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Abstract

This paper introduces a schema with naive-Bayesian classi�er and patient weighting technique to

develop a prostate cancer recurrence prediction model from patient data. We propose the graphical

presentation of naive-Bayesian classi�er with a nomogram, which can be used both for prediction

or can provide means to data analysis. The method was used to construct a predictive model for

prostate cancer recurrence; the results were favorable both in terms of interpretability and predictive

accuracy.

1 Introduction

In medicine, it is often required to use purposely collected data in order to construct models that either
serve for prediction and support in medical decision making, or are used solely for data analysis. Machine
learning o�ers various methods for e�cient construction of descriptive models from data. At its best, the
modern modeling technique should o�er both: accuracy of the developed model and transparency so that
the decision maker knows why and how the model derives the decision. Machine learning methods may
support both perspectives, and are as such increasingly used in developing �elds of Intelligent Medical
Data Analysis [4] and Medical Data Mining [9].

When modeling is used for the survival analysis, speci�c mechanisms for proper treatment and model-
ing of the data are required. Namely, the survival data normally include the censor variable that indicates
whether some outcome under observation (like death or recurrence of a disease) has occurred within some
patient speci�c follow-up time. Therefore, the modeling technique has to consider that for some patients
the follow-up may end before the event occurs. This paper o�ers a solution to this problem by introducing
a weighting technique that lowers the importance of patients with short follow-up time and for whom the
event does not occur, i.e., the patients for which one knows the event did not (yet) occur but does not
know whether it will occur in the future.

The paper considers the survival analysis problem for prostate cancer recurrence after prostatectomy.
For this problem, the physicians are mainly interested if after the operation the cancer will recur, so that
the survival analysis problem actually translates to the pure classi�cation problem. This is in a sense
di�erent from classical survival analysis, which essentially estimates the probability of recurrence given the
follow-up time, but as a consequence, this approach allows the use of broader range of classi�cation-based
machine learning techniques.

We propose the schema that uses naive Bayesian classi�er to construct the model for prostate cancer
recurrence prediction. Naive Bayes is one of the simplest but, surprisingly, one of the often most accurate
machine learning predictors, especially for the medical domains [3]. In order to appropriately use it for
derivation of prognostic models for prostate cancer recurrence, we couple it with the above mentioned
patient data weighting technique. We present the naive Bayesian predictor as a nomogram, and show
how this can be used for prediction as well as for data analysis. To evaluate the quality of naive Bayes, we
compare its performance with Cox proportional hazards model, a standard statistical method for survival
analysis.
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2 Methods

The approach presented in this paper incorporates three techniques. Example weighting is used to
appropriately consider survival data when building classi�cation models. We use naive Bayesian technique
to induce the model from data, and represent the derived model graphically using the nomogram. Besides
the physician's interpretation and validation of the model, three di�erent statistics are used to assess the
model's performance.

2.1 Example weighting

Survival analysis normally estimates the hazard for an event to occur or the expected time before the
event occurs (\survival time" of an individual). From machine learning point of view, this is more a kind
of regression problem, which we can turn into a classi�cation problem by discretizing the class value:
setting a limit Tf divides the examples into two classes { to those surviving the period Tf and those
failing before that time.

The main di�culty with this approach is handling the censoring which is speci�c for survival data.
There can be examples which are known to be \alive" at time T0 < Tf , after which the trace of them
was lost or they have failed for an unrelated reason. Statistical methods for survival analysis are time-
aware and can take such examples into account until T0 and ignore them afterwards. Machine learning
methods cannot handle \disappearing examples". Skipping them completely could, on the other hand,
signi�cantly change the statistical properties of example set and inuence the results [2, 7].

To cope with this, we weight the examples with the weights depending on the follow-up time and
the class of the example. Failing examples and examples which are not censored before the time Tf
are con�dent and have a weight of 1. Examples with follow-up times shorter that Tf (\disappearing
examples") are assigned a follow-up time dependent weight W (T ), which monotonically increases from
W (0) = 0 to W (Tf ) = 1. We use the null Martingale residual (NMR) [8, 2], which is computed from
the example set itself and is, in terms of domain of prostate cancer prediction, proportional to the risk
of deceasing given only the follow-up time (and not the values of attributes). Intuitively, the lower the
risk of recurrence, the more likely it is that the patient that is non-recurrent is also a good example
for the patients that never recur. Thus, we weighted the non-recurrent patients with weights that were
proportional to 1�NMR. We also assumed that the non-recurrent patients with follow-up time of more
than 5 years never recur. The weights were linearly scaled so that a patient with hypothetical follow-up
time of 0 would have a weight equal to 0, and a patient with a follow-up time of 5 years or more would
have a weight equal to 1.

