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Abstract

Machine learning techniques have recently received considerable attention, espe-

cially when used for the construction of prediction models from data. Despite their

potential advantages over standard statistical methods, like their ability to model

non-linear relationships and construct symbolic and interpretable models, their ap-

plications to survival analysis are at best rare, primarily because of the diÆculty

to appropriately handle censored data. In this paper we propose a schema that

enables the use of classi�cation methods | including machine learning classi�ers |

for survival analysis. To appropriately consider the follow-up time and censoring,

we propose a technique that, for the patients for which the event did not occur and

have short follow-up times, estimates their probability of event and assigns them

a distribution of outcome accordingly. Since most machine learning techniques do

not deal with outcome distributions, the schema is implemented using weighted ex-

amples. To show the utility of the proposed technique, we investigate a particular

problem of building prognostic models for prostate cancer recurrence, where the sole

prediction of probability of event (and not its probability dependency on time) is

of interest. A case study on pre-operative and post-operative prostate cancer recur-

rence prediction shows that by incorporating this weighting technique the machine

learning tools stand beside modern statistical methods and may, by inducing sym-

bolic recurrence models, provide further insight to relationships within the modeled

data.
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1 Introduction

Among prognostic modeling techniques that induce models from medical data, the

survival analysis methods are speci�c both in terms of modeling and the type of data

required. The survival data normally include the censor variable, which indicates

whether some outcome under observation (like death or recurrence of a disease) has

occurred within some patient-speci�c follow-up time. The modeling technique must

then consider that for some patients the follow-up may end before the event occurs.

In other words, it must take into account that for patients for whom the event has

not occurred during the follow-up period, the event may eventually occur.

Typically, given the patient's data, survival models attempt to determine the prob-

ability of the event to occur within a speci�c time. Frequently, however, there are

cases in survival analysis where the prediction of whether the event will eventually oc-

cur or not is of primary importance. For example, for the urologist deciding whether

to operate on patients with clinically localized prostate cancer the probability of

cancer recurrence is a very important decision factor. In such cases, the survival

analysis requires purely classi�cation models that classify either to the occurrence

or to the non-occurrence of event and optionally model the outcome probabilities,

and appropriately consider the censoring.

Recently, the machine learning community has developed various tools that have

been successfully used in the construction of classi�cation models, including medi-

cal prognostic models [15, 18]. In this paper, we propose a framework which allows

to use machine learning techniques to construct classi�cation models from survival

data. To properly address censoring in the training data, patients for whom the

event did not occur and have short follow-up time require special treatment. Note

that for them, the �nal outcome is not known with certainty. Trivial solutions to

this problem by their removal from the data set or considering them as examples

where the event will not occur would bias the modelling [22, 12] and should thus be

avoided. To properly treat such cases, we propose a technique that assigns a distri-

4



bution of outcomes instead of a single outcome. The distribution is assessed through

the outcome probability estimate based on the Kaplan-Meier method. Since most

machine learning techniques do not deal with outcome distributions, the schema

is implemented using weighted examples. Although developed independently, the

proposed technique is similar to the one used by Ripley and Ripley [22]. The main

di�erence, however, is that they use data weighting only when testing the models,

whereas for their construction di�erent approaches are used.

The bene�ts of the proposed framework stem from the potential advantages of ma-

chine learning methods. Symbolic induction techniques can help us to understand

underlying relationships in the prostate cancer data. Some machine learning tech-

niques can discover and use non-linearities and variable interactions [12], thus over-

coming the limitations of linear statistical predictors.

We investigate the applicability of the proposed framework to the problem of mod-

eling prostate cancer survival data and use two di�erent machine learning methods.

While any machine learning method that induces models from weighted examples

may be used, Naive Bayes classi�er and induction of decision trees were selected

for our study because of their simplicity, acceptance and generally good perfor-

mance. The two were compared to the Cox proportional hazards model [6], which

is a standard statistical survival analysis technique for prediction based on multiple

variables.

We use two separate datasets to construct the prostate cancer survival models.

Preoperative data set includes data on tests that were administered prior to the

prostatectomy (prostate removal), while postoperative dataset also includes data

from several routinely performed pathologic tests. Preoperative data are generally

fully known at least two weeks prior to the operation, while postoperative data

generally are complete approximately a month following the operation. Clinically,

both prediction models would be very useful. A model based on preoperative data

could be used for patient decision making as to whether the ability of prostatec-
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tomy is worth the potential treatment complications (impotence and incontinence).

