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Abstract

Function decomposition is a recent machine learning method that develops a hierarchical structure from class-labeled data

by discovering new aggregate attributes and their descriptions. Each new aggregate attribute is described by an example set

whose complexity is lower than the complexity of the initial set. We show that function decomposition can be used to develop a

hierarchical multi-attribute decision model from a given unstructured set of decision examples. The method implemented in a

system called HINT is experimentally evaluated on a real-world housing loans allocation problem and on the rediscovery of

three hierarchical decision models. The experimentation demonstrates that the decomposition can discover meaningful and

transparent decision models of high classification accuracy. We specifically study the effects of human interaction through either

assistance or provision of background knowledge for function decomposition, and show that this has a positive effect on both

the comprehensibility and classification accuracy.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In decision support systems, we use models to

predict the outcome of decision choices we might

make [13]. For multi-attribute decision problems, that

is, decision-making situations in which the alterna-

tives are described by several conflicting attributes,

we develop multi-attribute decision models. Most

commonly, such models are developed in a hierarch-

ical fashion, starting from some general but imprecise

goal statement, which is gradually refined into more

precise sub and sub-sub goals [28]. A typical example

of this approach is Saaty’s [22] analytic hierarchy

process, but there are also many others [5,8,30].

The development of hierarchical multi-attribute

decision models is difficult, especially when the

decision problem itself is complex and involves

several tens of attributes. In most cases, the models

are developed manually in a tiresome and lengthy

process in which the designers (decision analysts,

decision makers, experts, knowledge engineers) use

their knowledge about the problem and employ

their skill and experience. Computers provide rela-

tively inexpensive and available means to collect

data, and there is a growing volume of data about
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decisions already made. This data may contain

useful information for decision support and discov-

ery of underlying decision models through data mining

[10,27].

In this paper, we show that function decomposi-

tion, an approach originally developed to assist in the

design of digital circuits [1,7], and recently extended

for its use in machine learning and data mining [32],

can be used to develop hierarchical multi-attribute

decision models from the set of labeled (evaluated)

examples. Decision examples may be taken either

from an existing database of past decisions, or may

be provided explicitly by the decision maker. Each

example is described by a set of attributes and its

utility. The method is restricted to decision problems

with nominal attributes and utility. Given an initial set

of examples, the method develops a corresponding

model in terms of a hierarchy of attributes and their

definitions. The development proceeds either with or

without human interaction.

The method we use, function decomposition, is

based on recursive decomposition of initial set of

decision examples, thus deriving smaller sets of

examples with less attributes, and placing them into

a decision model hierarchy. Let a set of decision

examples EF with attributes X = hx1,. . .,xni and utility

variable y partially represent a utility function

y =F(X). The goal is to decompose this function into

y =G(A,H(B)), where A and B are subsets of attributes

such that AvB = X, and functions G and H are

partially represented by sets of examples EG and EH,

respectively. The task of decomposition is to deter-

mine EG and EH so that their complexity (determined

by some complexity measure) is, if possible, lower

than that of EF, and so that EG and EH are consistent

with EF. Such a decomposition also discovers a new

aggregate attribute (hereafter referred to as concept)

c =H(B). Since the decomposition can be applied

recursively on EG and EH, the result in general is a

hierarchy consisting of attributes (terminal nodes) and

concepts (internal nodes). For each concept in the

hierarchy, there is a corresponding set of examples

(such as EH) that describes the dependency of that

concept on its immediate descendants in the hierarchy.

Hence, the concept can be interpreted as a sub-goal

within the goal hierarchy.

Central to each decomposition step is the selection

of a partition of attributes X to sets A and B. This is

guided by a partition selection measure that assesses

the joint complexity of the resulting EG and EH. The

decomposition selects the partition that minimizes this

complexity measure. Although such decomposition

can be completely autonomous, the comprehensibility

of the discovered structure may be improved if the

user is involved in the partition selection process: for

instance, a few of the better, or less complex, parti-

tions may be presented to the user, who selects the

best candidate and assigns a label to the new concept.

Function decomposition was first introduced as a

method for the development of digital circuits [1,7].

There, the decision examples were represented as a

truth table with binary input variables for attributes

and binary outcome variables for utility. Using several

additional approaches, the method was recently

extended to handle multi-valued attributes [32] and

work over a set of decision examples that does not

necessary cover the whole attribute space [29]. It was

shown [32] that as such, function decomposition can

be used as machine learning method that can discover

meaningful concepts that generalize well.

In this paper, we position function decomposition

within decision support framework, showing that the

discovered models are essentially a hierarchical multi-

attribute decision support models. These are, further-

more, in terms of their formal representation identical

to those used by a decision support system called

DEX [2]. We particularly study the effects of human

assistance, and show that various types of human

intervention in the process of function decomposition

may have positive effects both on the quality of

resulting hierarchy and accuracy of the model. Over-

all, the experimental assessment in the paper shows

that function decomposition (1) may discover mean-

ingful concepts that are described through (2) small

and manageable sets of examples and that are placed

in a (3) meaningful hierarchy that (4) generalizes well

to the alternatives not considered in the original set of

decision examples.

The paper is organized as follows. Section 2

introduces basic concepts of the decomposition

method. In Section 3, the method is experimentally

evaluated on a real-world problem of housing loans

allocation. The issues specifically addressed are:

comprehensibility, the benefit of user’s interaction in

the decomposition process, classification accuracy of

the developed model, and its relation to common
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multi-criteria models. These issues are further studied

in Section 4, where function decomposition is tested

on the rediscovery of three hierarchical decision

models of moderate complexity. Section 5 overviews

the related work. The paper concludes with a discus-

sion and summary.

