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Decision table decomposition is a machine learning approach that decomposes a given
decision table into an equivalent hierarchy of decision tables. The approach aims to
discover decision tables that are overall less complex than the initial one, potentially
easier to interpret, and introduce new and meaningful intermediate concepts. Since an
exhaustive search for an optimal hierarchy of decision tables is prohibitively complex,
the decomposition uses a suboptimal iterative algorithm that requires the so-called par-
tition selection criterion to decide among possible candidates for decomposition. This
article introduces two such criteria and experimentally compares their performance with
a criterion originally used for the decomposition of Boolean functions. The experiments
highlight the differences between the criteria, but also show that in all three cases the
decomposition may discover meaningful intermediate concepts and relatively compact
decision tables.

1 Introduction

A decision table provides a simple means for con-
cept representation. It represents a concept with
labeled instances, each relating a set of attribute
values to a class. Decision table decomposition is
a method based on the “divide and conquer” ap-
proach: given a decision table, it decomposes it to
a hierarchy of decision tables. The method aims
to construct the hierarchy so that the new deci-
sion tables are less complex and easier to interpret
than the original decision table.

The decision table decomposition method is
based on function decomposition, an approach
originally developed for the design of digital cir-
cuits [2]. The method iteratively applies a single
decomposition step, whose goal is to decompose a
function y = F (X) into y = G(A,H(B)), where
X is a set of input attributes x1, . . . , xn, and y
is the class variable. F , G and H are functions
represented by decision tables, i.e., possibly in-
complete sets of attribute-value vectors with as-

signed classes. A and B are nonempty subsets
of input attributes such that A ∪ B = X. The
functions G and H are developed by decomposi-
tion and are not predefined in any way. Such a
decomposition also discovers a new intermediate
concept c = H(B). Since the decomposition can
be applied recursively on G and H, the result in
general is a hierarchy of decision tables. As each
decision table represents a concept, the result of
decomposition can be regarded also as a concept
hierarchy.

Each single decomposition step aims to mini-
mize the joint complexity of G and H and exe-
cutes the decomposition only if this is lower than
the complexity of F . Moreover, it is of crucial
importance for the algorithm to find such parti-
tion of attributes X into sets A and B that yields
G and H of the lowest complexity. The crite-
ria that guide the selection of such partition are
called partition selection criteria.

Let us illustrate the decomposition by a sim-
ple example (Table 1). The decision table relates
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x1 x2 x3 y

lo lo lo lo
lo lo hi lo
lo med lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med lo lo med
med lo hi med
med med lo med
med med hi med
med hi lo med
med hi hi hi
hi lo lo hi
hi lo hi hi
hi med lo hi
hi med hi hi
hi hi lo hi
hi hi hi hi

Table 1: An example decision table.

the input attributes x1, x2, and x3 to the class
y, such that y = F (x1, x2, x3). There are three
possible partitions of attributes that yield three
different decompositions y = G1(x1,H1(x2, x3)),
y = G2(x2,H2(x1, x3)), y = G3(x3,H3(x1, x2)).
The first two are given in Figure 1, and the com-
parison shows that:

– decision tables in the decomposition y =
G1(x1,H1(x2, x3)) are overall smaller than
those for y = G2(x2,H2(x1, x3)),

– the new concept c1 = H1(x2, x3) uses only
three values, whereas that for H2(x1, x3) uses
five,

– it is hard to interpret decision tables G2 and
H2, whereas by inspecting G1 and H1 it can
be easy to see that c1 = MIN(x2, x3) and
y = MAX(x1, c1). This can be even more
evident with the reassignment of c1’s values:
1 to lo, 2 to med, and 3 to hi.

The above comparison indicates that the de-
composition y = G2(x2,H2(x1, x3)) yields more
complex and less interpretable decision tables
than the decomposition y = G1(x1,H1(x2, x3)).
The questions of interest are thus:

1. How do we measure the overall complexity of
original decision table and of the decomposed
system?
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����y

����x1

x2 x3 c1
lo lo 1
lo hi 1
med lo 1
med hi 2
hi lo 1
hi hi 3

x1 c1 y
lo 1 lo
lo 2 med
lo 3 hi
med 1 med
med 2 med
med 3 hi
hi 1 hi
hi 2 hi
hi 3 hi
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H1: 6

G1: 6
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x1 x3 c2
lo lo 1
lo hi 2
med lo 3
med hi 4
hi lo 5
hi hi 5

x1 c2 y
lo 1 lo
lo 2 lo
lo 3 med
lo 4 med
lo 5 hi
med 1 lo
med 2 med
med 3 med
med 4 med
med 5 hi
hi 1 lo
hi 2 hi
hi 3 med
hi 4 hi
hi 5 hi

��� @@I
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H2: 6

G2: 6

Figure 1: Two different decompositions of the de-
cision table from Table 1.

