G and H . In
feature transformation, it is important to identify partitions that lead to simple
but useful new features. Typically, we prefer features with a small number of
values, and those that yield functions G and H of low complexity.

The simplest measure for �nding good feature partitions is the number of
values required for the new feature c. That is, when decomposing F , a set of
candidate partitions is examined and the one that yields c with a smallest set
of possible values is selected for decomposition.

6 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

An alternative measure for the selection of partitions can be based on the
complexity of functions. Let I(F) denote a number of bits to encode some
function y = F (X):

I(F) = log
2
jD

y
j
Y

x2X

jD
x
j

where D
x
and D

y
are value domains of features x and y, while jD

x
j and jD

y
j

denote their cardinality. There are some other similar measures (Ross et al.,
1994b; Biermann et al., 1982) that assume a di�erent encoding for F and thus
yield di�erent I(F), but they only slightly a�ect the performance of decompo-
sition (Zupan, 1997).

The best partition is then the one that minimizes the overall complex-
ity of newly discovered functions H and G, i.e., the partition with minimal
I(H) + I(G). The complexity of G and H should be lower than that of F , and
decomposition takes place only if I(H) + I(G) < I(F) for the best partition.
If the latter criterion is satis�ed, the function F is called decomposable with
respect to the given attribute partition.

Table 1.2 provides an example and lists both above mentioned partition selec-
tion measures for the function from Table 1.1. This function can be decomposed
in three di�erent ways, where by both measures the partition A = fx1g and
B = fx2; x3g is favorable. Regarding the complexity measure I , this partition
is also the only one for which F is decomposable.

Partition jcj I(H) + I(G) decomposable
A = fx1g, B = fx2; x3g 2 13.0 yes
A = fx2g, B = fx1; x3g 4 24.0 no
A = fx3g, B = fx1; x2g 4 24.0 no

Table 1.2 Partition selection measures for the function from Table 1.1. To determine

decomposability, note that I(F) = 18:0.

The number of possible partitions increases exponentially with the number
of input features. To limit the complexity of search, the decomposition should
examine only a subset of partitions. In HINT, the partitions examined are
only those with less than b features in the bound set, where b is a user-de�ned
parameter usually set to 2 or 3.

1.4 REDUNDANCY DISCOVERY AND REMOVAL

A special characteristic of function decomposition is its capability to identify
and remove redundant features and/or their values. Namely, whenever a feature
c = H(x

i
) is discovered such that c uses only a single value (i.e., H is constant

function), the feature x
i
is redundant and can be removed from the dataset.

Similarly, whenever a feature c = H(x
i
) uses less values than x

i
, the original

feature x
i
can be replaced by c.

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 7

Both these dataset transformations are particularly useful for data pre-
processing, since they can reduce the size of the problem and increase the
coverage of the problem space by the learning examples. HINT removes re-
dundant features in the increased order of their relevance: the less relevant
features are checked �rst, and if any type of redundancy mentioned above is
discovered, the dataset is accordingly transformed. The features are estimated
by a ReliefF measure of relevance (Kononenko, 1994). ReliefF estimates the
features according to how well they distinguish among the instances that are
close to each other. The relevance of feature x is then

W (x) = P (di�erent value of x j k�nearest instances with di�erent y)�

P (di�erent value of x j k�nearest instances with same y)

We use the version of ReliefF which determines the feature's relevancy based on
at most 200 arbitrary selected examples, and which for every example examines
k = 5 nearest instances of the same and of the di�erent value for y.

1.5 DISCOVERING FEATURE HIERARCHIES

With all the above components, decomposition enables the discovery of feature
hierarchies. Given a dataset, it is �rst pre-processed to remove redundant fea-
tures and their values. Next, a single-step decomposition is used to decompose
the pre-processed tabulated function F to G and H . This process is recur-
sively repeated on G and H until they can not be decomposed further, i.e.,
their further decomposition would increase the overall complexity of resulting
functions.

