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1 Introduction
Welcome to IDAMAP 2007, the twelfth workshop on In-
telligent Data Analysis in Biomedicine and Pharmacology,
held in conjunction with the eleventh conference on Artifi-
cial Intelligence in Medicine 2007 in Amsterdam.

The IDAMAP workshop series is devoted to computa-
tional methods for data analysis in medicine, biology and
pharmacology that present results of analysis in the form
communicable to domain experts and that somehow ex-
ploit knowledge of the problem domain. Such knowledge
may be available at different stages of the data-analysis and
model-building process. Typical methods include data vi-
sualization, data exploration, machine learning, and data
mining. This year’s IDAMAP will spend specific, although
not exclusive, attention to classification and feature selec-
tion methods.

Gathering in an informal setting, workshop participants
will have the opportunity to meet and discuss selected tech-
nical topics in an atmosphere which fosters the active ex-
change of ideas among researchers and practitioners. The
workshop is intended to be a genuinely interactive event
and not a mini-conference, thus ample time will be allotted
for general discussion.

2 Program
The scientific program includes a selection of long papers
and short papers presented throughout the workshop with
the following themes:
- Probabilistic and Bayesian Analysis

- Feature Selection / Reduction and Visualisation

- Classification and Filtering

- Temporal Datamining / Information Retrieval

We are delighted to have an invited talk from Dr Jose
Pẽna of Linköping University, Sweden who is an expert in
probabilistic models and feature selection, particularly in
the field of gene expression data.
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IDAMAP 2007 - Scientific programme

Sunday, July 8th, 2007

9:00 am Opening of IDAMAP Workshop
Carlo Combi and Allan Tucker

 
9:15 am Invited presentation

Jose Pena
 
10:00 
am Paper session: Probabilistic and Bayesian Analysis

***  A Millinghoffer, G Hullam and P Antal
On inferring the most probable sentences in Bayesian logic

***  
E Peeling, A Tucker and PAC 't Hoen
Discovery of local regulatory structure from microarray gene expression data using 
Bayesian networks

*  M van Gerven
Tensor Decompositions for Probabilistic Classification

 
10:50 
am Break

 
11:20 
am Paper session: Feature Selection / Reduction and Visualisation

***  
S Swift, A Tucker and M Hirsch
Improving the Performance of Consensus Clustering Through Seeding: An Application to 
Visual Field Data

***  

C Fuchsberger, C Chan, S Ongarello, M Sips, I Feuerstein, A Pelzer, G Bonn, G Bartsch 
and H Klocker
Visual Feature Selection in Biological Time-Series for Mass Spectrometry based 
Biomarker Discovery

    *  
D Klimov and Y Shahar
Intelligent Visualization of Temporal Associations for Multiple Time-Oriented Patients 
Records

*  
F Portet, F Gao, J Hunter and R Quiniou
Reduction of Large Training Set by Guided Progressive Sampling. Application to 
Neonatal Intensive Care Data

 
12:30 
pm Lunch
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IDAMAP 2007 - Scientific programme

Sunday, July 8th, 2007

 
2:00 pm Paper session: Classification and Filtering

***  
O Luaces, F Taboada, GM Albaiceta and A Bahamonde
The Weight of Variable Groups for the Prediction of Probability of Survival in ICU 
Patients

***  M Kukar, D Tzikas and A Likas
Using Kernel Based Classifiers for Reliable Predictions in Medical Diagnostics

***  V Moustakis, ML Laine, L Koumakis, G Potamias, L Zampetakis and BG Loos
Modeling Genetic Susceptibility: a case study in periodontitis

***  N Peek, M Verduijn, E de Jonge and B de Mol
An empirical comparison of four procedures for filtering monitoring data

 
3:20 pm Break
 
3:40 pm Paper session: Temporal Datamining / Information Retrieval

***  R Azulay, R Moskovitch, D Stopel, M Verduijn, E de Jonge and Y Shahar
Temporal Discretization of medical time series - A comparative study

