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Abstract 
This paper deals with monitoring the health status of 
a patient at home so as to detect critical evolutions 
over a scale of several days or weeks. A multivariate 
simulation is used as a way to overcome the lack of 
experimental data required for studying this 
decision-making issue. The simulation process needs 
to be driven in a rigorous and robust way. Due to 
that, and to deal with heterogeneity and complexity, 
we make use of an hybrid and refinement 
methodology. It involves the fusion of several types 
of models and knowledge, as well as the 
implementation of a cascade structure for the 
simulation process. 

1 Introduction 
Home health telecare systems are built upon a global 
medical information system for monitoring elderly people  
living on their own. Most of the current works dealing 
with home health telecare are focused on the architecture 
issue, dedicated to specific pathologies, or concern basic 
alarms related to the person’s situation at home [7]. Basic 
alarms are raised by “smart” sensors or low layers of a 
“local intelligence unit” when a problem occurs at a short 
temporal scale: either one parameter overpasses a critical 
value (nocturia, pollakisuria, fall, hypertensive crisis, 
etc.), or a critical scenario involving the value of possibly 
more than one parameter is recognized (asthma crisis, 
etc.). Our focus is on the broadcasting of high level 
alarms about the person’s health status, which correspond 
to the detection of slow changes in the behavior – along 
several days or weeks – that are not easily spotted by a 
daily visit from caregivers. The aim is then to support the 
caregivers by providing some previously unknown 
information about unusual trends in the person’s 
behavior. These changes are potentially observed through 
the variation of complementary parameters representative 
of the health status, and monitored through a provision of 

sensors of different types (activity, environment, and 
physiology) installed and networked in the home. 

Dealing with this decision-making issue, and 
considering the lack of experimental data, we propose to 
set up a simulation process. The aim is to generate 
multivariate time-series relevant for the study of the 
person’s behavior. The simulation process is designed to 
preserve the problem’s complexity and requires as input 
commonsense and academic knowledge, as well as 
knowledge extracted from a set of experimental data. The 
methodology is based on cycles of refinement in order to 
better match the requirements of the decision’s purpose. 

2 Why a simulation process? 
The study of any decision-making process requires 
realistic and accurate data collection. In relation to 
experimentation, setting up a simulation process enables 
researchers to have a full and tightly controlled universe 
of data sets. The advantages are at least five fold: (1) 
producing large sets of data to experiment with decision-
making algorithms, (2) generating data representative of 
many situations and many peoples’ profiles, (3) building 
a process that is credible and easily understandable by 
any actor of the system, in contrast with an analytic 
modeling approach, (4) providing a better a posteriori 
knowledge of the parameters observed at home and the 
trends of their joint variations, and (5) testing the 
efficiency and the robustness of detection algorithms by 
varying the simulation parameters. 

Even though simulation has many strengths, it is not 
without drawbacks. According to Shannon [9], the 
usefulness of a simulation process depends on: (1) the 
quality of the model; (2) the appropriateness and quality 
of the data; and (3) the accurate specification of the 
simulation conditions to generate data consistent with the 
purpose of the study, that means neither oversimplifying 
the model, nor carrying too much details. However, 
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Chwif [2] highlights a lack of  methodologies to lead a 
modeler to obtain a simpler model, and, more generally, 
Kelton [4] underlines that simulation faces general 
methodological problems. In [6], Ören presents a 
simulation taxonomy which leads to the definition of 
almost up to 100 types of simulation. Then, extracting 
general guidelines becomes almost impossible. 

However, there is a critical step required in any 
simulation process: the validation and the verification of 
the model and their behavior, which aim at checking 
respectively whether: (1) the simulation process operates 
the way the analyst intended, and (2) it behaves the way 
the real system does or will. In [8], Sargent exclusively 
discusses validation and verification of simulation 
models, and particularly how they relate to the model 
development process. 

In our context of research, the simulation process 
includes several original features related to the use of an 
incremental and hybrid approach. The methodology is 
incremental to allow the process refinement at two levels: 
(1) within the scope of the problem solving scheme, and 
(2) at the stage of the simulation model building and 
validation considering a given purpose and context. An 
hybrid approach is required: (1) to deal with 
heterogeneous data, (2) to support the generation of 
multidimensional and correlated data sets, and (3) to 
integrate different kinds of knowledge in the process: 
commonsense and academic knowledge, as well as new 
knowledge extracted from experimental data sets.  