If the predicted probability of recurrence were high, patients might choose one of

several other treatments which did not have the adverse e�ects of such an aggressive

therapy. Postoperatively, a prediction model is also useful, but for di�erent pur-

poses. If recurrence could be predicted postoperatively, prior to actual recurrence,

a second therapy (after the prostatectomy) could be administered quickly, when

it is potentially the most e�ective. Thus, preoperative and postoperative predic-

tion models are both highly useful but for di�erent purposes: deciding whether to

undergo prostatectomy at all, and then whether to add additional treatment.

In Section 2 we begin by describing two prostate cancer datasets used in our ex-

perimental evaluation. The proposed treatment of censored data that uses outcome

distributions (data weighting) is described in Section 3, together with a description

of machine learning techniques, experimental design and statistics that were used to

compare the performance of resulting models. Section 4 presents the experimental

results and discusses the di�erences and advantages of selected prediction methods.

An overview of related work is given in Section 5. Section 6 summarizes the results

and concludes the paper.

2 Patient Data

Two prostate cancer datasets were used in this study. They both include patients

that were treated with radical prostatectomy, and were followed-up to observe the

recurrence of the cancer. While the �rst dataset includes only pre-operative data,

the second dataset additionally incorporates data gathered post-operatively. The

task in both cases was to construct a model that would, given the corresponding

patient's data, predict the probability of recurrence.
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2.1 Preoperative Data

The preoperative dataset consists of records from all 1055 patients admitted to The

Methodist Hospital (Houston, TX) with the intent to operate on their clinically

localized prostate cancer between June 1983 and December 1996. Excluded from

analysis were 55 men initially treated with radiation, and 1 treated with cryotherapy.

Sixteen men whose disease status (free of disease versus cancer recurrence) was

unknown were also excluded. The mean age was 63 years and 85% of the patients

were Caucasian.

Four routinely performed clinical tests were selected as predictors of recurrence (Ta-

ble 1). Treatment failure was de�ned as either clinical evidence of cancer recurrence

or an abnormal postoperative PSA (0.4 ng/ml and rising) on at least one additional

evaluation. Patients who were treated with hormonal therapy (N=8) or radiother-

apy (N=25) after surgery but before documented recurrence were treated as failures

at the time of second therapy. Patients who had their operation aborted due to

positive lymph nodes (N=24) were considered immediate treatment failures. To

accommodate for some of the modeling methods used (S-Plus implementation of

Cox's proportional hazards model), we additionally excluded 16 men having either

primary or secondary or both Gleason grades unknown. For Naive Bayes classi�er,

the PSA level was discretized using 5 intervals by computing the quintals from the

training data.

The resulting dataset thus included 967 patients, of which 189 (19.5%) recurred,

and of those that did not recur 68 had follow-up time of equal or longer than seven

years (7.0%) and 710 (73.4%) shorter than seven years. For the last group, the mean

follow-up time was 37.5 months.
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Variable Abbrev. Values and distributions

Primary Gleason grade gg1 1 (14), 2 (260), 3 (594), 4 (95), 5 (4)

Secondary Gleason grade gg2 1 (12), 2 (164), 3 (543), 4 (237), 5 (11)

Clinical stage Stage T1ab (82), T1c (145), T2a (264), T2b (239),

T2c (180), T3a (57)

Preoperative PSA, ng/L PrePSA continuous, min= 0:1, mean= 9:9, max=100:0

Table 1:

Variable Abbrev. Values and distributions

Gleason sum Gleason 3 (2), 4 (5), 5 (106), 6 (350), 7 (454),

8 (61), 9 (14), 10 (4)

Prostatic capsular invasion PCI None (184), Invading capsule (396),

Focal (152), Established (264)

Surgical margins SurgMarg Negative (853), Positive (143)

Seminal vesicle ivasion SemVesInv No (862), Yes (134)

Lymph nodes LNodes Negative (925), Positive (71)

Preoperative PSA, ng/L PrePSA continuous,

min= 0:1, mean= 10:4, max=100:0

Table 2:

2.2 Postoperative Data

All 1055 patients mentioned above, plus those additionally treated with radical

prostatectomy at the same hospital from December 1996 to June 1997 were can-

didates for the postoperative dataset. Excluded were patients with positive lymph

nodes and aborted operations (for a detailed description see [14]). The �nal postop-

erative dataset includes 996 patients. In addition to pretreatment prostate speci�c

antigen level, �ve routinely performed pathologic tests were included as variables:

Gleason sum in the surgical specimen, prostatic capsular invasion, surgical margin

status, seminal vesicle invasion and lymph node status (Table 2). The dataset in-

cludes 189 (19.0%) patients that recurred. Of those that did not recur, 107 (10.7%)

have follow-up time longer or equal to seven years and 700 (70.3%) have follow-up

time of less than seven years.
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3 Methods

The Naive Bayes classi�er and the induction of decision tree machine learning meth-

ods were used and evaluated. Their performance was compared to Cox proportional

hazards model on the basis of the classi�cation accuracy, speci�city and sensitiv-

ity, correlation of predicted probability and probability estimated by Kaplan-Meier

method, and concordance index (area under receiver operating characteristic curve).

We �rst explain how we treat censored data, then briey introduce machine learning

techniques, and �nally describe the statistics used for comparison.

3.1 Handling Censored Data

The particular characteristic of survival data is that for some patients the follow-up

is too short to determine a de�nite outcome. For example, it is assumed that if the

prostate cancer patient who has undergone radical prostatectomy remains disease

free for at least seven years [12], the cancer has been successfully cured. However, if

a non-recurrent patient has been followed up for less than seven years, the outcome

is not certain.

The above reasoning provides motivation to split the prostate cancer survival data

into three groups: the �rst consists of patients that recurred (the outcome is known),

the second of patients that did not recur and were followed for more than seven

years after the operation (for these non-recurrence is assumed), and the third of

non-recurring patients with follow-up of less than seven years. For the last group,

we assess the probability of each outcome using the Kaplan-Meier method [16].

In essence, for prostate cancer the Kaplan-Meier method estimates the probability

of non-recurrence at a particular follow-up time. Figure 1 gives the Kaplan-Meier

survival curve for the preoperative dataset used in this study. It illustrates the overall

proportion of patients who remain free from recurrence over time. Time begins with

surgery, so the horizontal axis is months following surgery. As time increases, a
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Figure 1:

smaller proportion of patients is left without recurrence. Kaplan-Meier survival

curve for the postoperative dataset is similar to the one shown for preoperative

data.

Using Kaplan-Meier estimates from all groups of patients, we compute the proba-

bility P
rf

of recurrence-free outcome for each of the patients from the third group.

Given the patient's follow-up time T
f
, this probability is equal to

P
rf
= P (non-recurrence(7 years)jnon-recurrence(T

f
)) =

P (non-recurrence(7 years))

P (non-recurrence(T
f
))

The patient's probability of recurrence is then P
r
= 1� P

rf
. The outcome for this

patient is therefore a distribution (P
rf
; P

r
). Since most of the machine learning tools

do not include mechanisms to handle distributions as class values, instead of a single

data record for each patient from the third group, two copies of the patient's data

are created, one labeled with an outcome \not-recurred" and weighted with weight

P
rf
, and the other with an outcome \recurred" and weighted with weight P

r
.
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3.2 Modeling Techniques

The following modeling techniques were used:

Decision tree induction: our own implementation of the ID3 recursive partition-

ing algorithm [21] was used. The basic idea of ID3 is to divide the patients into ever

smaller groups until creating the groups with all or majority of patients correspond-

ing to the same class (recurrent, non-recurrent). The division criterion is a function

computed from predictor variables. The decision tree induction algorithm included

pre- and post-pruning. In pre-pruning, the recursive partitioning is stopped if it

would build leaves consisting of less than 20 data records. We observed in cross-

validation experiments that when this limit was lowered, the performance degraded

signi�cantly. For post-prunning, a minimal-error pruning algorithm [20] using the

m-probability estimate [5] with m = 2:0 was used.