Let us illustrate this process by several examples. The �rst example is
a well-known machine learning problem MONK1 (Thrun et al., 1991). The
dataset uses six 2 to 4-valued input features (x1 to x6) and contains 124 (of
435 possible) distinct learning examples that partially de�ne the target concept
x1 = x2 OR x5 = 1. HINT develops a feature hierarchy (Figure 1.4) that

1. correctly excludes irrelevant input features x3, x4, and x6,

2. transforms x5 to x0
5
by mapping four values of x5 to only two values of

x
0

5
,

3. includes a new feature c and its tabular representation for x1 = x2, and

4. relates c and x0
5
with a tabular representation of the OR function.

In other words, the resulting hierarchy correctly represents the target concept.
Similarly as MONK1, the MONK2 learning problem (Thrun et al., 1991) uses

the same set of input features but de�nes the concept: x
i
= 1 for exactly two

choices of i 2 f1; 2; : : : ; 6g. The dataset contains 172 (of 435 possible) distinct
learning examples. Although the discovered structure (Figure 1.5) does not
directly correspond to the original concept de�nition, it correctly reformulates
the target concept by introducing features that count the number of ones in

8 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

��
��
x1 ��

��
x2

��
��
x5

��
��
x

0

5

��
��
MONK1

��
��
c

x1 x2 c

1 1 1

1 2 0

1 3 0

2 1 0

2 2 1

2 3 0

3 1 0

3 2 0

3 3 1

x5 x
0

5

1 1

2 0

3 0

4 0

c x
0

5
MONK1

0 0 0

0 1 1

1 0 1

1 1 1

��� @@I

��� @@I

6 6

6

6

Figure 1.4 MONK1 feature hierachy as discovered by HINT.

MONK2/2

c3/3 c4/4

x4’/2 x5’/2 c1/3 c2/3

x4/3 x5/4 x3/2 x6/2 x2’/2 x1’/2

x2/3 x1/3

Figure 1.5 The feature hierarchy discovered for MONK2. Each node gives a name of the

feature and cardinality of its set of values.

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 9

HOUSING/9

c9/4 c10/10

c4/3 c5/3 c6/3 c8/4

ownership/5 suitab/3 stage/3 c2/2

fin_sources/2 c1/2

cult_hist/2 advantage/2

employed/3 c3/2 family/5 c7/3

earnings/3 children/3 health/2 age/2

Figure 1.6 The feature structure discovered for housing loan allocation problem. Each

node gives a name of the feature and cardinality of its set of values.

0 2 4 6 8 10
80

85

90

95

100
�

�
� � � � � � �

.........
.........
.........
.........
...............
....................

..

�

�

�

�
�

� � � �

.....
...
.....
...
......
..
......
..
......
..
......
..
......
..
......
..
.......
..
.......
........
........
........
........
........

....
........

........
..

..

� C4.5

� HINT

p [%]

CA [%]

........

....................................

Figure 1.7 Averaged classi�cation accuracy of HINT and C4.5 for 10 experiments with

learning sets consisting of a random sample of p percents of the HOUSING problem space.

their arguments. Also note that all input features that use more than two
values are replaced by new binary features.

For a real-world example, consider a HOUSING dataset from a management
decision support system for allocating housing loans (Bohanec et al., 1996).
This system was developed for the Housing Fund of Slovenia and used since
1991 in 13 oats of loans with a total value of approximately 90 million ECU.
Basically, its task is to rank applicants into one of nine priority classes based
on 12 input features. The system uses a hierarchical decision model.

For this experiment, we wanted to assess the ability of decomposition to re-
construct the system's model given a random selection of classi�ed cases. First,
it was observed that in most cases when HINT was given 8000 or more learn-

10 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

ing examples (4% coverage of problem space), it discovered the same feature
hierarchy (Figure 1.6). When presented to a domain expert, the discovered
features were found meaningful. For instance, the feature c4 represents the
present housing status of the applicant. Features c2, c6, and c8 respectively
specify the way of solving the housing problem, applicant's current status, and
his/her social and health conditions. Thus, the structure of the original model
was successfully reconstructed. This reconstruction takes about 2.5 minutes of
processor time on a HP J210 Unix workstation.

