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Abstract

The article presents a construction of a prognostic model for the long-term outcome

after femoral neck fracture treatment with implantation of hip endoprosthesis. While

the model is induced from the follow-up data, we show that the use of additional expert

knowledge is absolutely crucial to obtain good predictive accuracy. The article proposes

a schema where domain knowledge is encoded as a hierarchical decision model of which

only a part is induced from the data while the rest is speci�ed by the expert. Although

applied to hip endoprosthesis domain, the proposed schema is general and can be used for

construction of other prognostic models where both follow-up data and human expertise

is available.

1 Introduction

The incidence of femoral neck fractures has doubled in the last 30 years along with an increase

of the population over 65 years of age. An acute medial femoral neck fracture is most often

treated with implantation of bipolar partial or total hip endoprosthesis [11, 10, 7]. The aim of

treatment is to enable the patient to walk soon after surgery on a stable and painless hip, and

to avoid avascular necrosis or nonunion or both. Endoprosthesis as a primary treatment of the

fracture can ensure lower number of complications after the operation, a shorter rehabilitation

period, lower number of revision arthroplasties and can ultimately lead to a higher quality of

life of the elderly patient.

Various factors like, for example, patient's health status prior to operation, timing, possible

complications and quality of rehabilitation may inuence the �nal outcome after a successful

implantation procedure. To systematically assess the signi�cance of these factors and deter-

mine the way they relate to the patient's long term clinical status, a study that included
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112 patients admitted and operated at Department of Traumatology of University Clinical

Center in Ljubljana from January 1988 to December 1996 was conducted. For each patient,

a number of features at the time of operation or immediately after were recorded. Patient's

long-term clinical status was assessed at least 18 months after the operation. The importance

of collected factors was studied through a construction of a prognostic model, that would,

just after the operation, be able to predict patient's long term status. The main questions

were (1) which factors are most related to the outcome and, if properly selected, (2) whether

they contain enough information to be included in the model of reasonable predictive perfor-

mance. Although this article focuses on construction and selection of factors that are relevant

to outcome prediction, the model that resulted from the study may be used in clinical practice

for early identi�cation of critical cases and, prior to operation, study di�erent rehabilitation

scenarios.

Recently, various methods from the research areas of machine learning and data mining have

been developed that may use existing patient data to construct prognostic models. Di�erent

studies have showed, however, that using additional explicitly encoded expert knowledge can

signi�cantly enhance the performance of the induced models [12, 19]. For hip arthroplasty

domain, the physician expressed her domain knowledge by grouping functionally related fea-

tures, further representing each group with a new feature at a higher level of abstraction,

and organizing original and new features into a factor hierarchy. We have borrowed this

background-knowledge elicitation method from the �eld of decision support systems, and

speci�cally from hierarchical multi-attribute decision systems [16, 2, 3]. The latter assume

that the expert can develop both feature hierarchy while manually encoding all relations be-

tween features. Although we have found that it was relatively easy for a physician to relate

original and new factors by providing a corresponding mapping function, the use of machine

learning algorithm was required to mine the data and relate the selected higher-abstraction

features to the patient's long term status. The methodology and the main contribution of

the work presented is thus a proposed combination of hierarchical decision modelling and

machine learning to construct prognostic models of improved performance.

The article is organized as follows. We �rst present the characteristics of the data that

was used to induce the prognostic model. The feature hierarchy as de�ned by physician is

discussed next. Using the data and selected features from the feature hierarchy, we use a naive

Bayesian machine learning algorithm to construct a prognostic model. Evaluation shows that

a combination of data mining and hierarchical decision modeling may signi�cantly improve

the performance of prognostic model and lead to a model that can be used in clinical practice.

2 The Data

A dataset of 112 patients admitted and operated at Department of Traumatology of Univer-

sity Clinical Center in Ljubljana from January 1988 to December 1996 was collected. For

each patient, a study recorded over 100 features at the time or immediately after operation.
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We will refer to them as to recorded or measured features. Of these, 28 features that may

have an inuence to the long-term clinical status of the patient were selected by physician.

These mainly include patient's health status prior to operation, data about complications

prior, during, and after the operation, type of implanted endoprosthesis, and results of early

rehabilitation. Most of the features recorded were categorical (e.g., \pulmonary diseases"

having possible values \no" and \yes"). For a few originally numeric features the values were

categorized by physician by expressing meaningful cut-o� points (e.g., for \walking" the cut-

o� point is 9 days, and the feature has two categorical values of \less or equal to 9 days" and

\over 9 days").