3 Methodology for simulation 

3.1 Simulation as part of a problem solving 
scheme 

Setting up a simulation process makes sense only in its 
context and purpose of use, so that a simulation process 
should be considered as part of a problem solving 
scheme. This aims at narrowing and specifying the space 
of information and knowledge to consider by answering 
questions like: what are the relevant observations to set 
up? or which level of detail to consider? There is a 
compromise to be found between the necessity to save the 
complexity of phenomena in a simulation process, and the 
restriction to a level of detail that meets the decision’s 
purpose, so that the generated time-series are appropriate 
to the decision making. 

Considering that the detection of slow changes in a 
person’s behaviour at home is a “high level” issue, the 
sequences of data used for the decision making may not 
require a high degree of detail and accuracy while 
remaining realistic. The aim is not to interpret precisely 

the problem that occurred, but to set up the context of 
occurrence of the changes. It is the joint variation of the 
parameters monitored that is more crucial. However, a 
difficulty lies in the lack of a priori knowledge about 
these joint variations. That requires a reliance on the 
diversity of informational sources, which are a priori 
knowledge – that is commonsense and academic 
knowledge – and experimental data sets. Some new 
useful knowledge – so called “extracted knowledge” – 
may be extracted from the experimental data. 

On its own side, the simulation process is a cycle of 
refinement to better match the requirements of the 
problem entity [8]. It includes sequentially: (1) the 
conceptual model building according to the analysis of 
the general purpose and context of the problem; (2) the 
implementation of this model in a computerized model; 
and (3) experimentation to generate large sets of data. 
The critical points of verification and validation are 
relevant at all these steps, so that they are conducted as 
part of the simulation development process [8]. 

3.2 A hybrid simulation scheme 
Fusion is commonly used to deal with complexity and 
heterogeneity. In setting up the simulation process, we 
considered it essential to integrate several kinds of 
knowledge at each stage of its conception and validation, 
that is: (1) commonsense knowledge, (2) academic 
knowledge, and (3) knowledge extracted from 
experimental data sets. Commonsense knowledge is 
exclusively qualitative, whereas academic and extracted 
knowledge may be either qualitative or quantitative. 
Qualitative knowledge is interesting at two levels: (1) it 
gives an idea of fundamental concepts underlying the 
simulation model, and (2) commonsense knowledge from 
experts may be used for the validation of both the 
conceptual model and the data produced by the 
simulation when facing a lack of quantitative knowledge 
and / or experimental data. Quantitative knowledge 
allows validation and / or quantification of the concepts 
in order to get a model ready for implementation. It may 
be extracted from one part of the experimental data set 
(modeling data set). The other part is used for the 
operational validation (validation data set). 

The kinds of knowledge involved at the different 
stages of the simulation process determine the techniques 
of modeling and validation [8]: (1) rationalism and logic 
deductions integrate commonsense knowledge and 
assume that everyone knows whether the underlying 
assumptions are true; (2) empiricism involves academic 
knowledge and then requires every assumptions to be 
empirically validated; (3) mathematical analysis and 
statistical methods are used to test theories and 

 
 



  

assumptions underlying the conceptual model using 
experimental data set, and produce new so called 
extracted knowledge; and (4) face validity involves 
asking people knowledgeable about the system whether 
the model looks reasonable, calling on their 
commonsense knowledge. Concerning the operational 
validation – that is the validation of the output’s of the 
simulation model – the major attribute affecting the 
selection of a relevant technique is whether the system is 
observable. If data about the real system are available, 
appropriate techniques consist of comparing the model 
and system input-output behaviors, for instance by the 
means of graphical displays or using statistical tests and 
procedures. Otherwise, the data sets produced by the 
model are validated subjectively by experts, or by 
comparisons to the results of other models. 

4 The context of home health telecare 
In the context of detecting bad trends in health status, the 
purpose of the simulation is, first, to generate sequences 
of data representative of usual conditions of life. Later, 
the simulation of the disruption of these sequences will 
allow us to test the efficiency and robustness of decision 
algorithms. 

