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Abstract. In the paper we study the properties of cancer gene expres-
sion data sets from the perspective of classification and tumor diagnosis.
Our findings and case studies are based on several recently published
data sets. We find that these data sets typically include a subset of
about 100 highly discriminating features of which predictive power can
be further enhanced by exploring their interactions. This finding speaks
against often used univariate feature selection methods, and may explain
the superior performance of support vector machines recently reported
in the related work. We argue that a much simpler technique that di-
rectly finds visualizations with clear separation of diagnostic classes may
be used instead. Furthermore, it may perform better in inference of an
understandable classifier that includes only a few relevant features.

1 Introduction

Carcinogenesis is a multi step process in which genetic alterations drive the pro-
gressive transformation of normal human cells into malignant derivates. Gene
expression microarrays can be used to identify specific genes that are differ-
entially expressed across different tumor types. Classification of clinically het-
erogeneous cancers using gene expression profiles is an emerging application
of microarray technology. Several recent studies of different cancer types, in-
cluding acute leukemias [1], lymphomas [2], and brain tumors [3] have already
demonstrated the utility of gene expression profiles for cancer classification, and
reported on the superior classification performance when compared to standard
morphological criteria. More accurate classifications based on molecular phe-
notype can improve and individualize treatment, influence the development of
targeted therapeutics, and help in the identification of biomarkers for diagnosis
and prognosis.

From the viewpoint of inference of classification models, gene expression data
sets are rather peculiar. They most often include thousands of attributes (genes)
and a small number of examples (patients). Another problem is a substantial
component of noise, resulting from numerous sources of variation affecting ex-
pression measurements.



In conquering the curse of dimensionality, the prevailing modelling approaches
include gene filtering in the data preprocessing phase, and gene subset selection
often coupled with a modelling technique. For instance, in the work reported
by Khan et al. [4] to classify four types of tumors in childhood, authors first
ignored genes with low expression values throughout the data set, then trained
3750 feed-forward neural networks on different subsets of genes as determined
by principal component analysis, analyzed the resulting networks for most infor-
mative genes and in this way obtained a subset of 96 genes of which expression
clearly separated different cancer types when using multi-dimensional scaling.
Other approaches, often similar in complexity of data analysis procedure, in-
clude k-nearest neighbors with weighted voting of informative genes [1] and
support vector machines (SVM, [5–7]). In most cases, the resulting prediction
models include complex computation over a set of gene expressions (e.g., neural
networks, SVM, or principal components models) which are hard to interpret
and can not be communicated to the domain experts in a way that would easily
reveal the role genes play in separating different cancer types.

While different approaches have been used for selecting marker genes [5, 1,
4, 8] (for a review see [9]), the prevalent approach is based on univariate studies
which examine the value of a gene in absence of context, that is, disregarding the
expressions of other observed genes. Such an approach, most often used in prac-
tice, is for instance signal-to-noise statistics [1]. Since genes interact, one would
expect that more information can be gained by observing a set of genes as a
group, rather than summing their individual effects. This is confirmed experi-
mentally through a success of non-linear modelling methods that can account
for gene interactions [5]. In this respect, the use of univariate scoring for gene
subset selection is questionable.

In the paper, we provide a simple alternative to rather complex gene expres-
sion diagnostic modelling approaches mentioned above. Namely, we show that
a subset of two to five genes can most often provide sufficient information to
clearly separate the diagnostic classes when their expression data is visualized
either in scatterplot (two genes) or radviz (three genes or more) planar geometric
graphs. The paper first introduces gene scoring, visualization, and visual projec-
tion search methods we apply in our studies. Our experimental study, together
with the data sets used, is described next. The paper finishes with the discussion
of results and concluding remarks.

2 Methods

2.1 Gene Ranking

In the paper, we use two in essence very different methods for gene ranking.
Signal-to-noise (S2N) [1] is a univariate statistics for scoring of attributes that is
derived from the standard parametric t-test statistic and is computed as μ0−μ1

σ0+σ1
,

where μ and σ represent the mean and standard deviation of gene’s expression,
respectively for each class. To score genes in multi-class problems, we have taken



the data for each pair of class values, computed the statistics, and then averaged
it across all possible class value pairs.

ReliefF [10, 11] is a feature scoring function that is, in principle, sensitive to
feature interactions by being able to detect features that may not provide much
information on their own, but could be very useful when used together with
some other features. ReliefF scores features according to how well their values
distinguish among instances that are similar to each other. Since the similarity
is computed based on all features in the data set, they define the context for the
feature’s score thus providing grounds for revealing the interactions.