***  R Moskovitch, D Stopel, M Verduijn, N Peek, E de Jonge, and Y Shahar
Analysis of ICU Patients Using the Time Series Knowledge Mining Method

***  S Andreassen, A Zalounina, L Leibovichi and M Paul
Learning susceptibility of a pathogen to antibiotics using data from similar pathogens

*  
D Schmidt, G Lindemann and T Schrader
First Steps towards an Intelligent Catalogue within the Open European Nephrology 
Science Center – OpEN.SC

*  
MJ O’Connor, RD Shankar and AK Das
Reusable Semantic Web-based Methods to Query Temporal Patterns: Application to 
Clinical Trials Management

*  C Larizza and P Ciccarese
An Extensible Software Framework for Temporal Data Processing

*  G Tusch, M O’Connor, T Redmond, R Shankar and A Das
SPOT – Utilizing Temporal Data for Data Mining in Medicine

*  L Sacchi, R Bellazzi, S Quaglini, A Sinico and G Moroni
Temporal Rules to Predict Renal Flares in Lupus Nephritis

 
5:30 pm Closing
 
6:00 pm Canal Tour

Timing of presentations:

Invited talks: 35 minutes + 10 minutes discussion
Long presentations (***): 15+5 minutes
Short presentation (*): 8+2 minutes
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Invited presentation
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Three Feature Selection Problems (with Solutions)

Jose M. Peña
Department of Physics, Chemistry and Biology

Linköping University, 58183 Linköping, Sweden
jmp@ifm.liu.se, www.ifm.liu.se/~jmp, +46 13 281651

Abstract

I  will  discuss  feature  selection  for  three  different  goals  commonly  pursued in 
bioinformatics  and  biomedicine:  Learning  the  a  posteriori  class  distribution, 
learning the Bayes classifier, detecting any feature carrying information about the 
class. I will show that the optimal feature set changes depending on the goal. I will 
describe algorithms for solving the three problems and discuss their consistency 
and assumptions. I will also show some results on gene expression data.
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Paper session: 

Probabilistic and Bayesian Analysis
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On inferring the most probable sentences in Bayesian logic

András Millinghoffer, G ábor Hull ám and Péter Antal∗

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Abstract

Vast literature and accumulating data in
biomedicine creates a challenging problem.
On the one hand, the literature and the cu-
rated ontologies, as a huge logical knowledge
base, offer tremendous amount of raw factual
knowledge. On the other hand, the biological
data and its Bayesian probabilistic modeling
bring in inherent uncertainty about models,
model properties, or predictions. The fusion
of such textually oriented logical knowledge
and complex probabilistic models prompted
active research, including research on proba-
bilistic first-order logic or on more powerful
probabilistic models.
In the paper, we introduce a method for fusing
logical knowledge bases and complex, multivari-
ate distributions inducing probability for first-
order sentences. We present an extended first-
order logic language with predicates and func-
tions oriented towards graphical models. Fur-
thermore, within this framework, we formulate
the concept of “most probable sentences”, which
is a first-order generalization of the “most prob-
able explanation” problem. We characterize the
approaches, present the statistical analysis of the
problem, and describe integrated “search-and-
estimate” methods. Finally we report prelimi-
nary results for a real world medical problem.

1 Introduction
Whereas the new high throughput measurements are trans-
forming biomedicine into a data rich science, the pace of
the growth of the biomedical literature is breathtaking as
well. The integrated usage of biomedical literature and sta-
tistical data poses many challenges, such as (1) the applica-
tion of text mining methods for domain exploration, (2) the
construction of priors based on the literature for Bayesian
statistical data analysis, and (3) the literature based inter-
pretation and evaluation of data analysis.

In the paper we introduce a novel framework for the
semi-automated support of these problems. The proposed

∗Theauthors thank Tadeus Dobrowiecki for his helpful com-
ments.

Bayesian logic (BL) framework fuses the factual knowl-
edge bases with the result of Bayesian statistical data anal-
ysis. We present a formal semantics and the main inference
problem. We overview approaches to this inference prob-
lem, its statistical aspects, and computational methods.