2. Decomposition method

This section briefly introduces the decomposition

method. For a more elaborate and formal description

of the method, the reader is referred to Ref. [32]. First,

we introduce a single-step decomposition, which,

given a set of decision examples EF, decomposes it

to consistent sets EG and EH. This is followed by the

description of overall decomposition algorithm that,

given an initial set of examples, iteratively applies the

single-step decomposition to derive a hierarchy of

concepts. Each concept in the hierarchy is described

by its own set of examples. In each iteration, the

decomposition algorithm also deals with the problem

of attribute selection.

2.1. Single-step decomposition

The core of the decomposition algorithm is a

single-step decomposition which, given a set of exam-

ples EF that partially specifies a function y =F(X), and

a partition of attributes X to sets A and B (denoted

AjB), decomposes F into y =G(A,c) and c =H(B). This

is done by constructing sets of examples EG and EH

that partially specify G and H, respectively. X is a set

of attributes x1,. . .,xm, and c is a new concept. The

partition AjB is composed of a free set A and bound

set B such that AvB =X and A\B =F. EG and EH are

developed in the decomposition process and are not

predefined in any way.

Let us describe the single-step decomposition

through an example. Suppose there is a set EF (Table

1) that partially describes a function y =F(x1,x2,x3),

where x1, x2, and x3 are attributes and y is the target

concept. The variables y, x1, and x2 can take the values

lo, med, hi, and x3 can take the values lo, hi.

Suppose that we want to derive the example sets

EG and EH for the attribute partition AjB = hx1ijhx2,x3i.
For this purpose, the initial set of examples is first

represented by a partition matrix, which is a tabular

representation of EF with all combinations of values

of attributes in A as row labels and of B as column

labels. Each example from EF has its corresponding

entry in the matrix. Partition matrix entries with no

corresponding example in EF are denoted by ‘–’ and

treated as don’t-cares: unobserved entries that can, in

principle, be assigned any value during the decom-

position process. For our example set (Table 1) and

the above attribute partition, the partition matrix is

given in Table 2.

Each column in the partition matrix denotes the

behavior of F when the attributes in the bound set are

constant. Columns that exhibit the same behavior,

that is, have pairwise equal row entries, or at least

one row entry is a don’t-care, are called compatible.

Compatible columns can be labeled with the same

value of c, a concept which will have some value to

the decision maker independent of the attributes in

the free set (x1 in our case). For instance, the first two

columns in Table 2 are compatible: their entries in the

Table 1

Set of examples EF that partially describes the function

y=F(x1,x2,x3)

x1 x2 x3 y

lo lo lo lo
lo lo hi lo
lo med lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med med lo med
med hi lo med
med hi hi hi
hi lo lo hi
hi hi lo hi

Table 2

Partition matrix with column labels (c) for examples from Table 1

using the attribute partition hx1ijhx2,x3i
x2 lo lo med med hi hi

x1 x3 lo hi lo hi lo hi

lo lo lo lo med lo hi
med – – med – med hi
hi hi – – – hi –

c 1 1 1 2 1 3
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first row are equal, and at least one entry in the

remaining rows is a don’t-care.

Single-step decomposition aims at deriving the

new concept variable c having the smallest set of

possible values. For that purpose, we construct an

incompatibility graph whose vertices correspond to

partition matrix columns. Two vertices are connected

if the corresponding columns are not compatible. To

find the labels of c, the incompatibility graph is

colored: the coloring will assign different labels to

the vertices that represent mutually incompatible col-

umns, while the compatible columns may share the

same color.

An optimal coloring identifies the minimal number

of groups of mutually compatible columns. This

number is called column multiplicity and denoted by

m(AjB). Column multiplicity equals to the lowest

number of possible values to be used for the new

concept variable c. Since optimal graph coloring is an

NP-hard problem, we use a heuristic method of

polynomial complexity [16]. For our example parti-

tion matrix, the incompatibility graph is given in Fig.

1. Notice that three colors are required to color this

graph.

After the coloring of the incompatibility graph,

each column of the partition matrix is assigned a

label, which corresponds to an abstract value of the

new concept variable c. From such an annotated

partition matrix, the new sets EG and EH can be

derived. For EH, the attribute set is B. Each column

in partition matrix is an example in EH. The label

(color) of the column becomes the class value of that

example.

EG is derived as follows. For each value of c and

combination of values of attributes in A, y =G(A,c) is

determined by looking for an example eiaEF in the

corresponding row and in any column labeled with the

value of c. If such an example exists, it is included in

EG using the attributes Av{c} and class y =F(ei).

Fig. 2a shows EG and EH for the decomposition of

Table 2. Notice that the new sets are less complex than

the initial set EF, and are thus much easier to interpret:

it is easy to see that c corresponds to min(x2,x3) and y

to max(x1,c). The corresponding interpretation of the

three possible values of c is: 1 = lo, 2 =med, 3 =hi.

There exist two other non-trivial partitions of the

same attribute set: hx2ijhx1,x3i and hx3ijhx1,x2i. The
corresponding decompositions are shown in Fig. 2b

and c, respectively. Compared to the decomposition

using the partition hx1ijhx2,x3i, they result in overall

larger sets EG and EH and introduce intermediate

concepts with more values (4 and 5, respectively,

instead of 3). Moreover, the resulting sets are harder

to interpret. Among the three attribute partitions, it is

therefore preferable to choose the first one.

The decomposition algorithm can generalize. This

means that it can define an unobserved entry (‘–’) in

row a and column b if there exists a corresponding

example ei that belongs to row a and shares the same

column label as b. For example, the entry in row hi
and column hlo,hii in Table 2 can be represented as hi
because the column hlo,hii has the same column label

as columns hlo,loi and hhi,loi. Note that the same

logic implies that the ‘–’ in column hmed,loi has a

value of hi as well.

The single-step decomposition can also be used to

detect redundant attributes. Let an initial set of attrib-

utes X be partitioned to B = hxji and A=X \hxji. If

m(AjB) = 1, then the corresponding function c =H(xj) is
constant, and the attribute xj can be removed from the

set of examples.