The quality of the functions discovered for housing problem was assessed
by classi�cation of the remaining examples that completely cover this domain
but were not included in the learning set. The generalization of HINT was
assessed as a learning curve (Figure 1.7) and compared to that of the state-of-
the-art learning tool C4.5 (Quinlan, 1993) that induces decision trees. C4.5
was run with default options except for -m1, by which C4.5 trees were made
consistent with the original dataset. For this domain, HINT generalizes well as
it achieves 100% classi�cation accuracy by using learning sets that cover 3 or
more percents of the problem space.

Housing problem domain can be viewed as a typical representative of prac-
tical domains in the �eld of decision making that HINT was tested on. Similar
tests and experimental conclusion were for instance obtained by the rediscovery
of hierarchical decision models for nursery school applications, job application
evaluation, and performance evaluation of public enterprises (Zupan, 1997).

1.6 FEATURE CONSTRUCTION

Function decomposition can also be used for feature construction. This is
de�ned as a process of augmenting the feature space by inferring or creating
additional features. We here show how the single-step decomposition can be
used both for �nding appropriate combinations of original features and using
them to construct new features which are then added to the original dataset.
Again, the new features that use small number of values are preferred.

For example, consider again the dataset from Table 1.1. Suppose we want to
augment it with a single new feature. For this purpose, single-step decomposi-
tion examines all pairs of original input features and for each pair derives a new
feature. A new feature that has the fewest values is preferred. Such feature is
c = H(x2; x3), and is de�ned by the example set from Figure 1.3. Function H
can now be used for each example from Table 1.1 to obtain the corresponding
value for c; such augmented dataset is shown in Table 1.3.

Obviously, an original dataset can be augmented with more than just a single
new feature. We propose a schema where, using the single-step decomposition,
m new features are added to a dataset: a candidate set of combinations of the
original features are examined, and correspondingm new features that have the
fewest values are selected. Ties are resolved arbitrarily. Only original features
are used to generate new features. Note also that in the process no hierarchy
of features is constructed. The feature construction and corresponding aug-

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 11

x1 x2 x3 c y

lo lo lo 1 hi

lo lo med 0 lo

lo med lo 0 lo

lo med med 1 hi

lo med hi 0 lo

lo hi lo 0 lo

lo hi med 0 lo

lo hi hi 1 hi

hi lo lo 1 hi

hi lo med 0 hi

hi med med 1 hi

hi hi med 0 hi

Table 1.3 A dataset from Table 1.1 augmented with a new feature c = H(x2; x3).

mentation of the original dataset results in a new dataset which may then be
further processed by some machine learning algorithm.

We evaluate this schema on the above-mentioned domains. For new features,
only those that depend only on two original input features are considered.
For MONK1 and MONK2 domains, the bene�t of adding new features was
assessed by a 10-fold cross validation. For HOUSING, 10 experiments were
performed with a learning set consisting of a random sample of 1% of the
problem space, while the test set consisted of the remaining 99%. Each learning
set was �rst augmented with m new features as described above, and then
given to C4.5 (Quinlan, 1993) which was used to induce the target concept
from the augmented dataset. Again, C4.5 was run with default options except
for -m1. The induced decision tree was then tested on a test set, which was
also augmented by the same set of new features, i.e., using their de�nition as
derived from the learning set.

In all the cases, a considerable increase of classi�cation accuracy (Figure 1.8)
and considerable decrease of the size of induced decision trees (Figure 1.9) were
observed when new features are added. In other words, adding new features
improves both the classi�cation accuracy and the transparency of decision trees.
For example, for MONK1, HINT discovered the feature c = EQUAL(x1; x2)
which enabled C4.5 to construct the decision tree with only �ve nodes:

if c=1 then y=1 else if x5=1 then y=1 else y=0

This decision tree was also substantially less complex than the decision trees
with an average of 77 nodes constructed from the original MONK1 data.

The results indicate that function decomposition discovers features that are
relevant for these domains. It is further interesting to note how well a simple
feature selection criterion based on the number of new feature's values performs
in terms of yielding augmented datasets that enable C4.5 to derive classi�ers
with high classi�cation accuracies.

12 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

0 5 10 15
50

60

70

80

90

100

�

� � � � � � � � � � � � � � �

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

m

MONK1

CA [%]

0 5 10 15
50

60

70

80

90

100

�

�
�

�

�

�

�
�

�

�
�

� � � � �

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......................
......
......
.......
......
......
......
......................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....................