Naive Bayes Classi�er: assuming independence of attributes, the probability that

a patient described with values of predictor variables V = (v1:::vn) recurs can be

estimated by the Bayes formula

P (RjV ) = P (R)
nY

i=1

P (Rjv
i
)

P (R)

where P (R) is the apriori probability of recurrence and P (Rjv
i
) is the conditional

probability of recurrence if i-th predictor variable has the value v
i
; both are estimated

from the training set of patients. Note that this formula can be derived from the

more common form P (RjV ) = P (R)=P (V )
Q
i
P (v

i
jR) by reusing the Bayes rule

P (v
i
jR) = P (Rjv

i
)P (v

i
)=P (R). The probability for non-recurrence is computed in

the same way and the resulting probabilities must be normalized to sum to 1.

Cox's proportional hazards model [6] as implemented in the S-PLUS software

(PC Version 4.5; Redmond WA) was used. Using the Cox's model for prediction,

the probability was estimated for the patients to recur within seven years after the

operation.
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Decision trees and Naive Bayes classi�ers are constructed from weighted data (see

Section 3.1). The treatment of the weighted examples is fairly straightforward. Both

algorithms need to estimate conditional and unconditional probabilities of classes.

Instead of the usual formula which divides the number of examples of class C with

the number of all considered examples (P (C) = #examples of C

#examples

), we divide the sum

of weights of examples of class C by the sum of weights of all examples considered

(P (C) =

P
E2C

weight(E)P
E
weight(E)

).

3.3 Experimental design and evaluation statistics

To evaluate the proposed weighting schema and the modeling methods, a standard

technique of strati�ed 10-fold cross-validation was used [19]. This divides the patient

data set to 10 sets of approximately equal size and equal distribution of recurrent

and non-recurrent patients. In each experiment, a single set is used for testing

the model that has been developed from the remaining nine sets. The evaluation

statistics for each method is then assessed as an average of 10 experiments. The

same training and test data sets were used for all modeling methods. The weights

for the non-recurring patients with short follow-ups were estimated by building the

Kaplan-Meier survival curve from the patients in the training sets only, and then

used to weight the patients in the corresponding test sets. To assess the performance

of the model on the test datasets, the following statistics were derived:

Classi�cation accuracy, which is expressed in percent of patients in the test set

that were classi�ed correctly. A recurrence probability of higher than 0.5 was

considered as a prediction for a patient to recur,

Sensitivity expressed as the probability of correctly predicting recurrence,

Speci�city expressed as the probability of correctly predicting non-recurrence,
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Correlation of the predicted probability with recurrence-free probabilities es-

timated from Kaplan-Meier survival curves as described in the previous sec-

tion,

Concordance index, which is a measure developed by Harrell [10] and is inter-

preted as the probability that, given two randomly drawn patients where the

patient with the shorter follow-up has recurred, the patient who recurs �rst

has a higher predicted probability of recurrence. Notice that this is equivalent

to the area under the receiver operating curve [9]. The concordance index is

computed from the test data set as a proportion of consistent patient pairs

over the number of usable patient pairs. A patient pair is usable if a patient

with a shorter follow-up time recurred. A pair is consistent, if the patient with

a shorter follow-up time is assigned a higher probability of recurrence.

Accuracy, sensitivity and speci�city all use weights assigned to the test examples.

On the other hand, probability correlations and concordance index do not need

information about weights.

4 Results and discussion

For preoperative data, Table 3 shows the results when applying di�erent modelling

techniques. Overall, Naive Bayes and Cox proportional hazards model seem to

perform better than decision trees, although the di�erences are not signi�cant.

The results for the concordance index are very similar to those reported in Kattan

et al. [13], although they have used a di�erent validation technique (a repetitive

drawing of 70% cases for training while using the remaining 30% for testing). They

obtained 0.74 for Cox's proportional hazards model and 0.76 for ANN using null

martingale residual as the outcome. In their later study [11], using Cox's model
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only and bootstrapping for validation, they have obtained a concordance index of

0.79.