2.2. Overall decomposition method

Given a set of examples EF that partially defines a

utility function y =F(X), where X = hx1,. . .,xni, it is

particularly important to find an appropriate attribute

partition AjB of the set X for the single-step decom-

position. As illustrated in the previous section, the
Fig. 1. Incompatibility graph with assigned colors (labels) for the

partition matrix from Table 2.
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partition selection can affect both the complexity and

comprehensibility of the resulting example sets.

Zupan [31] proposed several partition selection meas-

ures of which in this paper we mention and use only

the simplest one: column multiplicity m(AjB). In this

case, the decomposition method favors the attribute

partitions that yield the intermediate concepts with the

smallest sets of possible values. For our example, this

criterion prefers the decomposition from Fig. 2a,

which indeed results in the simplest and most com-

prehensible description of the target concept.

To increase the tractability of the analysis, we

propose to consider only partitions that feature can-

didate concepts with a limited number of attributes. In

the experiments presented in Sections 3 and 4, parti-

tions with only two or three attributes in the bound

sets were investigated. Such a constraint results in

intermediate concepts with only a few attributes,

which may have a positive effect on comprehensibil-

ity and the size of generated sets of examples.

A single-step decomposition takes a set of exam-

ples and decomposes it to a system of two less

complex but equivalent data sets. These two sets are

then further investigated for decomposition. The over-

all decomposition is then a recursive process that

results in a hierarchy of data sets.

The process of the decomposition may be moder-

ated. The user may be involved in the selection of

partitions and selection of the sets to decompose, or

may impose some other constraints on the hierarchy to

be developed. We refer to such a process to as

supervised decomposition. Compared to unsupervised

decomposition [31], where in the absence of user’s

involvement, the algorithm is responsible for choos-

ing the best attribute partition, we expect the super-

vised decomposition to perform better in terms of

comprehensibility, particularly in the cases where the

initial examples sparsely cover the attribute space.

2.3. Implementation

The decomposition method was first imple-

mented in the C language as a system called Hi-

erarchy INduction Tool (HINT). The system runs on

several UNIX platforms, including HP-UX, SGI

Iris, and SunOS. Recently, HINT became a compo-

nent of the data mining framework Orange (http://

www.magix.fri.uni-lj.si/orange), which incorporates

the scripting language Python to allow extensive

experimentation and studies of different function

decomposition scenarios. The definition of domain

names and examples, and the guidance of the

Fig. 2. Three different decompositions of data from Table 1.
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decomposition as presented in this paper is therefore

managed by Python scripts.

3. Case study: model discovery for housing loan

allocation

The experimental evaluation of the method was

carried out using a real-world database used in a

management decision support system for allocating

housing loans [3]. This system was developed for the

Housing Fund of the Republic of Slovenia and has

been used in 21 loan programs since 1991. The total

loan amount allocated so far with the aid of this

system corresponds to o 254 million, which is about

two thirds of all housing loans approved in Slovenia

in that period.

In each float, the principal problem is to allocate the

available funds to applicants. Typically, there are

several thousand applicants and the total requested

amount exceeds the available financial resources.

Therefore, the applicants must be ranked in a priority

order for the distribution of resources in accordance

with the criteria prescribed in the tender. Each applicant

is ranked into one of five priority classes. The classes

determine the amount of loan granted to the applicant:

the higher the priority class, the higher the proportion

of the request is granted to the applicant. Depending on

the available funds, loans are not typically granted to

applicants ranked in lower priority classes.

The Housing Found determines the loan priority by

using a hierarchical multi-attribute decision model

whose structure is presented in Fig. 3. It consists if

three subtrees. The first subtree corresponds to appli-

cant’s present housing conditions (house), and

includes: the stage of solving their housing problem

(i.e., does an applicant already possess a housing

property), the ownership and suitability of present

housing, and the way of solving their housing prob-

lem (is the property declared a cultural or historical

monument, do any other advantages apply to the

application, and did the applicant obtain other finan-

cial sources from the government). The second sub-

tree determines the applicant’s status in terms of their

earnings, employment and the number of children.

The third subtree, soc_health, determines the priority

according to the applicant’s health status (e.g., higher

priority for the disabled), family conditions (e.g.,

higher priority for families with children), and age

(e.g., higher priority for young families).

For each internal concept in the structure, there is a

decision rule defined for the aggregation of concepts.

In the actual application, both the structure and the

rules were developed manually by the experts using a

multi-attribute decision making shell DEX [2].

For the evaluation of the decomposition method,

we took applicants’ data from one of the floats carried

out in 1994. In addition to some general data, such as

the name and address of the applicant, each data

record contained 12 two- to five-valued attributes that

were essential for the determination of loan priority.

There were five two-valued, five three-valued and two

five-valued attributes, so the size of the attribute space

(i.e., the number of possible unique input vectors) was

253552 = 194400.

In total, there were 1932 applicants in that float.

Due to the discreteness of attributes, the 1932 records

provided 722 unique examples. These examples thus

covered only 722/194400 = 3.7% of the complete

attribute space.

Fig. 3. Original model structure for housing loans allocation.
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The primary goal of the experimental evaluation

was to try to reconstruct the original decision model

using the applicants’ data to try to predict the

observed loan priority decisions. The data was

unstructured in the sense that it contained only appli-

cants’ input attributes and assigned priorities, but no

intermediate concepts. Both unsupervised and super-

vised decompositions were carried out. The resulting

models were interpreted, compared to the original

one, and analyzed in terms of comprehensibility and

classification accuracy. Finally, the ability of the

model to generalize to unobserved combinations of

attribute values was assessed by a cross-validation

method.

