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Summary 
 

Hierarchical decision models are a general decision support methodology aimed at the 

classification or evaluation of options that occur in decision-making processes. They are 

also important for the analysis, simulation and explanation of options. Decision models 

are typically developed through decomposition of complex decision problems into smaller 

and less complex subproblems; the result of such decomposition is a hierarchical structure 

that consists of attributes and utility functions. This article presents an approach to the 

development and application of qualitative hierarchical decision models that is based on 

DEX, an expert system shell for multi-attribute decision support. The distinguishing 

characteristics of DEX are the use of qualitative (symbolic) attributes, and “if-then” 

decision rules. Also, DEX provides a number of methods for the analysis of models and 

options, such as selective explanation and what-if analysis. We demonstrate the 

applicability and flexibility of the approach presenting four real-life applications of DEX 

in health care: assessment of breast cancer risk, assessment of basic living activities in 

community nursing, risk assessment in diabetic foot care, and technical analysis of 

radiogram errors. In particular, we highlight and justify the importance of knowledge 

presentation and option analysis methods for practical decision making. We further show 

that, using a recently developed data mining method called HINT, such hierarchical 

decision models can be discovered from retrospective patient data. 



1. Introduction 
 
Hierarchical multi-attribute decision models are aimed at the classification and/or 

evaluation of objects defined in attribute-value space [1,2]. They are based on 

decomposition of a complex decision problem into smaller and less complex 

subproblems. Subproblems are represented by variables, which are organized into a 

hierarchy. Variables are connected by utility functions that serve for the aggregation of 

partial subproblems into the overall evaluation or classification of objects. 

The methodology of hierarchical decision models has been developed and 

extensively applied in relation to decision support [3]. There, the decision-makers are 

often faced with the problem of choice [4]: to choose an option from a set of available 

options so as to best satisfy the decision-maker’s goals. In complex real-life decision 

processes, the problem of choice can be extremely difficult, mainly because of complex, 

interrelated or even conflicting objectives. To support the decision-maker, a decision 

model is designed to evaluate the options. Also, it can be used for the analysis, 

simulation, and explanation of decisions. In practice, this approach has been most often 

used for technical or economical decision problems, such as project or investment 

evaluation, portfolio management, strategic planning, and personnel management. We 

have contributed to these fields by developing an expert system shell for multi-attribute 

decision support DEX [5] and have applied it in several tens of real-world decision 

problems [6,7,8]. 

Some recent developments have made the hierarchical decision model approach very 

attractive also for problems in medicine and health care. In particular, some newly 

developed methods, including DEX, facilitate the design of qualitative (or symbolic) 

decision models. In contrast with traditional quantitative (numeric) models, the 

qualitative ones use symbolic variables. These seem to be better suited for dealing with 

“soft” decision problems, which are typical for medicine and health care: less structured 

and less formalized problems that involve a great deal of expert judgement as opposed 

to exact formal modeling and computation. 

In this article we present the approach to the development and application of 

qualitative hierarchical decision models that is based on the DEX shell. Section 2 

defines basic concepts of hierarchical decision models. In section 3, these are presented 

through a case study of breast cancer risk assessment. In particular, we illustrate various 



knowledge representation and option analysis methods, and emphasize their importance 

for practical decision making. To demonstrate the flexibility and applicability of the 

approach, section 4 presents three other applications of DEX in community nursing, 

diabetic foot treatment, and radiography. Three selected examples in Section 5 are used 

to illustrate a recently developed approach that uses retrospective patient’s data to either 

automatically induce or support a development of DEX-based hierarchical decision 

models. A summary and proposals for further work conclude the article. 

 
2. Hierarchical Decision Models 
 
In general, a hierarchical decision model is composed of attributes Xi and utility 

functions Fi (Figure 1). Attributes (sometimes also referred to as performance variables 

or parameters) are variables that represent decision subproblems. They are organized 

hierarchically so that the attributes that occur on higher levels of the hierarchy depend 

on lower-level attributes. 

<Figure 1> 

In theory, a hierarchy is represented by a directed acyclic graph, but in practice it is 

usually simplified to a tree. According to their position in the hierarchy, we distinguish 

between basic attributes (leaves or terminal nodes) and aggregate attributes (internal 

nodes, including the roots of the hierarchy). Figure 1 shows an abstract model that 

consists of five basic attributes X1 to X5, and two aggregate attributes, X6 and Y. For 

each aggregate attribute there is a corresponding utility function F that determines the 

dependency of that attribute with respect to its immediate descendants in the hierarchy. 