2.2 Two-Dimensional Geometric Visualization Methods

In the paper we propose to visualize gene expression data by plotting the exam-
ples from the data sets in a two-dimensional graphs. Depending on how many
genes we use in the plot, we draw either a scatterplot (two genes) or a radviz
(three or more genes). By selecting a suitable set of genes for the plots (see next
section), we aspire that either of the two visualization methods would provide
for a clear visual separation of diagnostic classes.

For a scatterplot, an example of such a graph is given in Figure 1.a. Figure 1.b
shows a radviz with five genes, represented as anchors that are equally spaced
around the perimeter of a unit circle. The examples are visualized as points
inside the unit circle, where their position depends on gene expression value:
the higher the value for a gene, the more the anchor attracts the corresponding
point. Finding an attraction equilibria for a visualized set of genes determines the
placement of each of examples in the data set [12]. Examples with approximately
equal expressions of genes that lie on the opposite sides of the circle will lie close
to the center of the circle. On the other hand, if the expression of a single gene
in a visualized set prevails, the point will lie close to the corresponding anchor.
The radviz projection is defined with the gene subset being visualized, and with
the placement of gene anchors. While enabling the visualization of several genes
in a single graph, radviz has some deficiencies. For instance, placing two highly
correlated genes that are good at discriminating between classes on the opposite
side of the circle will make them useless in the visualization, since there joint
effect will be cancelled out. On the other hand, they might generate a projection
with well separated classes if their anchors are placed adjacently. The “correct”
placement of feature anchors was for instance crucial for a nice separation of
classes in Figure 1.b, where the two anchors (genes) on the top of the circle
(SET and CD19) attract data points from the ALL class and genes APLP2 and
LTC4S attract points with AML class value.

2.3 Visualization Scoring and Ranking and Projection Search

In Figure 1 we have shown two data visualizations that utilize only a small
number of attributes (genes) but provide a good separation of diagnostic classes.
Cancer microarray data includes thousands of genes, and it is therefore not trivial
to find a useful projection, that is, a subset of genes to visualize. In fact, we have
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Fig. 1. Two projections for the leukemia data set (see Section 3.3).

observed that, for a typical cancer data set, there are only a few among millions of
possible projections that exhibit a clear separation of diagnostic classes, making
the manual search for a good visualization impossible.

To automate the search for a good projection, we first need to define how to
evaluate them. The algorithm we use, VizRank [13], scores a particular projec-
tion by training a k-nearest neighbor classifier on two attributes – the x and y
positions of points in the projection. The classification accuracy of the classifier
is then assessed using 10-fold cross validation and provides for a projection score.
When classes in the projection are well separated, the classification accuracy of
the k-NN classifier will be high and the projection will be highly ranked. In
projections where some points from different classes overlap, the accuracy of the
classifier and with it the value of the projection will be accordingly lower.

Although VizRank’s visualization scoring can be very efficient (more than
2000 projections can be evaluated per minute on a 2.4GHz computer) evaluat-
ing all projections in the data sets with several thousands of attributes is not
feasible. Instead, VizRank uses an efficient heuristic that first scores the at-
tributes using ReliefF [11], ranks the subsets of attributes to be considered by
the sum of ReliefF scores, and evaluates the projections starting with the most
likely candidates using this heuristics. Our experiments show that by using this
heuristic only a few percents of possible projections have to be assessed in order
to find the most interesting ones.



Table 1. Cancer-related gene expression data sets used in our study. Columns re-
port on number of examples, diagnostic classes and genes included in a data set, and
proportion of examples in the majority diagnostic class. Last two columns show the av-
erage probability of correct classification (P ) for the top-ranked scatterplot and radviz
projection.

Number of Major P for top projection
Data set Samples Classes Genes class Scatterplot Radviz

Leukemia 73 2 7074 52.8% 98.04% 99.55%
MLL 72 3 12533 38.9% 94.82% 99.75%
SRBCT 83 4 2308 34.9% 87.69% 99.74%
Prostate 102 2 12533 51.0% 91.76% 98.27%
DLBCL 77 2 7070 75.3% 96.82% 99.71%

3 Experimental Study

3.1 Data Sets

For experimental analysis reported in this paper we use five publicly available
data sets with information on gene expression profiles in different human cancer
types (Table 1). Three data sets, leukemia [1], diffuse large B-cell lymphoma
(DLBCL) [2] and prostate tumor [14] have two categories. The leukemia data
includes 48 acute lymphoblastic leukemia (ALL) samples and 25 acute myeloid
leukemia (AML) samples, each with 7074 gene expression values. The DLBCL
data set includes 7070 gene expression profiles for 77 patients, 58 with DLBCL
and 19 with follicular lymphoma (FL). The prostate tumor data set includes
12533 genes measured for 52 prostate tumor and 50 normal tissue samples. The
data for these three data sets and the mixed lineage leukemia (MLL) data set
were produced from Affymetrix gene chips and are available at http://www-
genome.wi.mit.edu/cancer/.