4.1 Observable parameters 
In defining the observable parameters, a compromise 
needs to be found between: (1) being easily observable 
and non invasive; and (2) gaining a full appreciation of 
the person’s condition, sensitive to any change in the 
health status. Our observables’ selection for a first step of 
simulation is based on the following assessments: (1) a 
deterioration of a person’s health status usually entails 
behavioral disorders; and (2) the heart rate is an important 
and easily observable physiological measure 
representative of both the activity and the health status 
[5]. Thus, we decided to consider the following four 
parameters: (1) the person’s moves, (2) their postures, (3) 
the activity level, and (4) the mean heart rate. All these 
parameters can be defined from a provision of sensors. 
(1) The moves are recorded through infrared motion 
sensors; (2) the postures using a set of accelerometers; (3) 
the activity levels are measured by a portable 
accelerometer worn on the chest and estimated through 
the body acceleration along the anterior-posterior axis; 
and (4) the mean heart rate is computed from the data 
recorded by an ECG portable recorder. 

4.2 Simulation inputs: data and knowledge 
In our context, records of data from sensors installed in a 
person’s home are not available. However, we have got 

data corresponding to the monitoring during two non-
consecutive periods of 24 hours of twelve young, 
normotensive, and healthy subjects in their everyday life, 
male or female, between 20 and 30 years old. Data 
recorded include: (1) the date and time; (2) the annotation 
of activity types (every 15 minutes), ranked in 14 
increasing levels: sleeping, lying down, sitting still, 
sitting and speaking, sitting and working, eating, 
standing, standing and working, ridding bicycle, walking 
slowly, walking quickly, running, climbing stairs, and 
going down stairs; (3) a kind of activity level, measured 
on an arbitrary scale, and corresponding to the norm of 
the acceleration along the anterior-posterior axis averaged 
every minute; and (4) the mean heart rate (every minute), 
corresponding to the average of data recorded by an ECG 
portable device. This experimental set of data is restricted 
so that it is relevant in the context of home health 
telecare, that means we select data corresponding to 
activity of intensity from low to moderate. 

Useful commonsense knowledge concerns the 
activities of daily living (ADL) of a person at home: (1) 
the distribution of activities within a day, (2) the expected 
moves and postures during the different kinds of 
activities, and (3) the mean activity level according to the 
activity types. 

Academic knowledge of interest (taken from [5]) are 
related to some features of the mean heart rate and its 
variability in relation to activity types. The mean heart 
rate is generally computed from ECG records by an 
average every 30 seconds to 1 minute. Monod and Pottier 
[5] note the influence of the posture on the mean heart 
rate: (a) when sitting, the mean heart rate is 10% higher 
than when lying down, and (b) when standing, it is from 
20 to 30% higher than when lying down. The effect of a 
low activity on the mean heart rate is also described, as 
follows: (1) quasi-linear increase of the heart rate with the 
activity level (a saturation effect is observed for the 
values corresponding to high activity levels), (2) rapid 
stabilization of the values, and (3) need for 1 to 3 minutes 
to recover. Moreover, mean heart rate values are 
characterized by a large variability.  

5 Conceptual model building and validation 

5.1 Principle of model building 
The conceptual model building is guided by a priori 
knowledge about the dependence between parameters in 
order to preserve the problem’s complexity, that is 
especially the joint variations of  the parameters. The 
conceptual model is then defined using a cascade 
structure with four sub-models, and run in four steps 

  



  

5.4 Activity levels (figure 1) to successively generate time-series 
corresponding to: (1) the moves of the subject in a given 
period of time, (2) their successive postures, (3) the 
sequences of the activity levels, and (4) the values of the 
mean heart rate. 

The model is based on the intuitive expectation of: (a) an 
average increase of the values with the types of 
movement observed – that is, in this order, movements 
when lying down, sitting, standing, and walking (subset 
of movements when standing); and (b) a distribution of 
the values about a mean. The model validation is 
performed using statistical analysis on experimental data, 
confirming the commonsense knowledge previously 
described. Thus, the activity levels are randomly 
generated at any time according to a distribution 
characteristic of the type of movement observed at the 
same time. These distributions appeared to match a mix 
of: (1) a normal distribution at low levels, and (2) an 
exponential distribution at higher levels. That may be 
interpreted as the concentration of activity levels about a 
mean value considering a given type of movements, with 
possible occasionally higher values. 