3.1. Supervised decomposition

The particular methodology we have used for

supervised decomposition is as follows. We used

HINT to examine the data set and propose best

candidates for partitions. The candidates were exam-

ined by an expert, who assessed the quality of

partitions. The expert was instructed to select the

partition that seemed most meaningful and compre-

hensible. The selected partition was then used for

decomposition, and the experiment continued with

the newly constructed data sets. The expert used for

supervised decomposition was a member of the team

that had developed the original decision models 3

years before the study described here. Interviews with

the expert confirmed that he did not recall exact

detail of the original models due to the passage of

time, and we are confident that our outcomes are not

solely due to the expert’s ability to remember the

original hierarchies. Before the session, only the

names of the input attributes and their meaning were

revealed to the expert. Notice that the purpose of this

test was not to exactly reproduce the original model,

but rather to see if supervised decomposition can

outperform the unsupervised one, and, specifically, if

the decomposition can propose a limited list of

concepts within which are those highly meaningful

to the expert.

In the first stage of the analysis, the attributes were

tested for redundancy. The attributes cult_hist and

fin_sources were found redundant and removed from

the database. The reason for redundancy is that these

two attributes affect the loan priority only under some

very special circumstances, which did not occur in the

database. For example, cult_hist applies only to

renewing a house that has been declared a cultural

or historical monument; and there were no such

houses in that float.

The resulting set of examples was examined for

decomposition. The set of all 12 attributes is shown in

Fig. 4a. All possible partitions with bound sets of two

or three attributes were examined. From these, accord-

ing to the partition selection measure (column multi-

plicity m), HINT proposed only the best candidates

with m= 3. Among the 120 possible bound sets of

three attributes, there were 11 bound sets that mini-

mized column multiplicity:

Among these, the domain expert felt that the

underlined bound set is the most comprehensible,

and captures the concept of an applicants’ current

status. The resulting concept structure is given in

Fig. 4b.

The data for earnings, employed and children

were replaced with a single element representing

the appropriate value for the status concept. These

‘new’ housing examples consisted of eight data

elements and were examined in a similar fashion.

Of the 56 possible partitions of bound sets of three

elements, three candidates were shown to the

domain expert:

suitab advantage employed
advantage stage employed
advantage employed health
advantage employed family
earnings employed children
earnings employed health
earnings employed family
earnings children health
employed children health
employed health family
employed health age

ownership suitab advantage
suitab advantage stage
health family age

M. Bohanec, B. Zupan / Decision Support Systems xx (2002) xxx–xxx 7
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Again, the most favorable bound set is underlined,

which was recognized as social and health condi-

tion of the applicant and formed a new 4-valued

intermediate concept social.

The decomposition process continued in a similar

fashion and resulted in two additional intermediate

concepts: present (suitability of applicant’s present

housing, Fig. 4c) and house (overall housing condi-

tions). This yielded an overall concept structure pre-

sented in Fig. 4d. Apart from the two excluded

redundant attributes, the resulting concept structure is

very similar to the structure actually used in the

management decision support system to determine loan

priority. Thus, when evaluated by the domain expert,

the reconstruction was considered successful.

In each decomposition step, the selection of themost

favorable bound set may not be straightforward. In our

case, this was especially true for the first decomposition

step, where the number of candidate partitions was

quite high. The technique we employed was a gradual

elimination of less favorable partitions. However, in the

following decomposition steps, the number of candi-

date bound sets decreased substantially, which made

the selection easier. The decreased number of candi-

dates was due to the lower number of attributes and

better coverage of the attribute space.

Fig. 4. Evolving concept structure for housing allocation decision model.
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3.2. Unsupervised decomposition

To assess the benefit of user’s interaction in the

decomposition process, we used HINT in unsuper-

vised mode and discovered the concept structure

shown in Fig. 5. When the expert assessed this

structure, he found that, in addition to subtrees that

were identical or similar to the ones in the original

model, some less intuitive intermediate concepts had

been developed. For example, the unsupervised

decomposition combined employed and health into

c2, which was found difficult to interpret. In addition,

as shown later in Section 3.5, the classification

accuracy of this model was inferior to the model

created by supervised decomposition. Therefore, the

overall solution was not as satisfactory as the one

obtained by supervised decomposition.

3.3. Interpretation of models

The sets of examples that describe the concepts in

the resulting structure are considerably less complex

than the initial one: while the initial set contains 722

examples, the most complex resulting set (housing)

has only 38 examples, and all the remaining sets

include less than 20 examples. In total, all the result-

ing sets include only 108 examples, which is a

considerable reduction in comparison with the initial

set. In addition, the decomposed sets use much less

attributes.

Inspection of the resulting sets indicated that all

were quite comprehensible. For example, even from

the raw set it was easy to see that status depends

monotonically on earnings, employed, and chil-

dren. An even better interpretation was provided by

a set of tools within DEX [2], which include decision

rule induction methods and visualization tools [19].

The majority of the discovered concepts were viewed

by the expert as representative of the relevant aspects

of the decision context, and were consistent with the

expert’s expectations.

For a detailed example, let us look at the part of the

hierarchy that combines the attributes ownership and

suitab into the concept present. The attribute own-

ership represents the current ownership status of the

loan applicant. It has five ordinal values that corre-

spond to owning a flat on a permanent (1) or tempo-

rary (2) basis, renting a flat permanently (3) or

temporarily (5), or living together with parents or

other relatives (4). The second attribute, suitab,

represents the suitability of applicant’s current hous-

ing. It is measured relative to norms prescribed in the

national housing law, using three values: (2) normal

(within the norms), and (1) above and (3) below the

norms. Notice that the values of both attributes are

ordered so that higher values correspond to more

difficult housing situations, which acquire a higher

priority in the loan allocation procedure. These two

attributes are combined into a concept called present,

which assesses the applicant’s present housing status

in terms of three priority levels: (1) normal, (2)

priority, and (3) high priority.

This part of the model is suitable for comparison

because it occurs in both the original hand-crafted

DEX model (Fig. 3) and in the model developed by

HINT in supervised mode (Fig. 4d). The correspond-

Fig. 5. Model structure developed by unsupervised decomposition.
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ing two data sets are shown side by side in Table 3.