......
......
.......
......
......
........
..........
.......
......
......
..

m

MONK2

CA [%]

0 10 20 30
80

85

90

95

100

�

�
��
�
�

�

��
�

�

�

����

�

�

��
�

�

���������

.....

.....
.....
.....
.......
................
.......
.......
.....
.......
......
...................
.....
.......
.....
.......
......
........................

.....
.....
......
.....
.....
.....
......
.....
.....
........
.........
.......
.....
.....
.....
......
......
...

m

HOUSING

CA [%]

Figure 1.8 Classi�cation accuracy of C4.5 as a function of number of new features m

added to MONK1, MONK2, and housing loans dataset. Error bars indicate standard devi-

ations.

0 5 10 15
0

40

80

120

160

�

� � � � � � � � � � � � � � �

..

m

N

MONK1

0 5 10 15
0

40

80

120

160 �

�
�

�

� �

�
�
�

�

�

� � � � �

...

m

N

MONK2

0 10 20 30
200

400

600

800

1000 �

�
��
�

�

�

��
�

�

�
����

�

�

��
�

�

���������

..

m

N

HOUSING

Figure 1.9 Number of nodes N of C4.5-induced decision trees as a function of number of

new featuresm added to MONK1, MONK2, and housing loans dataset. Error bars indicate

standard deviations.

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 13

1.7 RELATED WORK

A learning method that uses feature hierarchies has been proposed already by
a pioneer of arti�cial intelligence, (Samuel, 1967). His method used a signature
table system, which is essentially the same representation mechanism as the
one used in this chapter. However, Samuel's method was able to learn only
functions, requiring the hierarchy to be given in advance. Samuel's approach
was later studied and improved by (Biermann et al., 1982) but still relied on
the prede�ned feature hierarchy.

While, within machine learning, Samuel and Biermann et al. may be the
�rst to realize the power of decomposition, the fundamentals of the approach
were de�ned earlier in the area of switching circuit design. (Curtis, 1962)
reports that in the late 1940's and 1950's several switching circuit theorists
considered this subject and (Ashenhurst, 1952) reported on a uni�ed theory of
decomposition of switching functions. Most of related work of those times is
reported and reprinted in (Curtis, 1962), where he compares the decomposition
approach to other switching circuit design approaches and further formalizes
and extends the decomposition theory. Curtis' method is de�ned over Boolean
variables and requires a set of examples that completely cover the problem
space.

Recently, the Ashenhurst-Curtis approach was substantially improved by re-
search groups of M. A. Perkowski, T. Luba, and T. D. Ross. (Perkowski and
Uong, 1987) and (Wan and Perkowski, 1992) propose a graph coloring approach
to the decomposition of incompletely speci�ed switching functions. A di�er-
ent approach is presented by (Luba and Selvaraj, 1995). Their decomposition
algorithms are able to generalize. Generalization of function decomposition
when applied to a set of simple Boolean functions was studied by (Ross et al.,
1994b) and (Goldman, 1994). Goldman also indicates that the decomposition
approach to switching function design might be termed knowledge discovery
since features not previously anticipated can be discovered.

The above mentioned decomposition approaches typically deal with noiseless
data and Boolean features. Various extensions towards dealing with nominal-
valued features were proposed by (Biermann et al., 1982), (Luba, 1995), (Zupan
et al., 1997), and (Files et al., 1997). To handle noisy data, a minimal-error
decomposition was recently proposed (Zupan, 1997). It is based on a rep-
resentation of learning examples with class distributions and uses successive
column merging of partition matrix, so that the expected error of classi�cation
is minimized. For the decomposition of real-valued functions some preliminary
methods were proposed by (Ross et al., 1994a) and (Dem�sar et al., 1997).