5.2 Moves 
The model defined for the generation of the moves is 

based on rationalism and logic deductions about the 
activities of daily living. The validation is performed with 
experts using face validity because no experimental data 
are available. This model has been built and implemented 
by Virone [10]. It is made up of a set of Petri nets 
representing the expected moves for a person according 
to the moment of the day, one day being divided into 
seven periods. The house is supposed to have six rooms 
on the same floor: (1) kitchen, (2) living room, (3) 
bedroom, (4) bathroom, (5) toilets, and (6) corridor. 

5.5 Heart rate 5.3 Postures 
The model defined for the generation of mean heart rate 
values is based on academic knowledge that especially 
shows: (a) an inter-subject variability in heart rate values, 
and (b) a dominant sensitivity of this parameter to the 
posture and activity level. Part of the subject’s specificity 
in their heart rate variations lies in the features of their 
resting values, so that we consider in the simulation 
process: (1) the generation of a time-series for the resting 
heart rate, and (2) the introduction of some aleas on these 
values according to the posture and activity level at the 
same time. The model validation is performed using 
statistical analysis on experimental values. This 
sequentially includes study of: (1) the characteristics of 
variation of the resting heart rate for any subject, (2) the 
temporal correlation between activity level and heart rate, 
(3) the relation between the aleas from the resting heart 

As in the previous case, the model defined for the 
generation of the postures is based on commonsense 
knowledge about the characteristics of a person’s 
postures in their activities of daily living. The lack of 
experimental data requires to perform face validation with 
knowledgeable people. The model is based on finite state 
automata with three states – the possible postures, that is: 
(1) standing, (2) sitting, and (3) lying down. One 
assumption is that the “lying down” and “standing” 
postures are only reachable through a “sitting” posture. 
The transition probabilities are defined intuitively 
according to the room occupied and the moment of the 
day (one of the seven moments defined for the model of 
moves), just as the parameters of the gaussian distribution 
used to randomly determined each transition time. 
 

 
 



  

rate and the activity level considering each possible 
posture, and (4) the distribution of mean heart rate values 
according to a given posture and activity level. 

1) Characterizing the resting values 
Considering a physiological parameter such as the mean 
heart rate, the resting variations very nearly follow a 
circadian rhythm (period of 24 hours). We decided to 
analyze roughly the circadian rhythm of every subject 
using the cosinor technique [1,3], in which collected over 
24 hours are represented by the best sinusoidal function 
using the “least squares” calculation. The analysis 
showed average values about: (1) 70 bpm  for the average 
level around which the oscillation occurs, (2) 6 bpm for 
the extent of rhythmic change, and (3) 16h for the time of 
the maximum value. 

2) Aleas on the heart rate from the resting values 
Considering the need for time to recover after any 
activity, the temporal correlation between the activity 
level and heart rate is analyzed to determine the time 
interval preceding a measure of heart rate during which 
the activity level has an influence on the measured heart 
rate. An analysis of intercorrelation between these two 
parameters shows a peak when the two time-series are in 
phase, indicating that the temporal relation can be 
described as (1), where HR(t) represents the value of 
heart rate at time t, and PST(t) and ACT(t) the ones of 
respectively the posture and activity level at the same 
time: 

 HR(t) = f(PST(t), ACT(t), ACT(t-1), ACT(t-2),…). (1) 

Moreover, the best correlation is obtained when 
activity levels are averaged over the two minutes 
preceding heart rate determination, so that, at last, the 
equation describing the temporal relation is as (2). 