We additionally analyzed two multi category data sets. The MLL [15] data
set includes 12533 gene expression values for 72 samples obtained from the
peripheral blood or bone marrow of affected individuals. The ALL samples
with a chromosomal translocation involving the mixed lineage gene were di-
agnosed as MLL, so three different leukemia classes were obtained (AML, ALL
and MLL). The SRBCT data set [4] consists of four types of tumors in child-
hood, including Ewing’s sarcoma (EWS), rhabdomyosarcoma (RB), neurob-
lastoma (NB) and Burkitt’s lymphoma (BL). It includes 2308 genes and 83
samples derived from tumor biopsy and cell lines. The data for the SRBCT
data set were obtained from cDNA microarrays. The data set is available at
http://research.nhgri.nih.gov/microarray/Supplement/.

3.2 Gene Ranking by ReliefF and Signal-to-Noise Statistics

We started our experiments with a comparative study of ReliefF and S2N scores
and associated gene ranking. For all five data sets, histograms of ReliefF and
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Fig. 2. Histograms of ReliefF on actual and permuted values of attributes (Section 3.2)

S2N scores were qualitatively similar, being skewed to the right, with a group
of about 50 to 100 most discriminating genes in the right tail. A permutation
test was used to verify if these highly discriminatory genes were assigned high
scores by chance. We used permutation analysis and calculated ReliefF scores
after random permutation of expression values for each of the attributes. In the
interest of brevity, we here only show a histogram for ReliefF scores on MLL data
set and its corresponding histogram on randomly permuted data (Figure 2). Note
that the part with the highest scored genes (the magnification in Fig 2.a) is far
outside the normal-shaped distribution computed on permuted data (Fig 2.b).

The association between the gene ranks obtained by the univariate S2N and
multivariate ReliefF gene ranking methods was obtained by computing the non-
parametric Spearman correlation coefficient. The Spearman rank correlation co-
efficient varied importantly depending on which data set we analyzed. The cor-
relation between ReliefF and S2N was highest (0.89) in the MLL data set but as
low as 0.24 in the DLBCL data set, indicating that these two scoring functions
would typically yield very different ranking and providing grounds for hypothesis
that data includes much interactions between genes.

3.3 Results for the Cancer Gene Expression Data Sets

On all the data sets, VizRank found either scatterplot or radviz visualizations
with clear separation of diagnostic classes. If let run for an hour on a stan-
dard PC, the number of such projections was in the range of ten to twenty,
but most importantly, most of them were found in the first few seconds. The
last two columns in Table 1 show Vizrank’s scores, the average probability of
correct classification, for the top-ranked scatterplot and radviz projections. The
best scatterplot projections were scored from 87.64% to 98.04%, with the lowest
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Fig. 3. Projections for the SRBCT data set (Section 3.3).

score assigned to the multiclass SRBCT data set. We found that as the number
of classes exceeds two, scatterplot becomes less appropriate and radviz with a
number of genes not exceeding five provides for excellent separations. For radviz
visualizations the scores shown (from 98.27% to 99.75%) hold for the top-ranked
projections using only five genes; increasing the number of genes may yield bet-
ter separation of instances form different classes and thus a higher score. For
reasons of space, we here show the visualizations and provide a corresponding
discussion only for one two-valued and one multi-valued class problem.

For the leukemia data set the best scatterplot obtained a score of 98% and
included genes APLP2 and TCF (Figure 1.a). Notice a clear separation of in-
stances from the ALL and AML classes with only a few outliers. An example of
the radviz visualization with good separation of examples from different classes
and a Vizrank score of 98% is shown in Figure 1.b. The five genes used in this
projection are CFTR, CD19, LTC4S, IL8 and RNS2.