The long-term clinical status was assessed through a follow-up at least 18 months after the

operation and used a scoring system proposed by Harris [6, 8]. Harris hip score gives an overall

assessment of patient's condition and is evaluated by a physician who considers patient's

ability to walk and climb stairs, patient's overall mobility and activity, presence of pain,

function of the hip and quality of life and absence of deformations in general with respect to

the injured hip. It uses a point scale from 0 to 100 | the higher the score, the better the

long-term outcome after hip arthroplasty. For the purposes of this study, Harris hip score was

categorized to \bad" (values below or equal to 70), \good" (values above 70 but lower than

90) and \excellent" (values above 90). The follow-up study included 38.4% patients with bad,

30.4% with good, and 31.2% with excellent Harris hip score.

3 Hierarchical Decision Model

To express additional (background) knowledge about the hip arthroplasty domain, physician

was asked to organize recorded features into meaningful subgroups. Not surprisingly, this was

a relatively easy task for the physician, since these groups were already partially identi�ed

in a questionnaire that was used to collect patient's data. As there were rather many groups

that include only a few features, physician was further asked to further organize some of

the groups. As the identi�ed groups may represent new intermediate features, the procedure

described above resulted in a hierarchical classi�cation of features (called a feature hierarchy)

that is shown in Figure 1. To distinguish originally recorded features at the leaves of the

feature hierarchy from the names of intermediate features, the last ones are outlined.

For example, features that recorded the time of �rst sitting, standing and walking of the

patient after the operation were grouped within \Functional Result". It can be said that

\Functional Result" depends on sitting, standing, and walking. Similarly, as shown in the

hierarchy from Figure 1, \Psychophysical status" depends on patient's cooperation and hos-

pitalization time. Physician further identi�ed that \Functional Result" and \Psychophysical

Status" both de�ne the length of \Rehabilitation", thus introducing another intermediate

feature.

Besides naming each feature group, intermediate features were also assigned a set of possible
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Figure 1: Feature hierarchy
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Figure 2: Utility functions for complications during the operation (left) and early complica-

tions (right).

values. For example, \Functional Result" may be \good" or \bad", the length of \Rehabili-

tation" may be \short", \medium", or \long", etc.

For most of the newly introduced intermediate features, physician was able to identify their

functional relation with their immediate successors in the feature hierarchy. The relations were

expressed as pointwise utility functions. For example, Figure 2 shows such utility functions

for intermediate features that encode complications during operation (\During op.") and

early complications (\Early"). For instance, second row in the left table in Figure 2 says

that when there are no general complications (\general=no") but there are treatment based

complications (\treatment based=yes"), it is considered that there are complications during

operation (\During op.=yes"). The utility functions were completely speci�ed, i.e., physician

assigned a value to an intermediate feature for every combination of values of preceding

features in a hierarchy.

4



Using feature hierarchy and its corresponding utility functions, and given the values of mea-

sured features for speci�c patient, the value for intermediate features may be determined. For

example, if the patient had no general and treatment-based complications, this means there

were no complications during the operation (Figure 2, Table on the left). If we similarly �nd

that the same patient had few other complications, we can conclude that she had a few early

complications (Figure 2, Table on the right).

Utility functions were elicited from the physician for all intermediate features but for the

outcome feature which encodes Harris hip score. It was however pointed out that the long-

term outcome may depend on the characteristics of the patient (\Patient"), her health status

(\Health St."), timing of the operation (\Timing"), complications prior, during and after the

operation (\Complications"), type of endoprosthesis (\endoprosthesis"), and requirements for

rehabilitation (\Rehab"). Thus, the relation between measured and intermediate features on

one side and the outcome on the other side needed to be determined from patient's data, as

shown in the next Section.

It took about a day for the physician to de�ne a feature hierarchy, and about a day to de�ne

utility functions. For both tasks, we have used a decision support system shell DEX [2], that

supports graphical construction of the hierarchy and, more importantly, actively supports the

construction of utility functions by performing consistency checks, suggesting the values of the

intermediate features for the combinations not yet speci�ed by the expert, and being able to

summarize the utility functions graphically or textually [2, 3]. We further found DEX useful

for the actual evaluation of patient's data. Namely, given a dataset of 28 original features

for 112 patients, DEX augmented this set with the values for all 16 intermediate features

introduced in the feature hierarchy and de�ned through the use of physician-speci�ed utility

functions. The resulting dataset thus consisted of 44 features and a corresponding outcome

(categorized Harris hip score).

4 Data Mining and Induction of Prognostic Model

Data mining was used to answer two questions: (1) which features are most relevant when

trying to determine patient's long-term status, and (2) which features should be used to

construct a prognostic model of acceptable performance. To answer the �rst question, the

information gain was assessed for each feature. Information gain was proposed by Quinlan [15]

and in essence measures how well can one distinguish between di�erent values of the outcome

by knowing only the value of a single feature. The higher the information gain, the more

relevant is the feature to determine the outcome.