 HR(t) = f(PST(t), mean(ACT(t), ACT(t-1))). (2) 

Thereafter, the relation (2) is detailed, for each posture 
independently, using a statistical and mathematical 
analysis on experimental data. Given that the 
experimental data are recorded from several people, the 
mean heart rate values are normalized for each subject by 
removing the resting variations. To face the effect of 
saturation in the values of heart rate with high activity 
levels, we decided to study the relation between the aleas 
on heart rate and the logarithm of the mean activity level 
over the two minutes preceding any measure of heart rate. 
The results, presented on figure 2, show a quasi-linear 
relation between these two parameters. We must note that 
there are only few data available for moderate to high 
activity levels. A linear regression over average values 
gives an estimate of the parameters linking activity level 

and heart rate. The slope and ordinate values of the linear 
fit increase with the effort required by the posture. The 
variability of heart rate values can also roughly be 
described as a linear function of the mean activity levels, 
whatever the posture. Considering now a given posture 
and activity level, a study shows the aleas on the heart 
rate values are about distributed along a normal curve.  

Finally, the mean heart rate values are calculated by 
adding: (a) the circadian features of heart rate variations 
for the “simulated” subject; and (b) the values of aleas, 
which are randomly generated from a normal distribution 
whose mean and standard deviation are determined from 
the linear features of the relation (3), according to the 
postures and activity levels observed. A sample of the 
sequences of data produced by the model of simulation is 
shown on figure 3. 

 

Figure 2. Mean (at the top) and standard deviation (at the 
bottom) of aleas on the mean heart rate according to the 

mean values of activity level over the two minutes 
preceding any measure of the mean heart rate 

 

Figure 3. Sequences extracted from the simulation data 
set 

 

  



  

6 Experimental and operational validation 
Once implemented using Matlab, we carry out the 
experimentation of the simulation model, and the 
validation of its outputs – the operational validation – by 
comparison with time-series observed on a real system. 
Concerning moves and postures of a person at home, we 
do not have any experimental records, so that the 
validation of the corresponding times-series is performed 
by face validity, with knowledgeable people. In the case 
of the two remaining parameters (activity levels and heart 
rate), we have put aside for operational validation a data 
set quite close to our experimental conditions. Then, in 
order to get experimental time-series that are suited to the 
context of simulation, so that they are relevant for 
comparison with the simulated ones, we restrict and 
rearrange this experimental data set. The selection of the 
sequences of pairs (activity levels, heart rate alea) which 
are relevant to the sequences of moves and postures 
produced by the simulation is based on the subjects’ 
annotations about their actitivity and the time of the 
records. Once a pair is selected, the next pair in the 
experimental time-series is preferably selected, if 
relevant. Finally, the values of heart rate are calculated by 
adding the circadian features of the “simulated” subject. 
A part of the validation data set obtained in that way is 
shown in figure 4. 
 

Figure 4. Sequences extracted from the validation data set
 

The assessment of the quality of the simulation results 
for the activity levels and mean heart rate values is based 
on the comparison between the simulation and validation 
data sets (figures 3 and 4). Before any objective approach 
using statistical tests and procedures, a subjective 
judgement on the overall aspect of the signals shows a 
higher variability in the simulated values than in the 
validation ones. However, the distributions of activity 
levels in both cases of simulation and validation look 

similar, due to the way in which these values were 
modeled. That means that features other than statistical 
characteristics of activity levels may have been integrated 
in the model to get a more realistic aspect for the 
simulated sequences. 

 

Figure 5. Sequences extracted from the pseudo-validation 
data set obtained with an individual and random selection 

of pairs (activity level, heart rate) 
 

An intuitive idea is the need for information about the 
temporal arrangement of these sequences. This is 
confirmed by the observation of a validation data set 
obtained without any temporal constraint, that means 
without the preferably selection of pairs that follow one 
another in time: the aspect of these signals is much closer 
to that of the simulated data (figure 5). 

7 Simulation refinement: introducing time 
constraints 

The next cycle in building and experimenting the 
simulation process consists of introducing additional time 
constraints for the generation of the values of activity 
level and mean heart rate. The temporal componenent is 
crucial considering the purpose of detecting critical 
evolutions of some parameters over time. That results in a 
temporal reorganization of the values generated from 
distributions over each period of time when the same type 
of activity is observed, in order that single perturbations 
are grouped together, reducing high frequency variability 
while keeping the low frequency features of the full time-
series. This temporal rearrangement is based on the 
general principle of physical continuity, which means, in 
our context, that the absolute difference between 
successive values of both activity level and heart rate is 
most often quite small in a short interval of time. The 
validation of this intuitive assumption is performed by an 
analysis of experimental time-series. This study 