Options are represented by values ai of basic attributes. The evaluation of options is 

performed by an aggregation that is carried out from bottom to the top of hierarchy 

according to its structure and defined utility functions. The overall evaluation (also 

called utility) of an option is finally represented by the value of one or more root 

attributes (Y in Figure 1). 

A majority of current multi-attribute decision methods is aimed at the development 

of quantitative decision models. In such models, all the attributes are continuous, and 

utility functions are typically defined in terms of attributes' weights, for example as a 

weighted average of lower-level attributes. In contrast, the system DEX, which is 

presented here, exclusively deals with qualitative decision models. These consist of 



discrete attributes, whose values are usually words rather than numbers. The 

corresponding utility functions are represented by decision rules. Examples of these 

components are presented in section 3. 

Decision models are primarily developed for option evaluation: each option, 

described by values of basic attributes, is evaluated according to the model. This yields 

an overall evaluation for each option. On this basis, the options are compared and 

ranked, and the best one can be eventually identified and chosen by the decision-maker. 

However, this basic principle of operation is insufficient for most practical 

applications. Decision models can become very complex, so they have to be thoroughly 

verified to reduce the chance of error. There is a need for an analysis and explanation of 

both the decision process and evaluation results. In the following case study, we 

highlight the analysis and explanation methods of DEX that are particularly interesting 

for applications in medicine and health care. 

 
3. Application in Oncology: Breast Cancer Risk Assessment 
 
An early detection of breast cancer is of utmost importance for the patient [9]. To 

facilitate an early cancer detection, a screening procedure is often used where women of 

certain age or disease history in the family are invited to a routine examination or, if 

necessary, mammography.  

In collaboration with the specialists from the Institute of Oncology in Ljubljana we 

developed a prototype model to assess the risk of breast cancer. The model’s structure is 

shown in Figure 2. Cancer risk, which is assessed using a four-valued scale, is derived 

from features such as age, regularity of menstruation and fertility duration. 

<Figure 2> 

The risk of cancer is evaluated by decision rules, which were defined by the experts. 

As an example, consider Table 1 that shows the rule that determines the risk with 

respect to menstrual cycle and derives it from two input attributes: fertility duration and 

regularity/stability of menstruation. Here, the fertility duration can be either short (up to 

30 years of menstrual period), average (30 to 40 years), or long (longer than 40 years). 

Menstruation cycle can be either regular with a period of less than 28 days (R-28), 

regular with period longer than 29 days (R29+) or irregular (N). For each combination 

of fertility duration and menstruation regularity/stability, the experts assessed the risk 



related to menstrual cycle and expressed it using a three-level scale: low, medium, and 

high. Each row in the table can thus be interpreted as an elementary if-then rule that 

assesses the risk for the corresponding values of the two input attributes. Also, each row 

represents a point in the space determined by all three attributes. 

<Table 1> 

The experts have defined similar tables for all the remaining aggregate attributes in 

the model. In total, there are seven tables, each one having from 9 to 48 rows (19.3 on 

average). When defining the tables, an important feature of DEX is to continuously 

supervise the process and warn the user whenever the newly defined row contradicts to 

already defined ones. In Table 1, for example, the risk is expected to increase with 

fertility duration, and this has been indeed ensured by DEX. All the tables and, 

consequently, the model itself are therefore guaranteed to be consistent and to represent 

a monotone function: with an increase of risk represented by some basic attribute, the 

overall risk assessed by the model will increase, too, or at least remain constant. 

 
3.1 Knowledge representation and analysis of the model 
 

Methods that support the analysis of model and provide different means for knowledge 

representation are primarily used to verify the model and detect potential errors. These 

methods either consider the model as a whole, or separately investigate a single utility 

function. A decision rule (such as the one in Table 1) may, for example, be interpreted 

as a training set given to some machine learning algorithm to devise a semantically 

equivalent, but possibly more compact and comprehensible representation. 