There are 15 combinations of the values of owner-

ship and suitab, which are mapped into the values of

present in two different ways: as defined by the

domain expert when developing the original DEX

model, and as determined by HINT from data. Notice

that HINT’s values are just labels assigned in the

decomposition process, which, nevertheless, corre-

spond very well to the descriptive priority levels used

in the DEX model.

The two data sets match in 12 of 15 rows, the three

differences occurring in rows 2, 3, and 7. In rows 2 and

7, HINT did not assign any class at all. This is because

there were no corresponding data items in the learning

set, and no additional evidence was obtained by gen-

eralization (see Section 2.1). In row 3, there is an

explicit difference between DEX and HINT, which

assigned the classes 2 and 1, respectively. This differ-

ence occurs because the graph coloring algorithm

(Section 2.1) identified two equally good labels: 1

and 2. The selection of 1 over 2 was arbitrary and

was the direct result of the procedure’s lack of knowl-

edge of the original model. This was the only choice

made arbitrarily in this data set. Notice that such

situations occur where the data is insufficient to dis-

tinguish between the candidates. Function decomposi-

tion, as shown in Section 4.1, performs better when

more data is available, as cases where HINT has to

choose arbitrarily become less and less frequent.

Overall, HINT fully reconstructed 12 of 15 data

items (80%), and made only one improper class

assignment. We believe this is a very good perform-

ance in such a difficult combinatorial task. This

opinion was shared by the domain expert, who

assessed the data set and thought it was comprehen-

sible and relevant. He did not worry much about the

differences between DEX and HINT; he explained

that the two unassigned classes in rows 2 and 7

corresponded to quite rare and insignificant situations,

and that row 3, although important, was difficult to

classify anyway.

The data set constructed by HINT can be improved

further by some additional inspection and interpreta-

tion. Namely, in its present form, HINT treats all

variables as cardinal, that is, discrete and unordered.

However, we do know that the attributes ownership

and suitab, as well as the class present, are in fact

ordered, and can take this into account to refine the

HINT’s data set in Table 3. For example, it is easy to

see that the value in row 2 should have been 1 instead

of ‘‘none’’. This is because in terms of ownership,

row 2 lies just in between rows 1 and 3, while suitab

is fixed. Since ownership is ordered and rows 1 and

3 both contain class 1, row 2 should contain the same

class, too. Similarly, we can find out that the right

class for row 7 is either 1 or 2, but definitely not 3,

since this would contradict to row 8. Notice that this

technique is available in DEX [2] and extensively

used when developing new data sets. In this case, it

has helped us to improve the data set developed by

HINT.

3.4. Relation with MCDM

Another interesting way to look at data sets devel-

oped by DEX and/or HINT is to take the viewpoint of

multi-criteria decision making (MCDM) [6]. There,

the usual approach is to assess the relative weights of

performance variables. To determine the overall utility

of an option, we multiply the scores on the perform-

ance measures by the weights and sum them up.

Performance variables and functions are typically

defined on some continuous and preferentially ordered

range, such as [0,1] or [0,100].

In this way, the HINT’s data set (Table 3) can

be interpreted as a utility function that maps the

attributes ownership and suitab into present.

Table 3

Original (DEX) and derived (HINT) data set for the concept
present

ownership suitab present

DEX HINT

1 (1)owner (1)above (1)normal 1
2 (2)tmp� own (1)above (1)normal none

3 (3)rent (1)above (2)priority 1
4 (4)relativ (1)above (2)priority 2
5 (5)tmp� rent (1)above (3)high_priority 3
6 (1)owner (2)normal (1)normal 1
7 (2)tmp� own (2)normal (1)normal none

8 (3)rent (2)normal (2)priority 2
9 (4)relativ (2)normal (2)priority 2
10 (5)tmp� rent (2)normal (3)high_priority 3
11 (1)owner (3)below (2)priority 2
12 (2)tmp� own (3)below (3)high_priority 3
13 (3)rent (3)below (3)high_priority 3
14 (4)relativ (3)below (3)high_priority 3
15 (5)tmp� rent (3)below (3)high_priority 3
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Fig. 6 shows that this is essentially a discrete

function defined point by point for most combina-

tions of the values of ownership and suitab. It

increases monotonically in both directions and is

symmetric for all the values of ownership that are

greater than or equal to 3.

Notice that, strictly speaking, the function is

defined only in the 13 points shown in Fig. 6, and

the thick lines that connect the points serve only to aid

visualization. This is different than most MCDM

methods, where the functions are truly continuous

and are typically defined over the full range of

performance variables. Although the explicit point-

by-point mapping as used in DEX and HINT is

restricted to discrete attribute spaces, it does allow

the ability to directly define relations between per-

formance measures and provides a great deal of free-

dom to define non-linear relationships.

Despite the differences between MCDM and

DEX/HINT, there are some approximate ways to

bridge the two. DEX, for instance, uses a multiple

linear regression technique to assess the weights of

attributes from data sets [4]. It interprets the data

items as points in a multi-dimensional space and

approximates them by a linear function of the form

y = a0 + a1x1 +: : : + anxn. Here, x1, x2,. . ., xn are

input attributes and y is the class. To compensate

for variables that have different number of discrete

values, the input attributes are all uniformly map-

ped to the interval [0,1]. That is, for an ordinal

variable v that can take the discrete values v1,

v2,. . ., vm, these are transformed into:

xðviÞ ¼
i� 1

m� 1
; i ¼ 1; 2; . . . ;m

The goal is to find the coefficients a0, a1, a2,. . ., an
so that the approximation is optimal in the least-

squares sense. For better comprehensibility, the

coefficients a1, a2,. . ., an are transformed into

relative percentages and represented as weights

w1, w2,. . ., wn:

wi ¼
100ai

ða1 þ a2 þ : : : þ anÞ

For example, using the functions from Table 3, this

method approximates the class present as follows:

DEX : y ¼ 0:83þ 1:60
ownership � 1

4

þ 1:00
suitab � 1

2

HINT : y ¼ 0:81þ 1:47
ownership � 1

4

þ 1:16
suitab � 1

2

For DEX, the weight of ownership is then esti-

mated as (100
 1.60)/(1.60 + 1.00) = 61.5%, and the

Fig. 6. HINT’s data set for the class present interpreted as a utility function.
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weight of suitab as (100
 1.00)/(1.60 + 1.00) =

38.5%. The corresponding weights for HINT are

55.9% and 44.1%. Thus, in both cases, ownership

is substantially more important than suitab.