 
 



  

particularly shows that the mean absolute difference 
between two successive measurements increases linearly 
as the values observed increase. That results in the 
definition of a tolerance interval for a single value 
according to the preceding one in sampling time, as 
described by (4), where val(t) represents the value 
observed at time t, and a and b are respectively the slope 
and ordinate of the linear function characterizing the 
tolerance interval width. The values a and b are specific 
to each parameter.  

| val(t) - val(t-1) | ≤ a * val(t-1) + b. (3) 

The activity levels are reorganized along the time of 
every activity performed (same type of movement 
observed), and the heart rate values are reorganized 
during periods where the person is maintaining the same 
posture, and the activity levels remain close. The 
temporal reorganization of activity levels is performed 
before generating values for the mean heart rate, in order 
to preserve the sequential mode of simulation underlying 
the cascade structure. 

 

Figure 6. Sequences produced by the simulation process. 
The two first graphs represent the times-series without 
any temporal reorganization, unlike the two last ones.  
 
The time-series produced using the updated simulation 

model (figure 6) are validated by comparison with, on 
one hand, the previous sequences of data obtained by the 
simulation process, and, on the other hand, the real 
sequences of data available. We can note that the 
temporal reorganization effectively results in less high-
frequency variability, while keeping the general shape of 
signals. Therefore, the time-series look much closer to the 
real sequences (figure 4). Computing some correlation 
coefficients between the activity levels and the heart rate 
values indicates the newly obtained time-series better 
match the ones produced by the real system: the 

correlation coefficient is on average increased by about 
0.05 to 0.15 points after temporarily reorganizing the 
sequences of values, putting it very close to the mean 
value of about 0.6 obtained with real sequences. 

The main advantage of the algorithm suggested is that 
the initial statistical properties are preserved. The 
drawbacks include that this algorithm maybe somewhat 
restrictive, since it requires that the gap between two 
successive values rarely exceeds a given tolerance value. 
However, several thresholds, such as the tolerance 
intervals, may be adjusted so that the results of the 
simulation process match the requirements in terms of 
variability reduction. 

8 Discussion, conclusion and perspectives 
This paragraph is built around three major points: (1) the 
validity of the experimental data set, (2) the simulation 
model building, and (3) the results of its experimentation. 

The experimental data used for the simulation process 
may not be completely satisfactory since they have been 
recorded from a restricted class of people (young, 
normotensive, and healthy people, between 20 and 30 
years old), which does not fit the one targeted by home 
health telecare projects (elderly people). Moreover, the 
information about the activities performed by the subjects 
are given by subjective annotations written down by the 
subjects themselves, so that it may be difficult for 
instance to discriminate activities like “walking quickly” 
and “walking slowly” in the same manner for every 
subject. Finally, the data following activities of high 
intensity (even if the closest ones have been removed) 
might be somewhat inaccurate because of the time needed 
to recover. All these reasons may bias the model of 
simulation. 

Other remarks can be made on the model building 
itself, especially concerning the simulation of heart rate 
values. Activities and postures have been considered as 
the main factor influencing the heart rate values. That is 
probably true in general, but many other factors may have 
an influence as well, such as many external factors 
(outside temperature, use of medicines, stress, external 
events such as phone ringing, etc.) or the organism 
productivity (vegetative activity, etc.). The methods for 
estimating the circadian rhythms and normalizing the 
heart rate values are also far from perfection given the 
underlying inaccuracies and assumptions. 

In spite of the imprecision described above, the results 
produced by the model are not inappropriate from the 
point of view of the simulation’s purpose. Indeed, the 
sequences of simulated data are expected to be used for 
the study of mean- to long-term critical trends in a 
person’s behaviour, that is a “high level” analysis. Before 

  



 

 
 

 

any other simulation refinement, we then need to go on 
defining and experimenting the decision making system 
in order to more accurately determine the level of details 
required within the time series. Then we will better know 
how to adjust the parameters of the simulation process, 
and eventually, whether or not another cycle of 
refinement is required so that the simulation generates 
more appropriate data sequences. The steps of validation 
with experts need to be conducted in the same time. 
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