All 44 features, i.e., original and intermediate features, were assessed. Ten most relevant

features are presented in Table 1. It is interesting that among the highest-ranked features

most of them are intermediate ones. Although this result was expected, it also con�rms

the potential high value of intermediate features and may indicate for correctness of utility

functions that express them. Namely, since each intermediate feature in essence combines
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at least two original features, it should | if properly encoded and constructed | give more

information about the outcome than each of the features it combines. Let us illustrate this

point with the following example. Among the best rated features are measured features \time

from injury to operation" and \hospitalization time". But these two features are constituents

of intermediate features \Timing" and \Psychophysical Status", respectively, which are both

rated higher. Similarly, \Cardiovascular" is rated higher then \pulmonary", but lower than

\Health St.".

Feature name Information gain

Health St. 0.139

Cardiovascular 0.113

pulmonary 0.095

Psychophysical Status 0.065

Timing 0.060

time form injury to operation 0.052

hospitalization time 0.050

Complications 0.048

Neurological 0.047

sitting 0.046

Table 1: Ten most relevant features to determine the long-term status of the patient.

An exception of the above is \sitting", the fourth measured feature included in the list of

ten most relevant. After the inspection of the database, we found, however, that the faster

that the patient's are able to sit, the lower is their outcome Harris hip score. This is in

contradiction to the common expert knowledge for hip arthroplasty domain, and identi�es

the potential problem with undersampling of the problem space for this particular feature.

Since this common expert knowledge was encoded in a utility function for \Functional Result",

\sitting" in a way spoiled the value for \Functional Result" when combined with \standing"

and \walking," and thus \Functional Result" was rated rather low.

We next needed to select the features for our target prognostic model. From the ten best-

rated features from Figure 1, we have decided to include only the features of the highest level

of abstraction. Using this rule, only the features \Health St.", \Timing", \Complications",

and \Psychophysiological Status" were used. Features \pulmonary" and \Cardiovascular"

were left out because of the higher-abstract feature \Health St." We excluded \Neurological"

complications since they are constituents of \Complications". For a similar reason we do not

use \time form injury to operation" and \hospitalization time". Since, as stated above, we

have found inconsistencies with feature \sitting", we do not include it in the �nal model.

The prognostic model was derived from the data using a naive Bayesian machine learning

method [9]. Assuming the independence of features, the probability that a patient described

with values of predictor features V = (v1:::vn) has an outcome o 2 O, where O is a set of
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possible outcome values, can be estimated by Bayesian formula

P (ojV ) = P (o)
nY

i=1

P (ojv
i
)

P (o)

where P (o) is the apriori probability of an outcome o and P (ojv
i
) is the conditional probability

of an outcome o if i-th predictor variable has the value v
i
; both are estimated from the dataset

of patients. Note that this formula can be derived from the more common form P (ojV ) =

P (o)=P (V )
Q

i
P (v

i
jo) by reapplying the Bayesian rule P (v

i
jo) = P (ojv

i
)P (v

i
)=P (o).

Derived naive Bayesian prognostic model can be graphically presented as a nomogram [18, 13].

The nomogram (Figure 3) shows the impact of individual features on the probability of each

of the three outcome values. The positions of feature values are computed as logarithms

of their respective terms in Bayesian formula; e.g., the left-most value of the upper-most

axis shows the impact of bad timing on excellent outcome, and its position is computed

as ln(P (excellentjHealthSt = bad)=P (excellent)). Thus, the values right of zero favor the

speci�c outcome and the values on the left speak against it.

Nomogram can be used to manually compute probabilities of speci�c outcomes for a partic-

ular patient. For example, let us compute the probability for the high value of Harris hip

score given that a patient has good health status, fair timing, no complications and good psy-

chophysiological status. Summing the impacts of the given values, that is +0:21 for health

status, �1:0 for timing, +0:09 for complications and +0:1 for psychophysiological status,

gives a total of �0:6. The negative sum already tells that the probability for the high value of

Harris hip score for this patient is lower than the average and that the major factor causing

it is fair timing. The scale below the nomogram is provided for converting the sums into

probabilities of outcomes. For our sum of �0:6, the probability for an excellent outcome is

around 20% (between 23% and 14%). Note that the Bayesian formula is an approximation,

so the computed probabilities for all the three outcomes do not necessarily sum to 100%.