2. Which are the criteria that can guide the sin-
gle decomposition step to chose among pos-
sible decompositions?

3. How much information is contained within
the hierarchical structure itself?

4. How does interpretability relate to the over-
all complexity of decision tables in the de-
composed system? Is a less complex system
also easier to interpret?

Some of these questions were already addressed
in the area of computer aided circuit design where
decomposition is used to find a circuit of minimal
complexity that implements a specific tabulated
Boolean function. There, the methods mostly rely
on the complexity and partition selection crite-
rion known as Decomposed Function Cardinality
(DFC, see [21]). However, a question is whether
this criterion can be used for the decomposition
of decision tables of interest to machine learning,
where attributes and classes usually take more
than two values. Moreover, the main concern of
Boolean function decomposition is the minimiza-
tion of digital circuit, leaving aside the question
of comprehensibility and interpretability of the re-
sulting hierarchy.

This article is organized as follows. The next
section reviews related work on decision table de-
composition with the emphasis on its use for ma-
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chine learning. The decomposition algorithm to
be used throughout the article is presented in sec-
tion 3. Section 4 introduces two new partition se-
lection criteria that are based on the information
content of decision tables (DTIC) and on the car-
dinality of newly discovered concepts (CM). That
section also discusses how DFC and DTIC may
be used to estimate the overall complexity of de-
rived decision tables, and shows how DTIC may
be used to assess the information content of the
discovered hierarchical structure itself. Section 5
experimentally evaluates the different criteria and
complexity measures. Section 6 summarizes the
results and concludes the article.

2 Related work

The decomposition approach to machine learning
was used early by a pioneer of artificial intelli-
gence, A. Samuel. He proposed a method based
on a signature table system [22] and successfully
used it as an evaluation mechanism for checkers
playing programs. This approach was later im-
proved by Biermann et al. [3]. Their method,
however, did not address the problem of deriving
the hierarchy of concepts, which was supposed to
be given by a domain expert.

A similar approach had been defined even ear-
lier within the area of switching circuit design. In
1956, R.L. Ashenhurst reported on a unified the-
ory of decomposition of switching functions [2].
The decomposition method proposed by Ashen-
hurst was used to decompose a completely speci-
fied truth table of a Boolean function to be then
realized with standard binary gates. Thus, the
method could construct concept hierarchies as
well as their corresponding decision tables. Most
of other related work of those times is reported
and reprinted by Curtis [8].

Recently, the Ashenhurst-Curtis approach was
substantially improved by research groups of M.
A. Perkowski, T. Luba, and T. D. Ross. In [18],
Perkowski et al. report on the decomposition ap-
proach for incompletely specified switching func-
tions. Luba [12] proposed a method for the de-
composition of multi-valued switching functions in
which each multi-valued variable is encoded by a
set of Boolean variables. A decomposition of k-
valued functions was proposed by Files et al. [10].
The authors identify the potential usefulness of

function decomposition for machine learning, and
Goldman [11] indicates that the decomposition
approach to switching function design might be
termed knowledge discovery, since a function not
previously foreseen might be discovered. From
the viewpoint of machine learning, however, the
main drawbacks of these methods are that they
are mostly limited to Boolean functions and inca-
pable of dealing with noise.

Feature discovery has been at large investigated
by constructive induction [14]. Perhaps closest
to function decomposition are the constructive
induction systems that use a set of existing at-
tributes and a set of constructive operators to
derive new attributes. Several such systems are
presented in [13, 19, 20].