2.2 Naive Bayesian nomograms

The naive Bayesian classi�er estimates the probabilities of classes for the given example by using the
formula

P (rkjV ) = P (rk)

nY

i=1

P (rkjvi)

P (rk)

where P (rk) is the priori probability of class rk and P (rkjvi) is the conditional probability of class rk if
i-th attribute has the value vi; both are estimated from the training set of examples. Since the formula
(naively) assumes the independence of attributes, the computed probabilities can be larger than 1 and
do not necessarily sum to 1. If the naive Bayesian classi�er is to be used as a class probability predictor,
the probabilities must be normalized.

To get an explainable form of the classi�er, we turn the product into a sum, by computing lnP (rkjV )
instead of P (rkjV ):

lnP (rkjV ) = lnP (rk) +
Pn

i=1 ln
P (rkjvi)

P (rk)

= B(rk) +
Pn

i=1 wk;i;vi

In this form, each class rk has its base probability, abbreviated by B(rk), which can be increased or
decreased by di�erent attributes, abbreviated by wk;i;vi . The value of wk;i;vi is positive if the probability
of rk after knowing that i-th attribute's values is vi is greater than priori probability of rk, and negative if
it is smaller. Therefore each term of the sum can be interpreted as the weighted vote of the i-th predictor
for or against the class rk.
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Values of wk;i;vi can be plotted in a nomogram [5]. Nomogram consists of vertical bars, one bar for
each attribute-class combination. Values wk;i;vi for all possible triples (k; i; vi) are computed and plotted,
with class k and attribute i selecting the bar, wk;i;vi is used as coordinate and vi is printed as a label. If
there are only two possible classes, the nomogram can be further simpli�ed by using the two sides of the
same bar for both classes, therefore having only one bar for each attribute.

Nomograms can also be used for predicting class or the probabilities of classes for a given example.
The values of wk;i;vi for the chosen class and example's values of attributes must be summed, added to
the base probability and, if probabilities and not just the most probable class are needed, exponentialized
and normalized. Except for the summing and normalizing, the calculation can be done graphically, using
a lookup graph tabulating the function frk(x) = eB(rk)+x for each rk. An example of a nomogram is
shown in Figure 1. Note that nomograms can be used to present the naive Bayesian classi�er in general
and not only when used in survival analysis.

2.3 Measuring the quality of models

To compare predictive accuracy of Cox proportional hazards model and naive Bayes, we used a standard
technique of strati�ed 10-fold cross validation [6], which averages over 10 experiments, each time deriving
and testing the model on di�erent datasets. Given the patient's data, both models derived the probability
of recurrence, where for Cox model the probability was estimated for the patients to recur within 5 years
after the prostatectomy.

Three di�erent quality measures are used. Classi�cation accuracy (CA) is expressed in percent of
patients in the test set that were classi�ed correctly. A probability higher than 0.5 was considered as a
prediction for a patient to recur. The examples are weighted, so that, if a surviving example with a short
follow-up time is misclassi�ed the error is smaller than in the case of misclassifying a surviving example
with a long follow time.

Average probability assigned to the correct class (AP) averages the probability of recurrence assigned
to the recurrent patients and probability of non-recurrence for non-recurrent patients in the test dataset.
As for CA, the probabilities are weighted.

Another measure, concordance index (CI) [1], estimates the probability that, given two randomly
drawn examples, the example which fails �rst is predicted a higher probability of failing. CI is computed
from the testing data as the proportion of consistent example pairs over the set of usable example pairs.
A pair is usable if the example with a shorter follow-up time fails (while the other example may fail
later or not at all), and consistent if the example with a shorter follow-up time is assigned the higher
probability of failing.

3 Experiments on prostate cancer recurrence data

The above methods were used to construct a predictive model from the prostate cancer recurrence data.
We employed the naive Bayes algorithm from the ML� package, which can handle weighted examples and
supports adding new statistics, such as concordance index which has not been included in ML� before.