As an example, consider Table 2 that was derived from Table 1 using a machine 

learning algorithm for the induction of aggregate rules [10]. The idea is to merge 

several rows from the original table into a single row of the resulting table. This is 

facilitated by using intervals of attributes’ values instead of single values in the 

conditional part of decision rule. The intervals are then represented by some meaningful 

symbols, such as in Table 2, where ‘*’ represents any value from the whole interval, 

and ‘? ’ stands for “better or equal”. Table 2 is by one third shorter than Table 1, and 

easier to read. For example, the rule 2 clearly states that the risk is high whenever the 

duration of fertility is long, regardless of the value of the second input attribute. To find 

out this from Table 1, one must have looked at three rules: 2, 3, and 4. With tables that 



are initially larger than Table 1 and have several tens of rows, this method works even 

better; it typically achieves a high reduction of size and considerably improves the 

comprehensibility of rules. 

<Table 2> 

For a less detailed representation of utility functions we can use weights: given a 

decision rule (such as in Table 1), we use some suitable method to estimate the average 

importance of each input attribute for determining the value of dependent variable. We 

then obtain weights by expressing these importances as percentages relative to each 

other attribute. This yields a very compact representation, which facilitates a quick 

overview and verification of a utility function.  

Two methods are used to assess weights with DEX: one is based on regression [10], 

and the other on measuring attribute informativity as in machine learning methods [11]. 

With regression, the idea is to interpret a decision rule as a set of points in a multi-

dimensional space and approximate it with a hyperplane in that space. Let nxxx ,...,, 21  

denote input attributes (such as “Fertility duration” and “Regularity and stability of 

menstruation” in Table 1) and y  the dependent variable, which is required to be ordered 

(such as “Menstrual cycle”). For the purpose of this method, all qualitative values of 

attributes are represented by their ordinal numbers. Accordingly, we can interpret a 

decision rule (such as in Table 1) as a collection of points and approximate them by a 

hyperplane nn xaxaay ???? ...110 . That is, we find the coefficients naaa ,...,, 10  so 

that the approximation is optimal in the least-squares sense. From now on, 0a  is usually 

omitted from the representation, and 1a  to na  are transformed into weights by 

representing them as relative percentages: 

 ?
?

?
n

j
jii aaw

1

/100  ; ni ,...,2,1?  

For the two input attributes of Table 1, “Fertility duration” and “Regularity and 

stability of menstruation”, this method yields the weights 63% and 37%, respectively. 

That means that the first attribute is on average about twice as important as the second 

one. This might be an important information for the developer, for example to confirm 

that the decision rule has been defined as expected. Note, however, that in contrast with 

the aggregate rules presented above, this representation is only approximate and 



incomplete: from the weights themselves it is in general impossible to fully reconstruct 

the original decision rule. 

As an alternative method, we can estimate the weights by means of informativity 

[11], a measure used in machine learning algorithms to identify the most relevant 

attributes [21]. This measure is based on the information-theoretic measure of entropy, 

ii pp 2log?? , where ip  is the probability of the i-th event. For our case, this method 

yields weights that are very similar to the ones obtained by regression: 64% and 36%. 

Representation with weights is particularly interesting when we consider a model as 

a whole. Even though the weights provide only a rough representation of utility 

functions and do not display any explicit relationships between attribute values and 

model outcomes, they allow a quick verification of the model, and are quite appreciated 

by decision-makers. Table 3 shows these weights for the breast cancer model, which 

were estimated by both methods: regression and informativity. To simplify the 

interpretation, the weights are shown as indices of importance, which are determined for 

each attribute separately as a ratio between the actual attribute weight and the weight 

that would be obtained if all the attributes in the model were equally important. The 

index of 100 therefore means that the underlying utility functions neither lower nor raise 

the importance of that attribute. Similarly, the index greater than 100 denotes an 

attribute whose importance is above the average. Table 3 shows relatively high indices 

for the attributes around “Hormonal circumstances”, highlighting their important 

contributions to the model’s outcomes. Other important attributes include the presence 

of disease in the family, exposure to physical cancerogenic factors, and age at first 

delivery. 

<Table 3> 

 
3.2 Evaluation and analysis of options  
 

To illustrate the use of cancer risk model, consider a woman aged 42, who has two 

children, regular menstruation, and increased body weight (high Quetel's index). She 

does not use oral contraceptives and works in the environment that increases the risk of 

cancer by its physical and demographic characteristics. There was no cancer disease in 

her mother or sister. The results of risk assessment are given in the first column of Table 

4. She obtained grade 3: an increased but not critical breast cancer risk. An explanation 



for such a risk can be found by the inspection of intermediate results in Table 4. 