Table 3:

modeling classi�cation sensitivity speci�city probability concordance

technique accuracy correlation index

default 68.1 0.0 100.0 0.00 0.50

Naive Bayes classi�er 70.8 35.8 87.1 0.41 0.75

decision tree induction 68.8 22.9 90.3 0.37 0.72

Cox 69.7 19.5 93.2 0.39 0.76

Further di�erences among the performance of predictive methods when assessed by

10-fold cross validation may be additionally analyzed by means of calibration curves

P
KM

(P
r
) [24]. This is constructed as follows. Say that a patient with estimated

probability of recurrence P
KM

by the Kaplan-Meier method is presented to one of

our prediction models, which predicts a recurrence probability of P
r
. For all non-

recurrent patients with follow-up time of more than seven years P
KM

is changed

to 1.0 (see Section 3.1). For all patients, their corresponding points P
KM

(P
r
) are

entered in the graph. Instead of these points, a smoothed curve which best approx-

imates the relation between two probabilities is computed and presented. Ideally, a

calibration curve would be a 45-degree straight line P
KM

= P
r
.

Figure 2 shows a calibration curve for the three modelling methods. The curves

for the Naive Bayes classi�er and Cox are rather similar, with a di�erence that

Naive Bayes classi�er seems to become overcon�dent when predicting recurrence

with probability close to 1. This may be the reason for the higher sensitivity of

the Naive Bayes classi�er. The plot for the decision trees is interesting since it is

very close to the ideal curve, but shows that decision trees predict probabilities only

within a certain range.

A classi�cation tree induced from the complete dataset is given in Figure 3. The

tree is relatively small and simple but in concordance with physiological knowledge
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Figure 2:

on this domain, and uses preoperative PSA followed by secondary Gleason grade

and clinical stage as the most predictive variables. Our previous study [25] using

a di�erent weighting technique developed a decision tree with secondary Gleason

grade at its root. The di�erences between these trees may be attributed to the

high similarity in terms of informativity of the predictive variables. Thus for this

domain, a relatively small change in data (change in weights) may result in di�erent

classi�cation trees.

Next, a Naive Bayes classi�er was constructed from a complete data set. To analyze

it, we here show a graphical device called a nomogram [17] that uses the Naive Bayes

formula to compute recurrence probability. The nomogram (Figure 4) shows the

impact of individual features on the probability of recurrence (upper labels on feature

lines) and non-recurrence (lower labels). The values to the right of zero (bold vertical

line) favor (non)recurrence and the values on the left speak against it. For example,

observe gg2 and non-recurrence on the nomogram for preoperative data: values of

5 and 4 vote against, and values 3, 2 and 1 vote for non-recurrence. The nomogram

can be used to compute the probabilities of outcomes. First, the impact factors for

feature values must be summed for recurrence and for non-recurrence, using the scale

above (below) the table. The sums are then converted into probability estimates

using the lookup graph below and, �nally, normalized to sum to 1. For example, a
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PrePSA

gg 2

<10.715

Stage

>=10.715

p=18.2+-2.7
N=563

1, 2,
3

Stage

4, 5

p=29.0+-8.2
N=82

T2a, T2c,
T1c

p=47.5+-10.3
N=63

T1ab, T2b,
T3a

p=58.9+-7.4
N=118

T2b,
T3a

gg 2

T1ab, T2a,
T2c, T1c

PrePSA

1, 2,
3

p=49.1+-11.2
N=54

4, 5

p=27.2+-10.3
N=51

<16.950

p=43.4+-12.7
N=41

>=16.950

Figure 3:

patient with preoperative data (gg1=3, gg2=3, PrePSA=11, Stage=T2c) has the sum

�0:05� 0:05 + 0:05� 0:15 = �0:1 for recurrence and 0:1� 0:2� 0:1 + 0:1 = �0:1

against. Approximation by the lookup table gives about 73% for non-recurrence

and 18% for recurrence, which multiplied by (0:73 + 0:18)�1, gives the probabilities

of 80% for and 20% against recurrence.

The nomogram also points out some speci�cs about the recurrence domain we are

modeling. It reveals that the two Gleason scores are very important factors for the

decision as their values are most dispersed through the score line that the nomogram

provides. It also shows that the other two factors used are informative too, as

their values are well dispersed as well. Note, though, that PSA was in our study

discretized and under a di�erent discretization the results may not be the same. The

potential anomaly concerning the Stage attribute is evident. Namely, the expected

order of severity of stages would be T1ab, T1c, T2a, T2b, T2c, T3a, while the

nomogram suggests T1c, T1ab, T2b, T2a, T2c, T3a. This indicates that the data

may undersample this problem subspace, and further analysis (potentially using

additional data) is required to investigate the stage ordering.
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Figure 4:

For the experiments on postoperative data, the results are summarized in Table 4.