Within machine learning, there are other ap-
proaches that are based on problem decomposi-
tion, but where the problem is decomposed by
the expert and not by a machine. A well-known
example is structured induction, developed by
Shapiro [23]. His approach is based on a man-
ual decomposition of the problem. For every in-
termediate concept either a special set of learn-
ing examples is used or an expert is consulted to
build a corresponding decision tree. In compar-
ison with standard decision tree induction tech-
niques, Shapiro’s approach exhibits about the
same classification accuracy with the increased
transparency and lower complexity of the devel-
oped models. Michie [15] emphasizes the impor-
tant role the structured induction will have in the
future development of machine learning and lists
several real problems that were solved in this way.

The work presented here is based on our own
decomposition algorithm [25] in which we took the
approach of Curtis [8] and Perkowski et al. [18],
and extended it to handle multi-valued categori-
cal attributes and functions. The algorithm was
demonstrated to perform well in terms of gener-
alization [26], discovery of relevant concept hier-
archies [7], and feature construction [27] in fairly
complex problem domains.

3 Decomposition algorithm

Let F be a decision table consisting of attribute-
value vectors that map the attributes X =
{x1, . . . , xn} to the class y, so that y = F (X).
A single decomposition step searches through all
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x2 lo lo med med hi hi
x1 x3 lo hi lo hi lo hi
lo lo lo lo med lo hi
med med med med med med hi
hi hi hi hi hi hi hi
c 1 1 1 2 1 3

x1 lo lo med med hi hi
x2 x3 lo hi lo hi lo hi
lo lo lo med med hi hi
med lo med med med hi hi
hi lo hi med hi hi hi
c 1 2 3 4 5 5

x1 lo lo lo med med med hi hi hi
x3 x2 lo med hi lo med hi lo med hi
lo lo lo lo med med med hi hi hi
hi lo med hi med med hi hi hi hi
c 1 2 3 4 5 5 6 6 6

Figure 2: Partition matrices for Table 1 using three different partitions of attributes x1, x2, and x3.

the partitions of attributes X into a free set A and
bound set B, such that A ∩ B = ∅, A ∪ B = X,
and A and B each contain at least one attribute.
Let us denote such a partition with A|B and as-
sume that a partition selection criterion ψ(A|B)
exists that measures the appropriateness of this
partition for decomposition (partitions with lower
ψ are more appropriate). The partition with the
lowest ψ is selected and F is decomposed to G and
H, so that y = G(A, c) and c = H(B). Provided
there exists a complexity measure θ for F , G, and
H, F is decomposed only if the complexity con-
dition θ(F ) > θ(G) + θ(H) is satisfied. Several
partition selection (ψ) and complexity (θ) mea-
sures are introduced in the next section.

The algorithm that implements the single de-
composition step and decomposes a decision table
F to G and H is described in detail in [25]. Here,
we illustrate it informally using the decision table
from Table 1. For every attribute partition, the
method constructs a partition matrix with the at-
tributes of bound set in columns and of free set
in rows. Each column in the partition matrix de-
notes the behavior of F for a specific combination
of values of bound attributes. The same columns
can be represented with the same value of c. The
number of different columns is equal to the mini-
mal number of values for c to be used for decom-
position. In this way, every column is assigned
a value of c, and G and H are straightforwardly
derived from such an annotated partition matrix.
For each of three partitions for our example de-
cision table F , the partition matrices with the
corresponding values of c are given in Figure 2.

The assignment of c’s values is trivial when
decision table instances completely cover the at-
tribute space. When this is not the case, Wan and
Perkowski [24] proposed an approach that treats
missing decision table entries as “don’t cares”.
Each partition matrix can then have several as-
signments of values for c. The problem of find-
ing the assignment that uses the fewest values is
then equivalent to optimal graph coloring. Graph
coloring is an NP-hard problem and the com-
putation time of an exhaustive search algorithm
is prohibitive even for small graphs. Instead,
Wan and Perkowski suggested a heuristic Color
Influence Method of polynomial complexity and
showed that the method performed well compared
to the optimal algorithm. Although the examples
used in this article use decision tables that com-
pletely cover the attribute space, the complexity
and partition measures introduced apply with no
difference to incompletely covered cases as well.

The decomposition algorithm examines all de-
cision tables in the evolving concept hierarchy and
then applies a single decomposition step to the de-
cision table and its partition that was evaluated
as the most appropriate by ψ and that satisfies
the complexity condition θ(F ) > θ(G) + θ(H). If
several partitions are scored equal, the algorithm
arbitrarily selects one among those with the low-
est number of elements in the bound set. The pro-
cess is repeated until no decomposition is found
that would satisfy the complexity condition.