In Table 2 we show genes appearing in the best scatterplots and the ReliefF
and S2N ranks belonging to these genes. Out of the 20 genes represented, two
were found to be cancer genes and eleven are cancer related according to the At-
las of genetics and cytogenetics in oncology and haematology (http://www.info-
biogen.fr/services/chromcancer/index.html). In the table those genes are marked
as C and CR, respectively.

Figure 3 shows the best rated scatterplot and radviz visualization with clear
separation of instances from different classes for the multicategory SRBCT data
set. While the scatterplot does not provide a good separation between all di-
agnostic classes, separation in radviz is clear. In Table 2 we show twenty genes



Table 2. Twenty best genes from the scatterplot visualizations for the leukemia data
set (a) and from the radviz visualization for the SRBCT data set (b). In column 3 and
4 the ReliefF and S2N ranks are shown, respectively. In the cancer column: C = cancer
gene, CR = cancer related gene, N = not related to cancer.

Gene name Rlf S2N cancer

L09209 APLP2 3 3 N
M31523 TCF3 49 0 C
U77948 KAI1 414 26 CR
X85116 EPB72 42 62 CR
M91592 ZNF76 578 112 N
U22376 MYB 50 9 CR
M62982 ALOX12 143 872 CR
Y12556 PRKAB1 123 3082 CR
U82759 HOXA9 9 25 C
U27460 UGP2 588 59 N
L08895 MEF2C 172 72 N
U46499 MGST1 0 2 CR
X03663 CSF1R 856 1189 CR
U26312 CBX3 1152 108 CR
X04741 UCHL1 792 4140 CR
M31211 MYL 57 4 CR
D16469 ATP6AP1 249 341 CR
U68063 SFRS10 1070 134 N
U51240 KIAA0085 104 208 N
U09087 TMPO 100 42 N

Gene name Rlf S2N cancer

770394 FCGRT 0 1 CR
236282 WAS 26 3 CR
796258 SGCA 23 104 N
207274 IGF2 92 39 CR
812105 AF1Q 5 0 N
183337 HLA-DMA 29 14 N
784224 FGFR4 2 44 CR
866702 PTPN13 19 54 CR
786084 CBX1 10 79 CR
814260 FVT1 35 135 CR
325182 CDH2 66 63 CR
244618 EST 106 25
377461 CAV1 4 23 CR
296448 IGF2 58 49 CR
629896 MAP1B 117 13 CR
624360 PSMB8 356 18 N
745019 EHD1 12 5 N
1435862 CD99 3 12 CR
383188 RCV1 13 2 CR
767183 HCLS1 21 22 N

appearing in the 41 radviz visualizations with VizRank score of 100%, their
Relieff and S2N ranks and report on whether they are related to carcinogenesis
according to the Atlas of genetics and cytogenetics in oncology and haematology
(http://www.infobiogen.fr/services/chromcancer/index.html). One of the genes
from this list is an expressed sequence tags (ESTs). Out of the remaining 19
gene products, 13 are cancer related, which is 68%.

4 Discussion

The results from Table 2 show that signal-to-noise and ReliefF measures rank
genes very differently. This was expected, as most of our best-scored visualiza-
tions show at least a degree of interaction. For instance, in radviz from Figure 3
neither of the genes can provide a clear separation of classes alone, yet when
combined all of the cancer categories are perfectly separated.

Contrary to our expectations, though, we would expect a better match be-
tween ReliefF ranking and genes included in best set of visualizations. We hy-
pothesize that the problem is in the number of attributes in the data set ReliefF
considers as a context. When ReliefF evaluates an attribute it selects some ref-
erence examples and searches for the most similar examples from the same class



and from the other classes. The context with too many genes can mask the ef-
fect of genes in interaction with the estimated gene, thus disabling ReliefF to
appropriately account for interactions.

We compared our selection of “marker” genes in the leukemia data set to
the genes selected by other methods. The best 20 genes from the scatterplot
visualizations are different from the best ranked genes by Golub et al. [1] except
for HOXA9 and EPB72. The primary reason is the use of univariate feature
selection in their study. Also, in our study, we joined the test and training sets
used by Golub et al. and performed the gene ranking and visualization methods
on the combined set.

In contrast to the leukemia data set, the selection of our “marker” genes for
the SRBCT data set compared with the genes ranked best by other methods
is very similar. We found a very high consensus between our selection and the
selection based on artificial neural networks [4]. 19 genes from the best scatter-
plot visualizations and 16 out of 20 from the best radviz visualizations were also
selected by the ANN method. Interestingly, there is also a very high consensus
(11 and 12 genes out of 20 included in best ranked scatterplot and radviz visual-
izations) between our method and the method of Fu [7] based on support vector
machines.