As expected, these prognostic models perform in general better than with preoper-

ative data. This was expected, since, intuitively, the data gathered during or after

the invasive treatment should contain more predictive information than preoperative

non-invasive tests. Most importantly, classi�cation accuracy and the concordance

index are improved. However, the sensitivity of all modeling techniques investigated

is still low, most probably due to the dominance of non-recurrent patients in the

data. Interestingly, a similar problem was observed by Ripley and Ripley [22], who

proposed to increase the cost of misclassifying recurrent patients. Trivially, this can

be done by setting probability margin for recurrence from 0.5 to some lower value.

For both datasets investigated, increasing sensitivity may prove important when

constructing prognostic models for clinical use, but investigation of methods that

would do so while maintaining other properties of the models was beyond the scope

of this paper.
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Table 4:

modeling classi�cation sensitivity speci�city probability concordance

technique accuracy correlation index

default 70.8 0.0 100.0 0.00 0.50

naive Bayes classi�er 78.4 26.5 89.1 0.62 0.87

decision tree induction 77.0 18.7 92.8 0.54 0.84

Cox 79.0 18.2 94.2 0.64 0.88

Figure 5:

Figure 5 shows postoperative calibration curves. Again, the curves are rather similar,

with the predictions of decision trees being limited to a narrower range (speci�cally,

very few patients are assigned probabilities of recurrence of higher than 0.8). Naive

Bayes classi�er seems to overemphasize recurrence more than Cox, hence higher

sensitivity but lower speci�city. Interestingly, although calibration curves would

suggest larger di�erences between the two methods, Cox and Bayes perform very

similarly in respect to classi�cation accuracy and concordance index. We should not

forget, though, that calibration curves compare predicted probabilities with those

estimated from data, so they should only be used for informative purposes and

interpreted with caution.

The Naive Bayes postoperative nomogram build from a complete dataset is pre-

sented in Figure 6. It shows that while prostatic capsular invasion may be the
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Figure 6:

most predictive variable, other follow closely and for a good predictor all predictive

variables may need to be considered. Since decision trees take a minimalistic ap-

proach (the tree build from the whole dataset is rather small and does not contain

all predictive variables; see Figure 7), this may be the reason for the slightly poorer

performance. The nomogram also shows that if any of the surgical margins, seminal

vesicle invasion or lymph nodes involvement are positive, this is a strong evidence

for recurrence; if they are negative, they do not inuence the result that much.

Overall, for both prostate cancer recurrence domains, the collaborating domain

experts preferred nomograms over decision trees. The main reason was that the

nomograms considered all predictive variables, while when following di�erent paths

in decision trees only a selection of variables is used. Since all predictive variables

included in both studies were carefully selected and considered relevant, the latter

was viewed as a de�ciency.

19



PCI

SurgMarg

None, InvCap,
Focal

PrePSA

Estab

p=15.5+-0.0
N=661

Neg

p=45.2+-9.7
N=71

Pos

SemVesInv

<15.440

p=74.7+-7.4
N=93

>=15.440

PrePSA

No

p=62.6+-6.5
N=55

Yes

p=22.5+-8.9
N=59

<7.650

p=40.4+-10.7
N=57

>=7.650

Figure 7:

5 Related Work

While there exist various statistical techniques to model survival-type data (e.g.,

Kaplan-Meier modeling and Cox's regression [16]), machine learning techniques that

would appropriately consider censored data are rare. Most notable exceptions come

from the area of arti�cial neural networks, but even there the techniques vary from

ignoring censored patients to treating them properly through modeling the hazard

function. For instance, Snow et al. [23] developed a neural network to predict recur-

rence after radical prostatectomy, but treated censored patients as non-recurrent,

thus disregarding follow-up time and potentially biasing the predictions towards non-

recurrence. A similar approach was used by Burke et al. [4], where patients with

short disease-free follow-up were excluded from the model. Their approach would

also bias the resulting model, this time towards predicting higher probabilities for

recurrence, since of the patients with short follow-up time only those that recurred

would be considered. To appropriate consider censoring, Faraggi and Simon [8] use

a similar schema as with Cox's proportional hazards model, but instead of using
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log-linear relationship between the independent variables and the underlying hazard

function, they use an arti�cial neural network. Biganzoli et al. [3] split follow-up

time into non-overlapping intervals, use interval information as an additional input

to neural network and use it to model the probability of failure. A di�erent ap-

proach is presented by Kattan et al. [13] that also use a neural network, but instead

they model the null martingale residual, e.g., the di�erence between the observed

and expected number of recurrences for the given follow-up time. Their analysis

shows that neural network may be superior when compared to traditional statistical

models, which seems to be attributed to nonlinearities incorporated in the neural

network model [12].