We illustrate this stepwise decomposition using
the CAR domain that is described in section 5.
Figure 3 shows a possible evolving concept hierar-
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Figure 3: Evolving concept hierarchy discovered by decomposition of the CAR decision table. Each
consecutive hierarchy results from a single-step decomposition of its predecessor.

chy obtained by decomposition. Each consecutive
hirarchy is a result of a single decomposition step.
Only the hierarchical structure without decision
tables is shown.

The overall time complexity of decision ta-
ble decomposition algorithm is polynomial in the
number of examples, number of attributes, and
maximal number of columns in partition matri-
ces [26]. As the latter grows exponentially with
the number of bound attributes, it is advanta-
geous to limit the size of the bound set. In the
experiments presented in Section 5, however, the
problems were sufficiently small to examine all
possible bound sets.

The above decomposition algorithm was imple-
mented in the C language as a part of the sys-
tem called HINT (Hierarchy INduction Tool) [25].
HINT runs on several UNIX platforms, including
HP/UX and SGI Iris.

4 Partition selection criteria
and complexity measures

This section reviews one and introduces two new
partition selection criteria. For each, it also de-
fines the complexity measure and corresponding

complexity condition. Furthermore, two overall
complexity measures for the hierarchy of decision
tables are defined, and, finally, a measure for es-
timating the information content of the hierarchy
itself is presented.

4.1 Partition selection criteria

4.1.1 Decomposed function cardinality

Decomposed function cardinality (DFC) was orig-
inally proposed by Abu-Mostafa [1] as a general
measure of complexity and used in decomposition
of Boolean functions [21]. DFC is based on the
cardinality of the function. Given a decision ta-
ble F (X), DFC-based complexity is defined as:

θDFC(F ) = ||X|| =
∏
i

|xi|, xi ∈ X (1)

where |xi| represents the cardinality of attribute
xi, i.e., the number of values it uses.

The DFC partition selection criterion for de-
composition F (X) = G(A, c) and c = H(B) is
then:

ψDFC(A|B) = θDFC(G) + θDFC(H)
= |c| ||A||+ ||B|| (2)
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The complexity condition using the above def-
initions is θDFC(F ) > θDFC(G) + θDFC(H), or
equivalently ||X|| > |c| ||A||+ ||B||.

For our example decision table (Table 1)
and the corresponding partition matrices (Fig-
ure 2), the partition selection criteria are:
ψDFC(x1|x2x3) = 9 + 6 = 15, ψDFC(x2|x1x3) =
15 + 6 = 21, and ψDFC(x3|x1x2) = 12 + 9 = 21.
θDFC(F ) is 18. The only partition that satisfies
the DFC decomposition criterion is x1|x2x3.

DFC’s ability to guide the decomposition of
Boolean functions has been illustrated in several
references including [21, 11]. For multi-valued
logic synthesis, a DFC-guided decomposition was
proposed in [10].

4.1.2 Information content of decision
tables

Decision table information content (DTIC) is
based on the idea of Biermann et al. [3] who
counted the number of different functions that can
be represented by a given signature table schema,
i.e., a tree of concepts whose cardinality is prede-
fined.

A decision table y = F (X) can represent |y|||X||
different functions. Assuming the uniform distri-
bution of functions, the number of bits to encode
such a decision table is then

θDTIC(F ) = ||X|| log2 |y| bits (3)

Note that for binary functions where |y| = 2, this
is equal to θDFC(F ).