There are other machine learning approaches that either use or construct fea-
ture hierarchies. DUCE (Muggleton, 1987; Muggleton, 1990) uses transforma-
tion operators to compress the given examples by successive generalization and
feature construction. Query-based PAC-learning of tabulated functions within
feature hierarchies is described by (Tadepalli and Russell, 1998). Queries are
also used in PAC-learning described by (Bshouty et al., 1995). Their algorithm
identi�es both concept structures and their associated tabulated functions, but

14 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

can deal only with Boolean functions with symmetric and constant fan-in gates.
Within PAC-learning, (Hancock et al., 1994) learn non-overlapping perceptron
networks from examples and membership queries. A structured induction ap-
proach (Shapiro and Niblett, 1982; Michie, 1995) is based on a manual decom-
position of the problem and an expert-assisted selection and classi�cation of
examples to construct functions that de�ne intermediate features in the hier-
archy.

The feature hierarchy has also been used by a multi-attribute decision sup-
port expert system shell DEX (Bohanec and Rajkovi�c, 1990) which has its roots
in DECMAK methodology (Efstathiou and Rajkovi�c, 1979; Bohanec et al.,
1983). There, a tree-like structure of variables is de�ned by an expert, and
several tools assist in the acquisition of decision tables.

The above related work refers primarily to the use and discovery of feature
hierarchies. As outlined in this chapter, a function decomposition may also
be useful to manufacture features that are then used by some other machine
learning algorithms. To the best of our knowledge, there has been no related
work that would use function decomposition in this way.

1.8 SUMMARY

The distinctive property of function decomposition is that it can discover new
features together with their corresponding functions that are not prede�ned in
any way. As such and in the framework of feature transformation, function
decomposition is a promising approach to discover and construct new features
that are either added to the original dataset, or transform this dataset to a
hierarchy of less complex datasets. The experiments show that decomposition
can:

discover useful and relevant features,

develop relevant feature hierarchies, and

identify and remove redundant features and/or their values.

Furthermore, we have shown that discovery of feature hierarchies by function
decomposition may generalize well, which is especially important when using
function decomposition within machine learning framework. Also, adding the
features derived by function decomposition to the original datasets can improve
the performance of other machine learning algorithms both in terms of accuracy
and size of induced classi�ers.

Acknowledgments

This chapter is a revised and extended version of the article `Feature transformation by

function decomposition" by the same authors, IEEE Intelligent Systems, March/April

1998 (c 1998 IEEE). We acknowledge the kind permission of IEEE to use portions

of this article.

FEATURE TRANSFORMATION BY FUNCTION DECOMPOSITION 15

References

Ashenhurst, R. L. (1952). The decomposition of switching functions. Technical
report, Bell Laboratories BL-1(11), pages 541{602.

Biermann, A. W., Fair�eld, J., and Beres, T. (1982). Signature table systems
and learning. IEEE Trans. Syst. Man Cybern., 12(5):635{648.

Bohanec, M., Bratko, I., and Rajkovi�c, V. (1983). An expert system for decision
making. In Sol, H. G., editor, Processes and Tools for Decision Support.
North-Holland.

Bohanec, M., Cestnik, B., and Rajkovi�c, V. (1996). A management decision
support system for allocating housing loans. In Humphreys, P., Bannon, L.,
McCosh, A., and Migliarese, P., editors, Implementing System for Supporting

Management Decisions, pages 34{43. Chapman & Hall, London.
Bohanec, M. and Rajkovi�c, V. (1990). DEX: An expert system shell for decision

support. Sistemica, 1(1):145{157.
Bshouty, N. H., Hancock, T. R., and Hellerstein, L. (1995). Learning boolean

read-once formulas over generalized bases. Journal of Computer and System

Sciences, 50(3):521{542.
Curtis, H. A. (1962). A New Approach to the Design of Switching Functions.

Van Nostrand, Princeton, N.J.
Dem�sar, J., Zupan, B., Bohanec, M., and Bratko, I. (1997). Constructing in-

termediate concepts by decomposition of real functions. In van Someren, M.
and Widmer, G., editors, Proc. European Conference on Machine Learning,

ECML-97, pages 93{107, Prague. Springer.
Efstathiou, J. and Rajkovi�c, V. (1979). Multiattribute decisionmaking using a

fuzzy heuristic approach. IEEE Trans. on Systems, Man and Cybernetics,
9:326{333.