3.1 Patients data

We have used the data from 967 patients admitted to The Methodist Hospital (Houston, TX) with the
intent to operate on their clinically localized prostate cancer between June 1983 and December 1996. The
dataset used consists of the following routinely measured clinical variables as predictors of recurrence:
pretreatment serum PSA levels (prepsa), primary (bxgg1) and secondary Gleason grade (bxgg2) in the
biopsy specimen, and clinical stage assigned using the TNM system (uicc). Treatment failure was de�ned
as either clinical evidence of cancer recurrence or an abnormal postoperative PSA (0.4 ng/ml and rising)
on at least one additional evaluation. Of 967 patients, 189 (19.5%) recurred.

3.2 Nomogram

The nomogram in Figure 1, derived from naive Bayesian classi�er, shows the impact of individual at-
tributes on probability of recurrence (upper labels) and non-recurrence (lower labels). The values right
of zero favor (non)recurrence and the values on the left speak against it. For example observe bxgg2 and
non-recurrence: values of 5 and 4 vote against, and values 3, 2, 1 vote for non-recurrence. The lookup
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graph below helps converting the sums of impacts of attributes to probabilities, again using the upper
values for computing the recurrence and lower for non-recurrence.

Figure 1: Nomogram showing the impacts of di�erent values of attributes, derived from the probability
estimates by naive Bayes

Figure 2 shows the use of the nomogram on a patient (bxgg1=1, bxgg2=3, prepsa=11, uicc=T2a).
The solid lines show the calculation for recurrence and the dotted for non-recurrence. Summing the
values of impacts gives -0.54-0.09+0.11-0.21=-0.71 for recurrence and 0.1+0.03-0.05+0.05=0.13 against,
from which we can already predict that the patient will not recur. Approximation by the lookup table
gives \probabilities" of 0.06 for recurrence and 1 against, predicting the patient will not recur. Obtained
probabilities should be normalized by multiplying by (0:06+1)�1, which gives probabilities 0.057 for and
0.943 against recurrence.

3.3 Evaluation of the model

The performance of naive Bayesian classi�er was compared with performance of the standard Cox model
of proportional hazards. Results for di�erent evaluation statistics are shown in Table 1. Overall, the per-
formance of both modeling techniques is similar, with exception of weighted average probability assigned
to the correct class, where Cox performance is signi�cantly lower.

modeling
technique

weighted
classi�cation
accuracy

weighted avg.
prob. assigned
to correct class

concordance
index

naive Bayes 75.5 0.706 0.759
Cox 75.8 0.625 0.756

default 73.1 0.606 0.5

Table 1: Results of performance evaluation

The \default" line shows the performance of a classi�er which always predicts the majority class with
its priori probability (in our case, it predicts non-recurrence with probability 0.731). An interesting point
to be mentioned here is the fact that, judging only by classi�cation accuracy, both methods seem to be
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Figure 2: An example of computing probabilities of recurrence and non-recurrence from the nomogram.
(Certain labels have been erased to increase the clarity of the �gure.)

useless since they do not predict much better than the default classi�er. The other two criteria, especially
the concordance index, reveal a much better picture: although most of the patients are still classi�ed as
non-recurrent, both methods can successfully identify the patients with higher possibility of recurrence.

Another criteria for evaluation of a modeling technique is interpretability of the derived models and
their concordance to the general knowledge. In case of naive Bayesian classi�er nomogram reveals that
the two Gleason scores are the most important factors for the decision as their values are most dispersed
through the score line. In general, the impacts of attributes are as expected. The only anomaly occurs
in uicc: T1ab would be expected to appear before T1c for recurrence and after T1c for non-recurrence.
We believe that, while this anomaly is due to speci�c set of patients that were considered (sampling
problem), it requires additional investigation on (preferably) di�erent data set.

4 Conclusion

We have proposed the method to construct naive Bayesian-based nomogram from preoperative patient
data for predicting the prostate cancer recurrence after prostatectomy. The experimental evaluation
which used a patient data from The Methodist Hospital (Houston, TX) showed that the nomogram
can be used both for data analysis and recurrence prediction. For the later, naive Bayes was favorably
compared to Cox proportional hazards model.

The implications of this work may be two two-fold. First, the proposed schema can be used for general
survival analysis problems when only the prediction of event, and not its time-dependent probability, is
in question. Note that, besides naive Bayes, any classi�er induction tool may be used that supports the
inclusion of example weights. Second, the nomogram as a graphical device for presentation and utility
can be used beyond survival analysis for any classi�cation setup where naive Bayes is applicable.
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