When decomposing y = F (X) to y = G(A, c)
and c = H(B), we assign a single value from the
set {1, 2, . . . , |c|} to each of the columns of par-
tition matrix. But, each of the values has to be
assigned to at least one instance. In other words,
from |y|||B|| different functions we have to subtract
all those that use less than |c| values. The num-
ber of different functions with exactly |c| possible
values is therefore N(|c|), where N is defined as:

N(x) = x||B|| −
x−1∑
i=1

(
x

i

)
N(i)

N(1) = 1
(4)

Furthermore, since the actual label (value of c)
of the column is not important, there are |c|! such
equivalent assignments and therefore |c|! equiv-
alent decision tables H. A specific H therefore

uniquely represents N(|c|)/|c|! functions with ex-
actly |c| values, and the corresponding informa-
tion content is:

θ′DTIC(H) = log2N(|c|)− log2(|c|!) bits (5)

The DTIC partition selection criterion prefers
the decompositions with simple decision tables G
and H and low information content, so that:

ψDTIC(A|B) = θDTIC(G) + θ′DTIC(H) (6)

The DTIC-based complexity condition is:

θDTIC(F ) > θDTIC(G) + θ′DTIC(H) (7)

For Table 1, DTIC evaluates to:
ψDTIC(x1|x2x3) = 20.76 bits, ψDTIC(x2|x1x3) =
27.68 bits, and ψDTIC(x3|x1x2) = 30.39 bits.
θDTIC(F ) is 28.53 bits, and, in contrast to DFC,
two partitions qualify for decomposition. Among
these, as with DFC, the partition x1|x2x3 is pre-
ferred.

4.1.3 Column multiplicity

Column multiplicity (CM) is the simplest com-
plexity measure introduced in this article and
equals to the cardinality of c (|c|), also referred
to by Ashenhurst and Curtis as column multiplic-
ity number of partition matrix [2, 8]. Formally,

ψCM(A|B) = |c| (8)

The idea for this measure came from practical
experience with DEX decision support system [5].
There, the hierarchical system of decision tables
is constructed manually and it has been found
that decision tables with small number of output
values are easier to construct and interpret.

For our example and similarly to DFC and
DTIC, CM also selects the partition x1|x2x3 with
ψCM = 3. The remaining two partitions have
ψCM(x2|x1x3) = 5 and ψCM(x3|x1x2) = 6.

Unlike DTIC and DFC, CM can not be simply
summed up to determine the joint complexity of
a set of decision tables, which is needed to de-
termine the complexity condition. Consequently,
when we employ CM to guide the partition selec-
tion, we use DTIC to determine the decompos-
ability.
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4.2 Complexity estimation for
decision table hierarchy

Using DFC, the overall complexity of decision ta-
bles in the concept hierarchy is the sum of θDFC
for each decision table. Similarly, for DTIC, the
complexity estimation is again the sum of DTIC
complexities of each of the decision tables, with
the distinction that θDTIC is used for the decision
table at the root of the hierarchy and θ′DTIC for
all other decision tables.

For example, consider the two concept hierar-
chies from Figure 1. Their overall complexities as
measured by DFC are 15 and 21, respectively, and
20.76 bits and 27.68 bits as measured by DTIC.
These measures confirm that the first decompo-
sition is less complex and thus preferred to the
second one. The original undecomposed decision
table had DFC equal to 18 and DTIC equal to
28.53 bits. Therefore, in terms of DTIC both de-
compositions reduced the complexity, while using
DFC this happened only with the first one.

Note that the so-obtained DTIC complexity es-
timation is just an approximation of the exact
complexity that would take into account the ac-
tual number of functions representable by a multi-
level hierarchy. This is because DTIC is designed
for a single table only and does not consider the
reducibility [3] that occurs in multi-level hierar-
chies and effectively decreases the number of rep-
resentable functions. Therefore, the estimated
overall DTIC is the upper bound of the actual
complexity.

4.3 Structure information content

Using DTIC we can assess both the amount of in-
formation contained in the original decision table
and contained in the resulting decision tables that
were constructed by decomposition. The differ-
ence of the two is the information contained in the
hierarchical structure itself. We call this measure
structure information content (SIC). The more in-
formative the hierarchy, the overall less complex
the resulting decision tables.

For the two decompositions in Figure 1, the
corresponding structure information contents are
7.77 bits and 0.85 bits, respectively. Since the
first SIC is considerably greater than the second
one, the first structure is more informative and its
decision tables more compact.

5 Experimental evaluation

To evaluate the proposed partition selection cri-
teria and complexity measures, we used three ar-
tificial and three real-world domains that were se-
lected so that their concept hierarchies were either
known in advance or could have been easily an-
ticipated. For each domain, the decomposition
aimed to discover this hierarchy. For evaluation,
we qualitatively assess the similarity of the two
hierarchies and quantitatively compare them by
using the proposed complexity measures.