3.5. Cross-validation

The generalization quality of decomposition was

assessed by 10-fold cross-validation. The initial set of

examples was split to 10 subsets, and 10 experiments

were performed using each individual subset as a test

set and the examples in the remaining subsets as a

single training set. HINT learned from the training

sets and used either the concepts developed previously

(Fig. 4d) or was used in the unsupervised mode on the

training sets (i.e., 90% of original data). For compar-

ison, we have also used C4.5, a machine learning

program that induces decision trees from examples

[18] and is considered a state-of-the-art generalization

tool in machine learning. Notice, however, that C4.5

does not develop hierarchical decision models. Rather,

it uses a different representation (classification trees)

and does not explicitly develop new concepts.

The average classification accuracies and their

confidence intervals obtained on the test sets (Table

4) clearly indicate that for this problem, the decom-

position outperformed C4.5. It is further evident that

the supervised method resulted in a classifier that was

superior to that developed without user’s interaction.

However, it should be noted that the testing domain is,

due to its original hierarchical structure, biased toward

HINT.

4. Generalization, structure discovery and

background knowledge

To additionally assess several properties of model

discovery by function decomposition, we considered

several multi-attribute decision models developed by

experts who used DEX. From each model, the data

was drawn such that each data instance encompassed

some (random) combination of model’s attributes and

the corresponding classification. Notice that for the

data sets constructed in this way, we have purposely

excluded the values of internal concepts used in the

original DEX hierarchies, thus removing any explicit

knowledge about the concept hierarchy. The task for

the function decomposition was to re-discover the

original concept hierarchy. The advantage of such an

approach is that we could vary the size of the data set

from which HINT learned and observe how this

affected the performance of function decomposition.

Another, rather obvious advantage stems from the fact

that hierarchical multi-attribute decision DEX models

define both structure and intermediate concepts, so

these were directly comparable to the models discov-

ered by function decomposition.

Three DEX models, namely HOUSING, BANK-

ING and BREAST, were used in our experiments.

HOUSING is a housing loan allocation model intro-

duced in the previous section [3]. BANKING was a

model used for evaluation of business partners in

banking [20], and BREAST a model for breast-cancer

risk assessment [4]. Basic characteristics of these

models are given in Table 5.

4.1. Generalization

We studied how the size of the training data (data

from which we discover the model) affects HINT’s

ability to find a correct generalization. The general-

ization of HINT was assessed by a variant of stratified

10-fold cross-validation [15]. To obtain the learning

curves (Fig. 7), p percentage of training examples in

each iteration were randomly selected for learning,

and the complete testing set was used to assess the

classification accuracy; p ranged from 10% to 100%

Table 4

Classification accuracies and their confidence intervals in percent-

age, determined by 10-fold cross validation

HINT (developed structure) HINT (unsupervised) C4.5

97.8F 1.8 94.7F 2.5 88.9F 3.9

Table 5

Basic characteristics of data sets: number of classes, number of

attributes, average number of values per attribute, number of

examples contained in the data set, and the proportion of examples

belonging to the most frequent class

Data set #class #atts. #val/att. #examples Majority class (%)

HOUSING 9 12 2.9 5000 29.9

BREAST 4 12 2.8 5000 41.5

BANKING 3 17 2.2 5000 40.8
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in 10% steps. Again, HINT was compared to a

machine learning tool C4.5, which is known for its

good generalization. C4.5 was used with the default

parameters except for �m1 (classification tree leaves

can contain a single example) and � s (tests can use

attribute value subsetting), which were used so as to

yield better classification accuracies. As suggested by

Salzberg [23], a binomial test was used to test for

significant differences between the methods using

a = 0.01. Drawing symbols used in Fig. 7 are o for

HINT and D for C4.5. Where the difference is

significant, the symbol for the better classifier is filled

(. for HINT and E for C4.5).

Learning curves from Fig. 7 reveal that HINT

generalizes well, but needs a substantial number of

examples to obtain highly accurate decision models.

There, with sufficient examples for learning, HINT’s

accuracy converged to 100%, which was never

reached by C4.5.

Each decomposition step results in generalization

thus increasing the coverage of the attribute space. To

further investigate the generalization mechanism of

function decomposition, we determined the portion of

attribute space covered by the current classifier cor-

responding to the evolving concept hierarchy at each

decomposition step. The results are shown for HOUS-

ING and BREAST when learning from the complete

data set of 5000 examples (Fig. 8). The generalization

improves the most rapidly within the first few decom-

position steps, where each decomposition step

approximately doubles the coverage. The last few

decomposition steps do not contribute much to the

generalization, but rather further decompose the

remaining larger data sets and thus reduce the com-

plexity of the model.

4.2. Structure discovery

We assessed the convergence toward appropriate

concept structures for DEX domains, depending on

the size of training set, by using structure dissimilarity

index (SDI, see Appendix A). SDI quantifies the

dissimilarity between two concept structures, in our

case between the ones discovered by HINT and

developed using DEX. A lower SDI indicates a more

similar structure, with an SDI of 0 indicating two

identical structures.

For the three DEX models, the results using the

same experimental setup as in Section 4.1 are given

in Fig. 9. In all three cases, HINT converged to a

single concept hierarchy that was very similar to

the original DEX models. The primary differences

involved HINT’s tendency to decompose some of

the more complex intermediate concepts of the

original DEX models (an example is shown in

Fig. 10). As with learning curves, the ability to

discover relevant concept hierarchies highly depen-

ded on training set size.