Alternatively, a method of selective explanation can be used, which finds the subtrees of 

attributes that indicate particularly positive or negative influences to the risk. Such 

explanation is given in Table 5 and shows that the most important factors that contribute 

to the increased breast cancer risk are the age, increased body weight and environmental 

circumstances. 

<Table 4> 

<Table 5> 

To handle missing and non-exact data, DEX incorporates mechanisms that are based 

on probabilistic or fuzzy distribution of attributes’ values. For instance, assume that for 

the patient considered above we did not have data about chemical factors and oral 

contraceptives. For such case, the results of the evaluation are shown in the second 

column of Table 4. Note the use of asterisks for the missing data, which are interpreted 

as a uniform probabilistic distribution of the corresponding attributes’ values. Even with 

two missing data items, the evaluation yields the same overall risk grade as originally, 

while the only difference is in the less exact assessment of hormonal circumstances, 

which is now expressed by a probability distribution. In Table 4, this distribution is 

denoted as “3/0.5, 2/0.5”, which means that the probabilities of grades 2 and 3 are both 

equal to 0.5. 

Another useful feature of DEX is a what-if analysis. Here, we are interested in the 

effects of changing one or more attribute values. In the case examined so far, we may be 

interested in what would happen if the risks from physical factors and demographic 

circumstances were reduced. The third column in Table 4 shows that this leads to the 

reduction of breast cancer risk, which then evaluates to grade 2. Similarly, we can use 

the model and DEX to answer other relevant questions, for example, what would 

happen if the woman reduced her body weight, or what risk is she going to have when 

in menopause. 

 
4. Other Applications 
 
Currently, hierarchical decision models are in one way or another employed in several 

ongoing projects related to health care in Slovenia. The considered problems are quite 

different from each other, which, we believe, provides a strong evidence for the 



flexibility and applicability of the DEX approach. In this section, we outline some goals 

and achievements of three projects related to community nursing, diabetic foot care, and 

radiography. 

 

4.1 Community nursing: Assessment of basic living activities 
 

Community nursing is a special form of health care that assures an active health and 

social care of individuals, families and communities that are, due to their biological 

features or a disease, particularly exposed to harmful effects from the environment. The 

evaluation of patient’s health condition is the basis for the determination of nursing 

problems and action planning. This provides nurses with feedback, which is not only 

essential for their activity, but also enhances their effectiveness and the quality of their 

work in general. The evaluation of the appropriateness of nursing activities is based on 

positive alternations of basic living activities. When monitoring the client’s health 

conditions in living activities, we encounter the problem of aggregating the evaluated 

indicators into an overall evaluation of the client’s or patient’s health condition. 

The process method in nursing [12] defines fourteen basic living activities, which 

need to be properly assessed and recorded at every visit of the nurse. The aim of this 

project was to develop qualitative models for the evaluation of all these activities and to 

embed them into an information system for community nursing [13]. Models for all 

fourteen living activities together with a model for comprehensive patient’s living 

activity evaluation have been developed. As an example, the structure for the living 

activity “Physical Activity” is shown in Figure 3. All the attributes use five-grade Likert 

scales [14], and are in accordance with the International Classification for Nursing 

Practice [15]. 

<Figure 3> 

 

4.2 Risk assessment for diabetic foot care 

 

With a long-term goal to reduce the number of amputations in diabetic patients, a 

comprehensive diabetic foot care program was in 1995 launched in the diabetic clinic of 

General Hospital Novo Mesto, Slovenia [16]. The patients are screened for risk factors 

for developing foot pathology, which include: history of foot ulceration and amputation, 



symptoms of diabetic neuropathy, loss of protective sensitivity, angiopathy, and foot 

deformities. After screening, the patients are classified into four risk groups: (1) no 

pathology, (2) neuropathy, i.e., loss of protective sensation, (3) absent pedal pulses, and 

(4) highest risk due to a combination of basic findings or positive history for 

amputation/ulceration. 