Files, C., Drechsler, R., and Perkowski, M. (1997). Functional decomposition
of MVL functions using multi-valued decision diagrams. In International

Symposium on Multi-Valued Logic.
Goldman, J. A. (1994). Pattern theoretic knowledge discovery. In Proc. the

Sixth Int'l IEEE Conference on Tools with AI.
Hancock, T. R., Golea, M., and Marchand, M. (1994). Learning nonoverlap-

ing perceptron networks from examples and membership queries. Machine

Learning, 16(3):161{183.
Kononenko, I. (1994). Estimating attributes. In Bergadano, F. and Raedt, L. D.,

editors, Proc. of the European Conference on Machine Learning (ECML-94),
pages 171{182. Springer-Verlag.

Luba, T. (1995). Decomposition of multiple-valued functions. In 25th Intl. Sym-

posium on Multiple-Valued Logic, pages 256{261, Bloomigton, Indiana.
Luba, T. and Selvaraj, H. (1995). A general approach to boolean function de-

composition and its application in FPGA-based synthesis. VLSI Design, 3(3{
4):289{300.

Michie, D. (1995). Problem decomposition and the learning of skills. In Lavra�c,
N. and Wrobel, S., editors, Machine Learning: ECML-95, Notes in Arti�cial
Intelligence 912, pages 17{31. Springer-Verlag.

16 FEATURE EXTRACTION, CONSTRUCTION AND SELECTION

Muggleton, S. (1987). Structuring knowledge by asking questions. In Bratko,
I. and Lavra�c, N., editors, Progress in Machine Learning, pages 218{229.
Sigma Press.

Muggleton, S. (1990). Inductive Acquisition of Expert Knowledge. Addison-
Wesley, Workingham, England.

Perkowski, M. and Uong, H. (1987). Automatic design of �nite state machines
with electronically programmable devices. In Record of Northcon '87, pages
16/4.1{16/4.15, Portland, OR.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers.

Ross, T. D., Goldman, J. A., Gadd, D. A., Noviskey, M. J., and Axtell, M. L.
(1994a). On the decomposition of real-valued functions. In 3rd Int'l Work-

shop of Post-Binary VLSI Systems.
Ross, T. D., Noviskey, M. J., Gadd, D. A., and Goldman, J. A. (1994b). Pattern

theoretic feature extraction and constructive induction. In Proc. ML-COLT

'94 Workshop on Constructive Induction and Change of Representation, New
Brunswick, New Jersey.

Samuel, A. (1967). Some studies in machine learning using the game of checkers
II: Recent progress. IBM J. Res. Develop., 11:601{617.

Shapiro, A. D. and Niblett, T. (1982). Automatic induction of classi�ciation
rules for a chess endgame. In Clarke, M. R. B., editor, Advances in Computer

Chess 3, pages 73{92. Pergamon, Oxford.
Tadepalli, P. and Russell, S. (1998). Learning from examples and membership

queries with structured determinations. Machine Learning (to appear).
Thrun et al., S. B. (1991). A performance comparison of di�erent learning

algorithms. Technical report, Carnegie Mellon University CMU-CS-91-197.
Wan, W. and Perkowski, M. A. (1992). A new approach to the decomposition

of incompletely speci�ed functions based on graph-coloring and local trans-
formations and its application to FPGA mapping. In Proc. of the IEEE

EURO-DAC '92, pages 230{235, Hamburg.
Zupan, B. (1997).Machine learning based on function decomposition. PhD the-

sis, University of Ljubljana. Available at http://www-ai.ijs.si/BlazZupan/

papers.html.
Zupan, B., Bohanec, M., Bratko, I., and Dem�sar, J. (1997). Machine learning

by function decomposition. In D. H. Fisher, J., editor, Proc. Fourteenth

International Conference on Machine Learning, pages 421{429, San Mateo,
CA. Morgan Kaufmann.

Index

Classi�cation accuracy, 10{11
Decision tree size, 11{12
Decision tree, 11{12
Feature construction, 10
Feature discovery, 1

Feature hierarchies, 7

Function decomposition, 1

Generalization, 4, 10

Machine learning, 10, 14

Redundant features, 6

17