A comprehensive overview and classi�cation of existing neural network-based tech-

niques for survival analysis is provided by Ripley and Ripley [22], while D'Amico et

al. [7] provide a list of arti�cial neural networks techniques that speci�cally target

the prostate cancer recurrence prediction.

Anand et al. [2] stress the need to develop the prognostic models that would, in-

stead of hazard or survival functions, explicitly provide a prognostic estimate for an

individual patient. They compare regression trees, k-nearest neighbors (k-NN) and

regression variant of arti�cial neural network to model the patient's survival time

after being diagnosed with colorectal cancer. While they treat the follow-up time for

censored patient as the survival time, they propose and subsequently implement an

extension of k-NN method that appropriately treats censoring both in the learning

and the prediction phase [1].

Our aim to predict an overall probability of non-recurrence for an individual patient

is in line with the suggestion of Anand et al. [2] to construct prognostic models with

a directly useful prognostic estimate for a single patient. The idea of weighting the

patients is similar to the one proposed by Ripley and Ripley [22]. In their experi-

mental evaluation Ripley and Ripley used a heavy censored melanoma dataset. To

incorporate censored data in the test sets, they �tted Kaplan-Meier survival curves
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and estimated their probabilities P
s
of survival to the end of the observed follow-up

time. These patients then entered the test set with both possible outcomes and

probabilities P
s
and 1 � P

s
, respectively. This schema was only used for testing,

while for model induction either linear modelling or arti�cial neural nets were used

to learn proportional odds and hazards, or Weibull and log-logistic survival. Inter-

estingly, they have also used a neural network to directly predict the outcome, but

for this they omitted the censored patients in the learning set. The work presented

in this paper can thus be viewed as an extension to Ripley and Ripley's weighting

schema from test to training dataset, thus enabling the use of general type machine

learning algorithms that handle weighed data and induce classi�cation models.

6 Conclusion

Deciding whether to operate on patients with clinically localized prostate cancer

frequently requires the urologist to classify patients into expected groups such as

\remission" or \recur". In this paper we show that models for prostate cancer re-

currence that may potentially support the urologist's decision making can be induced

from data using standard machine learning techniques, provided that follow-up and

censoring has been appropriately considered. For the latter, we propose a weight-

ing schema that allows to include data records of non-recurrent patients with short

follow-up times in the dataset for modelling.

The main contribution of the work described should be viewed as an enabling tech-

nology. Within our schema, any machine learning technique that induces classi�-

cation models from weighted examples can be used for building prognostic models

from censored data. We exemplify this through two case studies of prostate cancer

recurrence and show that a very simple and basic machine learning tool, the Naive

Bayes classi�er, can stand beside a mature and often used statistical method of Cox

proportional hazards model which was crafted speci�cally for survival analysis.
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There are various other techniques for handling censored data that we mention in

section on related work. In comparison with these techniques, the advantages of

the approach proposed in this paper are simplicity, straightforward integration with

standard machine learning techniques, and a comparable performance with well

established statistical technique of Cox proportional hazards model.

The machine learning community has developed techniques that are more elaborate

than the two used in our study, and that may be better at discovering nonlinearities

and complex predictive variable combinations. With the recent introduction of

medical and laboratory information systems, we believe that as the volume of clinical

data grows both in number of records and number of variables stored, machine

learning tools may become increasingly important in mining censored data. In

this respect, the schema proposed in this paper should further be tested on bigger

datasets, where variable selection, combination and construction together with the

interpretation of resulting models may be crucial.

The authors strongly believe that, although tested only on prostate cancer recurrence

data, the proposed methods are applicable to general survival analysis where the

sole prediction of probability of event (and not its probability dependency on time)

is of interest. Furthermore, the proposed weighting technique may be extended in a

straightforward manner to predict the outcome at a given time interval, thus making

it applicable over the scope considered in this paper.
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