The motivation for employing DEX in this project was twofold. The first was to 

automate the assessment of patients’ risk in an information system that is used in the 

diabetic clinic. The second, and more important one, was caused by the doctors’ 

dissatisfaction with the classification into risk group 4; this group was found extremely 

heterogeneous and too large, containing about 50% of all patients. While it is easy to 

agree that all these patients are at high risk, this classification turns out to be quite 

useless for therapy planning, such as tailoring specific educational program, or policy 

for the prescription of shoes. 

 
<Figure 4> 

A model for the assessment of patient’s risk status was developed (Figure 4). It 

consists of three main groups of attributes: History (data about previous ulcers and 

amputations), present status (data on symptoms, deformities and other changes), and the 

results of tests (loss of protective sensation, absence of pulse). Decision rules were 

carefully designed so as to provide a useful further decomposition of risk group 4. 

The model was evaluated on data of 2925 diabetic patients. The risk group 4 was 

split into six subgroups with different risk levels (Figure 5). The largest subgroup is a 

combination of neuropathy and any deformity such as hallus valgus, fat pad atrophy, 

hammer toe, or Charcot foot. The next three groups represent the patients with ischemic 

foot in combination with deformity, neuropathy, or both. The last two groups are for 

patients who have already experienced ulcer or amputation, respectively. These 

subgroups are considerably more homogeneous than the original group 4, and are thus 

more appropriate for the planning of further diagnostic procedures and treatment. 

Actually, the largest subgroup “neuropathy and deformity” is still quite large and leads 

to problems with shoes prescription. This is why we additionally partitioned the patients 

on the basis of the extent of deformities. This was done by a slight modification of the 

model’s decision rules, which resulted in an appropriate partition of patients into three 

new subgroups (Figure 6). 



<Figure 5> and <Figure 6> (together if possible) 

 

4.3 Radiography: Technical analysis of chest radiogram errors 

 

The aim of this ongoing project is to model expert knowledge about the technical 

quality of chest radiograms. Numerous factors cause poor quality, which makes the 

diagnostics more difficult and requires repeated radiography, which, as a consequence, 

doubles both the costs and radiation doses received by patients. 

Within this project, we developed a model to assess the quality of chest radiograms. 

The model consists of 25 basic and 16 aggregate criteria that belong to two principal 

groups: (1) quality of equipment and (2) recording procedure. For each radiogram, the 

model aggregates the 25 basic evaluations into a judgement of whether it is necessary to 

repeat that radiogram or not. The reasons for and against such a decision are then 

assessed by means of selective explanation (see section 3.2). 

In this way, the decision about the repetition of radiography is supported by a 

“second opinion” from the model. It has been shown in practice that such an evaluation 

often turns the radiography engineer away from unnecessary repeated radiography and 

at the same time points out possible flaws in the procedure or devices that need to be 

eliminated. As this is particularly important in education, where radiography engineers 

are trained for practical work, this model seems to have the greatest potential for 

radiography training and is currently being evaluated for this purpose. 

 

5. Discovery of hierarchical decision models from data 
 

Medicine is an environment rich both in knowledge and data. With proliferation of 

laboratory, clinical and hospital information systems, the data about patients are 

systematically collected and are available for subsequent analysis. On the other end, a 

variety of data mining and intelligent data analysis methods have recently been designed 

that allow the construction of highly predictive and interpretable models from 

retrospective patient’s data [17,18].  

The hierarchical decision models presented in this paper so far were developed 

“manually”, i.e., through collaboration between the expert and decision analyst, who 

used DEX mainly as a computer-based editor and storage of models. Recently, 



however, a new data mining method that supports structure and utility function 

development from pre-classified data called HINT was developed [19,20]. Given a set 

of pre-classified data, e.g., retrospective patient’s data with assigned outcomes, HINT 

can be viewed as a data mining method that induces a definition of the target concept 

(outcome) in terms of a hierarchy of intermediate attributes and their definitions. In this 

respect, HINT can be used to automatically construct hierarchical decision models from 

data. Furthermore, HINT can also incorporate existing domain knowledge in the form 

of a partially specified hierarchical decision model. For example, only the structure of 

model may be known and HINT may be requested to, using the available data, discover 

the underlying utility functions. Or alternatively, HINT may use the information about 

the structure with only some of the utility functions specified, thus using the data to 

induce the remaining utility functions. 