Additional information that can be extracted from the nomogram is the importance of in-

dividual features and individual values. The \Psychophysiological Status" seems to be less

important, as the impacts of its possible values are limited to a smaller region than the values

of the other three features. More interestingly, there are no feature values which can signi�-

cantly improve the Harris hip score as the values with positive inuence are at most at +0:2,

which is low in comparison with the values that decrease the chances for a successful implan-

tation and can be more than �1:4. The attributes with a signi�cant negative inuences are

bad health status, bad or fair timing, many complications and bad or fair psychophysiological

status. An undesired value of any feature will always outweigh positive values of others.

5 Evaluation

In the previous Section we have assumed that the reasoning behind the selection of features

(choosing the best ranked higher-abstraction features) and utility of naive Bayesian machine
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Figure 3: Nomogram for naive Bayesian prognostic model

learning leads to a plausible prognostic model. We here experimentally evaluate the two

assumptions and assess the signi�cance of our results.

To evaluate naive Bayesian method and the selection of features, a standard technique of

strati�ed 10-fold cross-validation was used [14]. This divides the patient data set to 10 sets of

approximately equal size and equal distribution of outcomes. In each experiment, a single set

is used to measure the classi�cation accuracy of the model that has been developed from the

remaining nine sets. Classi�cation accuracy is expressed in percent of patients in the test set

that were classi�ed correctly. Note that since our database has a majority of 38.4% patients

with bad Harris hip score, it is expected that a reasonable classi�er should signi�cantly exceed

this lower-bound for classi�cation accuracy.

We have tried to learn the prognostic model from 28 original features, from best ten of

measured and selected features (Table 1), and from a selection of intermediate features taken

from the list of best ten features as advocated in the previous section. The results are

presented in Table 2. It is clear that naive Bayesian learner performs best when using the four

features selected from the highest ranked features. The signi�cance measured with McNemar

test [5, 4] further shows that such classi�er is signi�cantly better (p < 0:003) than default

classi�er that always classi�es to the majority class, and also signi�cantly better (p < 0:03)

than naive Bayes when using only the measured features. This result clearly points out the

value of additional domain knowledge in the form of feature hierarchy.

Figure 4 shows the numerical value of Harris hip score averaged across patients that were

classi�ed to the same outcome class. This analysis shows that the model induced from mea-
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model classi�cation accuracy

majority class (default) 38.4

naive Bayes (measured features) 44.6

naive Bayes (best 10) 55.4

naive Bayes (selected from best 10) 56.3

Table 2: Classi�cation accuracy of di�erent prediction models.

sured features poorly di�erentiates patients with \bad" and \good" outcome, while the model

induced from intermediate features performs better in this respect. The major reason for the

success of the later model can thus be contributed to the improved classi�cation of patients

with \bad" outcomes.
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Figure 4: Average Harris hip scores for the predicted outcome class. Oracle (\true" class for

each patient) is compared with class predicted by naive Bayes when using either 28 original

features or only a set of four selected intermediate features.

6 Conclusion

In general, medicine may be considered as data and knowledge rich environment [1]. When

constructing prognostic models for speci�c medical domain, it may thus be useful to both learn

the model from the data while additionally using an explicitly coded expert knowledge. This

was also the core idea of the approach we present in this article. The task was to construct

prognostic model for a long-term outcome after acute femoral neck fracture treatment with

implantation of hip endoprosthesis. The expert knowledge was encoded as a hierarchy of

patient's features recorded before or immediately after the operation. Additional knowledge

was expressed with utility functions that relate measured features with new intermediate

features used in the hierarchy. Selected intermediate features where then used to construct
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the model from patient data using naive Bayesian machine learning approach.

The resulting prognostic model thus consists of feature hierarchy and corresponding utility

functions de�ned by expert, and a data-induced utility function that models the outcome

using four intermediate features. We show that an immediate advantage of using expert-

de�ned background knowledge was in our case signi�cantly improved performance of prog-

nostic model. We also show that without the background knowledge, the performance of

prognostic model would only be marginally better than a default classi�er, that would clas-

sify all patients to the same majority class.

Although applied to the hip endoprosthesis domain, the proposed schema that combines

manual construction of hierarchical decision model and its partial induction from the follow-

up data is general and can be used for construction of other prognostic models where both

follow-up data and human expertise is available. The experience from the �eld of decision

support systems also indicates that building a hierarchical decision model can be cost-e�ective

as it usually requires up to �ve days of expert's involvement (in our case only two days).

Additionally, there are also techniques available to support the induction of feature hierarchies

from data [17] that can be used to further support the elicitation of the background knowledge.

The presented article focused on the construction of the prognostic model for outcome of

hip arthroplasty. While our measure of success was based on estimated performance of the

model, studies are under way that will assess the utility of PC-based and PalmPilot-based

implementations of prognostic model in everyday clinical practice.
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