5 Conclusion

The most striking result from our work is how easy it is to find a simple two-
dimensional scatterplot or radviz visualization that clearly, non-ambiguously
separates cancer diagnostic classes based on expression measurements for a few
selected genes. This holds for all five data set studied, but the same observations
also applies to about fifty other publicly available data sets we have studied but
not reported in this paper. VizRank, a method we used to find good visualiza-
tions, often identifies the best ones within seconds of runtime. This is a significant
achievement, especially when compared to hours of required runtime reported in
a recent study that uses support vector machines combined with a set of other
machine learning and feature selection approaches [5], and considering a clear
presentation of results offered by these visualizations.

To a surprise came a relatively poor performance of ReliefF, which was ex-
pected to outshine the univariate gene scoring, but instead performed similarly.
We have yet to fully understand why this is so, as the finding does not match
with those from the systematic study of ReliefF on data sets that contain much
fewer attributes [16].

Gene expression data visualizations reported here provide evidence that can-
cer diagnostic classes can be clearly separated when using the expression data
from only a few genes. VizRank also provides a way for robust selection of genes
without the need for a particular scoring function. Our future work aims at us-
ing top rated visualizations for probabilistic classification, thus also providing
grounds for comparison with other, much more complex but nowadays prevailing
computational methods in gene expression cancer diagnosis area.



References

1. Golub, T.R., Slonim, D.K., Tamayo, P.et al.: Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring. Science 286
(1999) 531–537

2. Shipp, M.A., Ross, K.N., Tamayo, P.et al.: Diffuse large b-cell lymphoma outcome
prediction by gene-expression profiling and supervised machine learning. Nature
Medicine 8 (2002) 68–74

3. Nutt, C.L., Mani, D.R., Betensky, R.A.et al.: Gene expression-based classification
of malignant gliomas correlates better with survival than histological classification.
Cancer Res 63 (2003) 1602–1607

4. Khan, J., Wei, J.S., Ringnr, M.et al.: Classification and diagnostic prediction of
cancers using gene expression profiling and artificial neural networks. 7 6 (2001)
673–679

5. Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A comprehen-
sive evaluation of multicategory classification methods for microarray gene expres-
sion cancer diagnosis. Bioinformatics (2004) 33 – 46

6. Su, A.I., Welsh, J.B., Sapinoso, L.M.et al.: Molecular classification of human car-
cinomas by use of gene expression signatures. Cancer Res 61 (2001) 7388–7393

7. Fu, L.M., Fu-Liu, C.S.: Multi-class cancer subtype classification based on gene
expression signatures with reliability analysis. FEBS Letters 561 (2004) 186–190

8. Gamberger, D., Lavrac, N., Zelezny, F., Tolar, J.: Induction of comprehensible
models for gene expression datasets by subgroup discovery methodology. Journal
of Biomedical Informatics 37 (2004) 269–284

9. Wang, Y., Tetko, I.V., Hall, M.A.et al.: Gene selection from microarray data for
cancer classification–a machine learning approach. Computational Biology and
Chemistry 29 (2005) 37–46

10. Kira, K., Rendell, L.: A practical approach to feature selection. In: Proceedings
of the Ninth International Conference on Machine Learning. (1992) 249–256

11. Kononenko, I., Simec, E.: Induction of decision trees using relieff. In: Mathematical
and statistical methods in artificial intelligence. Springer Verlag (1995)

12. Brunsdon, C., Fotheringham, A.S., Charlton, M.: An investigation of methods for
visualising highly multivariate datasets. Case Studies of Visualization in the Social
Sciences (1998) 55–80

13. Leban, G., Bratko, I., Petrovic, U., Curk, T., Zupan, B.: Vizrank: finding informa-
tive data projections in functional genomics by machine learning. Bioinformatics
21 (2005) 413–414

14. Singh, D., Febbo, P.G., Ross, K.et al.: Gene expression correlates of clinical
prostate cancer behavior. Cancer Cell 1 (2002) 203–209

15. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R.et al.: MLL transloca-
tions specify a distinct gene expression profile that distinguishes a unique leukemia.
Nature Genetics 30 (2001) 41–47

16. Sikonja, M.R., Kononenko, I.: Theoretical and empirical analysis of relieff and
rrelieff. Machine Learning 53 (2003) 23 – 69



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