Let us illustrate the utility of HINT on three examples. In the first example, the task 

was to reconstruct the breast cancer risk assessment model. The hierarchical model (as 

presented in Figure 2) was used to generate 20000 randomly selected examples. Each 

example included only the values of basic attributes and associated outcome (risk 

factor); the remaining aggregate attributes were excluded from the data. In our 

experiments, only a subset of these examples was used by HINT to induce the 

hierarchical model; the classification accuracy of the model was tested on the remaining 

examples. HINT was compared to C4.5 [21], a well-known classification tree induction 

program. 

<Figure 7> 

Learning curves for this experiment are shown in Figure 7. HINT was very 

successful in the reconstruction, as it managed to derive a complete model consistent 

with the original model using a rather small subset of examples (about 4000 examples 

were sufficient for the reconstruction). In this, it outscored C4.5, which performed 

worse in this domain. Similar successful uses of HINT in hierarchical model 

reconstruction are reported in [20]. 

For the second example, we summarize the results on hierarchical model 

construction from neurophysiological data originally reported in [22]. The task was to 

induce a model of the influence of six nerve fiber properties to the conduction of action 

potential. HINT induced the model from a set of 3000 examples. The structure of the 



model (Figure 8) was interpreted by the expert (J.A. Halter, Baylor College of 

Medicine, Houston, TX). He found that the discovered attributes (c1, c2 and c3) 

constitute useful intermediate biophysical properties. The intermediate attribute c1, for 

example, couples the axonal properties and the combined current source/sink capacity 

of the axon, which are the driving force for all propagated action potentials. 

Furthermore, the attribute c2 appropriately couples the myelin sheath properties. The 

experiment confirmed that the interpretation of machine-induced hierarchical model 

need not be a difficult task, provided that a sufficient domain expertise is available. 

<Figure 8> 

Our third example is different from the previous two, since the hierarchical structure 

for the problem was already designed by the expert, and so were the functions for all but 

the topmost (target) attribute. The task was to construct a prognostic model for the long-

term outcome after femoral neck fracture treatment with implantation of hip 

endoprosthesis [23]. Initial experiments with a naïve Bayesian machine learning 

algorithm to build a prognostic model using the data records of 112 patients (patients 

admitted and operated at Department of Traumatology of University Clinical Center in 

Ljubljana from January 1988 to December 1996) that included 28 features and an 

outcome yielded marginally significant models of relatively poor performance. Instead 

of initial 28 features, HINT employed a given hierarchical decision model to build the 

missing topmost utility function. These included only six intermediate attributes, and 

were used to construct a naïve Bayesian-based model. The final prognostic model thus 

combined a hand-crafted DEX-like hierarchical model to derive six abstract attributes, 

plus a naïve Bayesian model that mapped these six attributes to an outcome. 

Experimental results [23] indicate that such a schema can yield a significantly better 

performance than when traditional modeling based on only original attributes is used, 

thus stressing the potential value of domain knowledge when expressed through 

hierarchical decision models. 

 
6. Conclusion 
 
Hierarchical decision models are increasingly used within health care. For practical 

applications, it is particularly important that these models and supporting decision-

making tools, such as DEX, allow the structuring of domain knowledge and are capable 



of dealing with qualitative variables and utility functions. They also provide means for 

model and data analysis, evaluation in the presence of missing or inaccurate values, and 

explanation of evaluation. All these features provide a foundation for a systematic, 

transparent, and justified decision-making, which is especially important for “soft” 

decision problems that often occur in medicine and health care. We believe that the 

number and diversity of real-world applications presented in this article confirm the 

applicability, maturity, and flexibility of the approach. 

Possible weaknesses of the method are twofold. Practical experience indicates that, 

in comparison with traditional quantitative modeling techniques, the development of 

qualitative models may take more time, and may require more effort and skills from 

both the decision maker and decision analyst. This is because qualitative models in 

general need a more detailed and more refined hierarchy of attributes than their 

qualitative counterparts, and also require a detailed elaboration of decision rules. 

Another potential problem of DEX is that it currently supports only qualitative 

attributes and utility functions, but provides no facilities for dealing with quantitative 

ones. As this seems highly desirable for many practical problems, our further work will 

be particularly focused on an integration of qualitative and quantitative modeling 

techniques.  