Each of six domains is represented with the ini-
tial decision table containing instances that com-
pletely cover the attribute space. Although the
experiments could as well be done with sparser
decision tables (see [25]), we wanted to focus in
this article only on the discovery of concept hi-
erarchies. Note that the proposed partition se-
lection measures depend only on cardinalities of
attributes and concepts, and not on the actual
number of instances in decision tables. Further-
more, we have shown in [26] that by increasing
the problem space coverage by training instances,
the discovered concepts converge to those from
complete training sets.

The results of decompositions are shown as con-
cept hierarchy structures, where, unless otherwise
noted, the labels of intermediate concepts indicate
the order in which they were discovered.

5.1 Artificial domains

Three artificial domains were investigated:

1. a Boolean function
y = (x1 OR x2) AND x3 AND (x4 XOR x5),

2. a six-attribute palindrome function,

3. a three-valued function
y = MIN(x1,AVG(x2,MAX(x3, x4), x5)).

For the first function, the initial decision table
has 25 = 32 instances, θDFC = 32 and θDTIC = 32
bits. While decomposition with DTIC and CM
discovered the anticipated hierarchy, the DFC-
guided decomposition terminated too soon be-
cause the complexity condition did not allow to
decompose the decision tables any further (see
Figure 4). Note that the overall DFC is the same
for all discovered hierarchies, while the structure
information content is higher for those discovered
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by DTIC and CM. The decision tables (not shown
in the figure) were checked for interpretability and
were found to represent the expected functions.

The second function y = PAL(x1, x2, . . . , x6)
returns 1 if the string x1 . . . x6 is a palindrome
and returns 0 otherwise, i.e., y = (x1 =
x6) AND (x2 = x5) AND (x3 = x4). In the first
experiment, six Boolean attributes x1 . . . x6 were
used. The initial decision table has θDFC = 64
and θDTIC = 64 bits. Again, the decomposition
with DFC stops sooner and the domain favors the
decomposition using CM and DTIC. However, for
both this and previous case a DFC-guided decom-
position could discover the expected hierarchy if
the corresponding complexity condition would be
changed to θDFC(F ) ≥ θDFC(G) + θDFC(H). The
same experiment was repeated with three-valued
attributes x1 . . . x6. This time, however, all three
criteria lead to the same and anticipated concept
hierarchy.

The third function y = MIN(x1,AVG(x2,
MAX(x3, x4), x5)) uses ordinal attributes x1 . . . x5
that can take the values 1, 2, and 3. While MIN
and MAX have the standard interpretation, AVG
computes the average of its arguments and rounds
it to the closest integer. The initial decision table
has θDFC = 243 and θDTIC = 385.15 bits. The
anticipated and discovered hierarchies are shown
in Figure 6. Quite surprisingly, in all three cases
the decomposition yields a hierarchy with a higher
structure information content than expected by
introducing an additional five-valued intermedi-
ate concept. If this were removed, the discovered
hirarchy and decision tables would have been the
same as anticipated. It is also interesting to note
that the hierarchy discovered using CM on one
side and DFC or DTIC on the other are different
but of the same complexity. This example illus-
trates that for a specific domain there may exist
several optimal concept hierarchies with regard to
complexity.

5.2 DEX models

An area where concept hierarchies have been used
extensively is decision support. There, the prob-
lem is to select an option from a set of given op-
tions so that it best satisfies the aims or goals of
the decision maker. DEX [5] is a multi-attribute
decision support system that has been extensively
used to solve real-world decision making prob-

lems. DEX uses categorical attributes and ex-
pects the concept structure and corresponding de-
cision tables to be defined by the expert. The
formalism used to describe the DEX model and
its interpretation are essentially the same as with
concept hierarchies studied in this article. This
makes decision models developed by DEX ideal
benchmarks for the evaluation of decision table
decomposition. In this article, we use the follow-
ing three DEX models:

CAR: A model for evaluating cars based on their
price and technical characteristics. This sim-
ple model was developed for educational pur-
poses and is described in [4].

EMPLOY: This is a simplified version of the
models that were developed with DEX for a
common problem of personnel management:
selecting the best candidate for a particular
job. While the realistic models that were
practically used in several mid- to large-size
companies in Ljubljana and Sarajevo con-
sisted of more than 40 attributes, the simpli-
fied version uses only 7 attributes and 3 in-
termediate concepts and was presented in [6].