Fig. 7. Learning curves for unsupervised decomposition: classification accuracy as a function of training set size (o and . for HINT, D andE
for C4.5).

Fig. 8. Attribute space coverage in percentages as a function of the

number of decomposition steps n.
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4.3. Supervised decomposition

The high dependency on training set size and the

observation that the main generalization occurs in

the first decomposition steps indicate possible

improvement by assisting HINT in early stages of

decomposition. For the three DEX domains, we

performed the same experiment as in Section 4.1

but in the first decomposition step enforced the

creation of a single intermediate concept from the

original DEX model. This concept can be regarded

as a form of background knowledge, which could

have been available had the expert assisted in the

learning process. No assistance was then provided

for subsequent decomposition steps. The results

(Fig. 11) indicate a dramatic improvement in clas-

Fig. 9. Structure dissimilarity index as a function of training set size p.

Fig. 10. The original (above) and decomposition-derived (below) structure for the HOUSING domain (SDI = 1.97).
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sification accuracy achieved with small training

sets. This further confirms the hypothesis that the

first few decomposition steps are crucial in obtain-

ing an accurate decision model.

5. Related work

The problem of criteria identification and their

structuring in terms of a decision model is central to

multi-attribute decision making [11], decision analy-

sis [6,17], group decision support [5], and related

fields. The research reported here was motivated by

a practical need for a method that would automate

and/or assist the decision maker in developing a

multi-attribute model from decision examples. The

representation of decision models developed by the

proposed method closely resembles that used in a

multi-attribute decision support expert system shell

DEX [2]. This approach differs from most of

MCDM methods in two important ways: DEX’s

models use categorical and ordinal variables instead

of continuous ones, and utility functions are defined

point-by-point using data sets instead of employing

some additive or multiplicative preference aggrega-

tion [6].

The decomposition method is based on the

function decomposition approach to the design of

digital circuits by Ashenhurst [1] and Curtis [7].

Their approach was advanced by Perkowski et al.

[16], Luba [12], and Ross et al. [21]. Given a

Boolean function partially specified by a truth table,

their methods aim to derive switching circuits of

low complexity. Function decomposition method

was recently extended to handle multi-valued attrib-

utes and concepts and studied under the framework

of machine learning [32]. While in this paper

function decomposition is used without specific

regard to noise handling, and consequently the

resulting decision models are completely consistent

with the data from which they were discovered,

function decomposition methods that specifically

deal with noise were proposed in Refs. [31,32].

The problem of developing hierarchical models

from examples has been also studied within machine

learning [26]. There, the decomposition approach

was first used by Samuel [24] in checkers playing

programs. His methods relied on a given concept

structure but learned the corresponding functions

from the training sets. Another technique that uses

a predefined concept structure, known as structured

induction [14], was independently developed by

Shapiro [25] and originally used for the classification

of a fairly complex chess endgame. It was shown

that the obtained solutions were both comprehensible

and of high classification accuracy.

The method presented in this paper is thus

closely related to three primary research areas: it

shares the motivation of multi-attribute decision

making and structured induction, while the core

of the method is based on Ashenhurst–Curtis

function decomposition. In comparison with related

work, this paper is original in the following as-

pects: adaptation of the function decomposition

approach to the development of multi-attribute

decision models, proposal and study of supervised

decomposition, emphasis on generalization effects

of decomposition, paying strong attention to the

discovery of meaningful concepts, and experimental

evaluation on a real-world decision problems.

Fig. 11. Learning curves: assisted vs. automatic decomposition.
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6. Discussion

6.1. Lessons learned

We have assessed the applicability of the ap-

proach in a real-world housing loans allocation

problem. It was demonstrated that the method was

able to closely approximate the ‘‘right’’ decision

model that was available for this problem. The

reconstruction was carried out using 722 distinct

decision examples taken from a real-life database of

applicants. Although these examples sparsely cov-

ered the attribute space, the method succeeded in

deriving a model of high comprehensibility and

classification accuracy. The comparison of models

developed by supervised and unsupervised decom-

position revealed that human assistance had a

positive effect on both the comprehensibility and

classification accuracy. This example shows that the

decomposition is a good generalization method and

for this problem outperformed a state-of-the-art

induction tool C4.5.

Further experiments on three other domains

show that function decomposition may need a

significant number of decision examples to obtain

a model of high accuracy (see the learning curves

in Fig. 7). While the number of examples required

depends on the number of attributes, the number

and distribution of utility values and overall nature

of the domain, our experimental assessment indi-

cates there is a heuristic method to determine if the

set of decision examples is sufficient for developing

an accurate model. Namely, the learning curves

constructed from the data set as proposed in Sec-

tion 4.1 should flatten out as the higher proportion

of examples is presented to function decomposition.

If this is not the case, and as indicated by learning

curves from Fig. 10, then the involvement of

domain expert in supervised decomposition be-

comes crucial.

With experiments in the reconstruction of the

three hierarchical multi-attribute DEX decision mod-

els, we have gained further insight to some of the

properties of function decomposition. First, we have

observed that both HINT’s generalization and struc-

ture discovery capabilities were strongly affected by

the size of the data set from which it learned.

However, given sufficient number of examples,

HINT managed to discover models of good classi-

fication performance with the structure that closely

matched the target (DEX’s original) ones. Next,

experiments revealed that first few decomposition

steps may be the most influential ones: they contrib-

ute most to the generalization, and seem to be most

prone to errors especially when small training sets

are used.