Until recently, most of the employed hierarchical decision models were developed 

manually. With an increased use of laboratory, clinical and hospital information 

systems, large volumes of retrospective patient data has become available from which 

prognostic and diagnostic models can be induced using machine learning and data 

mining techniques. Within this framework, we presented the utility of HINT, which is a 

data mining method that supports structure and utility function development from pre-

classified patient’s data. We show that HINT can be used to discover hierarchical 

decision models and may perform well both in terms of classification accuracy and 

discovery of meaningful concept hierarchies. We strongly believe, though, that the most 

promising feature of HINT is to build decision models in interaction with the expert: 

expert may express partial knowledge about the structure, or about the utility functions, 

and the rest of the model is induced from the data by HINT. In such an approach, both 

the information from retrospective data and existing medical knowledge are combined 

to construct potentially useful and highly predictive medical decision models. 
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Figure 1: Components of a hierarchical decision model 
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Figure 2: The structure of breast cancer risk assessment model 
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Figure 3: The structure of Community Nursing model for assessing Physical Activity 



 

History Present status Tests

SymptomsUlcers Amputations

RISK

Other
changesDeformities

Loss of prot.
sensation

Absence
of pulse

 
Figure 4: The structure of model for risk assessment in diabetic foot care 
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Figure 7: Learning curves for C4.5 and HINT on breast cancer risk data 
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Figure 8: Attribute structure as discovered from neurophysiological data on nerve-fiber conductivity 

 



 
Table 1: Decis ion rule to assess the risk specific to menstrual cycle 

 Fertility duration Reg. /stab. of menstruation Menstrual cycle 
1 average R-28 high risk 
2 long R-28 high risk 
3 long R29+ high risk 
4 long N high risk 
5 short  R-28 moderate risk 
6 average R29+ moderate risk 
7 short  R29+ low risk 
8 short  N low risk 
9 average N low risk 

 



 

Table 2: Aggregate rule as derived from Table 1 
 Fertility duration Reg. /stab. of menstruation Menstrual cycle 
1 ?  average R-28 high risk 
2 long * high risk 
3 short  R-28 moderate risk 
4 average R29+ moderate risk 
5 short  R29+, N low risk 
6 ?  average N low risk 

 



 

 
Table 3: Attributes from breast cancer risk model by their index of importance, estimated by 
 regression and informativity. The indices of most important attributes are printed in bold. 

BREAST CANCER RISK Regression Informativity 
    Hormonal circumstances 158 202 
        Menstrual cycle 125 123 
            Fertility duration 125 128 
            Regularity and stability of menstruation  75   72 
        Fertility 111   99 
            Age  97 145 
            First delivery 145 128 
            # deliveries  58   27 
        Oral contraceptives  65   78 
    Personal characteristics  88   56 
        Quetel’s index  29    5 
        Family history 197 183 
        Menopause  74 112 
    Other  55   42 
        Cancerogenic exposure 100 100 
            Physical factors 160 166 
            Chemical factors  40   34 
        Demographic circumstances 100 100 

 



 
Table 4: Examples of evaluation and analysis of breast cancer risk 

 Basic evaluation Missing data What-if analysis 
BREAST CANCER RISK 3 3 2 
    Hormonal circumstances 2 3/0.5, 2/0.5 2 
        Menstrual cycle moderate risk moderate risk moderate risk 
            Fertility duration average average average 
            Regularity/stability of menstruation R29+ R29+ R29+ 
        Fertility moderate risk moderate risk moderate risk 
            Age over 40 over 40 over 40 
            First delivery 29 or younger 29 or younger 29 or younger 
            # deliveries up to 4 up to 4 up to 4 
        Oral contraceptives no * no 
    Personal characteristics 1 1 1 
        Quetel’s index 29+ 29+ 29+ 
        Family history no no no 
        Menopause no no no 
    Other high risk high risk moderate risk 
        Cancerogenic exposure high risk high risk moderate risk 
            Physical factors higher higher lower 
            Chemical factors no * no 
        Demographic circumstances high risk high risk moderate risk 

 



 
 

Table 5: Selective explanation of evaluation 
Reasons FOR high risk Reasons AGAINST high risk 

            Age over 40     Personal characteristics 1 
        Quetel’s index 29+         Family history no 
    Other high risk         Menopause no 
        Cancerogenic exposure high risk             First delivery 29 or younger 
            Physical factors higher         Oral contraceptives no 
        Demographic circumstances high risk             Chemical factors no 

 

 