NURSERY: This model was developed in 1985
to rank applications for nursery schools [17].
It was used during several years when there
was excessive enrollment to these schools
in Ljubljana, and the rejected applications
frequently needed an objective explanation.
The final decision depended on three sub-
problems: (1) occupation of parents and
child’s nursery, (2) family structure and fi-
nancial standing, and (3) social and health
picture of the family.

The CAR and NURSERY datasets are available
from the UCI Machine Learning Repository [16].

The goal of this experiment was to reconstruct
these DEX models from examples. The learning
instances were derived from the original models,
where for all combinations of input attributes the
class was determined by the corresponding model.
The examples were stated as attribute-value vec-
tors, hiding from the decomposition method any
underlying conceptual structure of the domain.

The discovered hierarchies are given in Fig-
ures 7, 8, and 9. In all cases, the decomposition
guided by DFC, DTIC, and CM found the same
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Figure 9: The original (left) and discovered concept hierarchy using CM, DFC and DTIC criteria
(right) for NURSERY.
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hierarchical structures and corresponding decision
tables. Using DFC and DTIC, the order in which
new intermediate concepts were found was the
same but different to the one using CM. For ex-
ample, in EMPLOY, DFC and DTIC-guided de-
composition discovered c1 first, while, using CM,
this concept was discovered as the last one.

All the discovered hierarchies have higher in-
formation content than the original ones. Also,
the overall complexity of decision tables is lower
according to both DFC and DTIC. Most impor-
tantly, the discovered concept hierarchies are very
similar to the original ones. In fact, if c3 would
be removed from CAR (making c4 directly de-
pendent on lugboot, doors, and persons), the two
hierarchies would be the same. The same applies
to EMPLOY and NURSERY if c1 and c2 are re-
moved, respectively. In other words, the decom-
position found the same concept hierarchies as
the original ones but additionally decomposed the
decision tables for comfort (CAR), employ (EM-
PLOY), and struct+finan (NURSERY). In this
way it obtained less complex decision tables.

The derived decision tables were compared to
the original ones and found to be the same but in
the names used for instance labels (the decompo-
sition uses abstract labels while the original deci-
sion tables use meaningful names). The only ex-
ception are decision tables for tech and comfort in
the CAR domain, where the decomposition suc-
ceeded to find a more compact representation.

6 Conclusion

We investigated the appropriateness of three par-
tition selection measures for decision table de-
composition: decision table information content
(DTIC) and column multiplicity (CM) introduced
in this article, and decomposed function cardinal-
ity (DFC) that has already been used primarily
for the decomposition of Boolean functions.

The experimental evaluation exposed the defi-
ciency of DFC when decomposing a decision table
that expresses a Boolean function. This may be
alleviated by relaxing the DFC complexity con-
dition. In more complex domains with multi-
valued attributes, the decomposition guided by
any of the proposed criteria discovered concept
hierarchies that were very similar to those ex-
pected. Furthermore, the discovered hierarchies

were equal to or even better than the anticipated
ones in terms of the complexity of decision ta-
bles and structure information content. The or-
der under which the intermediate concepts were
discovered was the same for DFC and DTIC, but
different for CM. A qualitative evaluation of de-
rived hierarchies reveals that, in general, the dis-
covered decision tables represent meaningful and
interpretable concepts.

Although less complex in definition and easier
to compute, DFC and CM both stand well in com-
parison with a more complex partition selection
measure DTIC. Also comparable is the utility of
DFC and DTIC to assess the complexity of the
original and derived decision tables, although we
have shown that DFC-based measure performed
worse on two Boolean functions. Overall, while
DFC and DTIC have better theoretical founda-
tions than an intuitive partition selection measure
CM, the experimental evaluation does not indi-
cate that any of these is to be strictly preferred
over the other.

The decision table decomposition was primarily
developed for switching circuit design. However,
experiments in non-trivial domains like DEX’s
strongly encourage further research and develop-
ment of this method for machine learning and
knowledge discovery. As the method has re-
cently been extended to deal with continuous at-
tributes [9] and noise [25], further research is
needed to assess the quality of corresponding par-
tition selection criteria under these extensions.
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