Finally, and also consistently with the findings

from the case study on housing loan-allocation

database, we have learned that the use of additional

expert’s knowledge (background knowledge) in the

form of partially known model structure may sig-

nificantly improve HINT’s performance. There, the

‘‘partially known model structure’’ was explicated

as a user’s preference over the set of candidates for

new concepts. If some parts of model structure

were indeed known explicitly, it could have been

used again to guide decomposition and to construct

the concepts present in the partially known model

structure first, thus implicitly providing guidance

over the selection of the concept candidates. An-

other, even more elaborate level of helping HINT

to obtain accurate models is if some concepts (their

attributes and corresponding decision table) are

known in advance; the experiments in Section 4.3

show that knowing even a single such concept may

significantly increase the accuracy of the resulting

model.

6.2. Requirements and limitations of the approach

In any case, for a reasonably sized problem,

function decomposition requires at least several

hundred decision examples. Records of customer

purchases, the actions of a web-site’s users and

routine medical decisions offer examples of situa-

tions where this approach can be utilized because

of the storage of attributes of the decision scenario

as well as the ultimate utility or value of the

outcome.

The housing loan allocation example from Sec-

tion 3 also points out an obvious problem related to

data-driven model construction. In this case study,

none of the loan applications included a house that

would have a special historical value, so this

attribute was not included in the resulting model.

While this limits the approach in a rather obvious
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way (one cannot model something that is not

contained in the data), our method allows the user

to add a missing attribute by manually editing the

model in DEX after the initial hierarchy discovery.

In all our experiments, HINT was run with a

limited number of attributes in the bound set, that is,

in each decomposition step, only up to three attrib-

utes were considered to form a new concept. In

general, this limit does not degrade HINT’s perform-

ance in terms of the quality of the resulting model

[31]. On the contrary, with small bound sets, more

information is provided to the method on how to

aggregate the values to form new concepts; partition

matrices have more rows (more evidence) and less

columns (smaller search space). Furthermore, notice

that if larger bound sets would also be considered,

the hierarchies developed may be the same or similar

to the hierarchies developed with smaller bound sets,

with a possible distinction that concepts closer to the

root of the hierarchies may be discovered first. The

only case where the limitation on the size of the

bound set may have an effect is with cases where

there are indeed indecomposable concepts that

include many attributes. However, such concepts

are not only rare but, due to the difficulty they

provide for the explanation of decisions, deprecated

in decision support.

6.3. Further work

The decomposition approach as presented in this

paper is limited to consistent sets of examples using

discrete attributes and utility. However, recently de-

veloped noise and uncertainty handling mechanisms

[33], and an approach to handle continuously valued

attributes [9] will enable HINT to be used in more

general model developing tasks that are planned for

the future.

Currently, HINT does not distinguish between

cardinal and ordinal variables. As shown in Section

3.3, the models could improve when the ordering

information is taken into account, so this would also

be a welcome addition to HINT.

Another important issue is related to the interpre-

tation of derived example sets. Currently, each con-

cept in the developed decision model is defined by a

data set, whose investigation and interpretation is left

to the decision maker. Unless the set is particularly

small, such an interpretation may be difficult, result-

ing in a less comprehensible decision model. For-

tunately, there is a number of existing methods that

could be used to assist in the interpretation. Two

such techniques, visualization and regression, were

sketched in Section 3.4, but there is a need for more

methods, which could be adapted from the areas

such as data analysis, data mining, and MCDM.

As indicated in Section 3.4, MCDM treats utility

function quite differently to both DEX and HINT, but

there are some approximate ways to convert between

the two formalisms. This relationship should be

explored in more depth, for instance: how to transform

one representation into another, which transformations

are admissible and under which conditions, and how to

integrate the two approaches within a common model-

ing formalism.

7. Conclusion

We have demonstrated the utility of method called

function decomposition for development of hierarch-

ical multi-attribute decision models from the set of

unstructured set of decision examples. The resulting

model generalizes the decision examples and can

serve for the evaluation of new alternatives. The

method is implemented in a system called HINT.

The development of decision models can be carried

out either autonomously or in the interaction with the

decision maker. In the latter case, the method turns

into a data-mining tool for data structuring and

analysis: the decomposition assists in the identifica-

tion of concepts, organizing them into a hierarchy and

deriving the concept representations by example sets.

In this process, the original data set is decomposed

into a number of less complex data sets that are easier

to interpret and analyze.

Function decomposition constructs decision mod-

els that are described through the formalism that is

also used by a decision support tool DEX, a system

that has been extensively used in practice to support

decision making in areas such as economy, medicine,

banking, strategic planning, and others. In other

words, models constructed by HINT may be used in

real-life decision support within DEX. This is a rather

unique feature that makes HINT and the approach

described in this paper a bridge between data mining
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and multi-attribute decision support, further allowing

the user to supervise and moderate the process of

model development.
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Appendix A. Structure dissimilarity index

Given a concept structure S and its two leaf nodes

vi and vj, let their distance ds(vi,vj) be equal to the

number of nodes one has to traverse to come from vi
to vj. For example, for the structure A in Fig. 12,

dA(a,c) = 2, dA(b,c) = 1, and dA(a,d) = 3.

Given two structures Sa and Sb with the sets of their

leaf nodes Va and Vb, respectively, their set of com-

mon leaf nodes is V=Va\Vb. The structure dissim-

ilarity index for structures Sa and Sb is then

SDIðSa; SbÞ ¼
1

nðn� 1Þ
X

viaV

X

vjaV

AdSaðvi; vjÞ

� dSbðvi; vjÞA

where n =AVA. The higher the structure dissimilarity

index, the less similar the two structures. Identical

structures have SDI = 0.

For example, the pairwise dissimilarity index for

structures A, B, and C from Fig. 12 are: SDI(A,B)

= 0.6, SDI(A,C) = 1.0, and SDI(B,C) = 1.2. From these

(and also by visual inspection) it may be concluded

that the most similar structures of the three are A and

B, and the least are B and C. Notice that while SDI

has an intuitive meaning (average displacement of two

nodes of the tree when compared to the reference

hierarchy), the measure is not normalized and should

not be used to compare the quality of discovered

hierarchies.
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