The paper is organized as follows. In Section 2 we
overview works on probabilistic logic. Section 3 presents
the formal definition of the semantics of the hybrid BL
knowledge base (i.e., including logical and probabilistic
parts). In Section 4 we introduce the basics of the pro-
posed knowledge representation language and demonstrate
its support for domain exploration, prior construction and
evaluation. Section 5 defines the main type of inference in
this BL framework and approaches to this inference prob-
lem including Monte Carlo methods and search techniques.
Section 6 discusses the consequences of using Monte Carlo
estimates. Finally Section 7 describes two algorithms and
Section 8 illustrates their usage in the the area of ovarian
cancer.

2 From Bayesian network features to
probabilistic logics

To formalize the proposed hybrid knowledge, we adopt the
Bayesian framework and use the Bayesian network model
class (see e.g.[4; 11] and[20]). Bayesian networks (BNs)
use directed acyclic graphs (DAGs) to represent a proba-
bility distribution and optionally the causal structure of the
domain. In an intuitive causal interpretation, nodes repre-
sent the uncertain quantities, edges denote direct causal in-
fluences, defining the model structure. Local probabilistic
models are assigned to each node quantifying the stochastic
effect of its parents (causes). The descriptors of the local
models give the model parameters. The widespread popu-
larity of Bayesian networks follows from the fact that this
representation addresses jointly three autonomous levels of
the domain: the causal model, the probabilistic dependency
structure, and the distribution over the uncertain quantities.

Two fundamental approaches emerged for the successful
application of such complex models in biomedical domains
with relatively scarce amount of data: Bayesianism and the
usage of model properties (i.e. features). Indeed, the con-
ceptualization of the posteriorp(G|D) over the set of struc-
tures (G) as a probabilistic knowledge base was proposed
from the beginning of the field[5; 6]. Practical methods for
the joint application of Bayesianism and model properties

Allan Tucker and Carlo Combi (chairs) IDAMAP 2007 workshop 13



were proposed in[10;12; 18]. Given a DAG structureG of
a Bayesian network over the set of domain variablesV , we
define astructural featureF (G) as a property of the struc-
tureG. In the Bayesian approach the posterior of the values
{f1, . . . , fk} of F (G) given dataDN can be computed as:

p(fi|DN ) =
∑

G:F (G)=fi

p(G|DN ), (1)

i.e. the posterior of a structural feature taking a certain
value fi is the sum of the posteriors of possible DAGs
where the structural feature takes the specified value. Such
features include directed edges with binary values (indicat-
ing the presence or absence of the edge) or parental sets
with values representing the possible subsets of variables.

The common approach to BN feature learning assumes
that the set of feature functions provides a computation-
ally tractable (i.e., linear or quadratic in the number of
variables) characterization of the overall domain (e.g.,
see[10]). The other approach provides a more complete
view on certain properties of the model (e.g., focusing on
classification[2]).

However, the knowledge base view of the posterior al-
lows a richer application. For the fusion of factual (free-
text) and uncertain knowledge based on data, we proposed
a method summarized in Section 3 to embed analytically
intractable posteriors into a logical knowledge base[3;
2].

Related work can be grouped as research on probabilis-
tic logics and on the generalization of Bayesian networks
towards first-order logic (FOL) (for a recent overview see
e.g.[7]). One of the early works in the first group attempted
to combine logic and probability[14], which defines the
probabilistic knowledge base from elementary probabilis-
tic building blocks. The BLOG (Bayesian Logic) language
and Markov logic networks are also members of the first-
order probabilistic logic family[9; 19]. The former uses
the concept of a probability distribution over a set of possi-
ble worlds, while the latter defines a first-order knowledge
base which specifies a ground Markov network given a set
of constants representing objects in the domain. The con-
cept of Relational Bayesian networks[15] is another possi-
ble approach. The main idea is to represent every predicate
with a node in the network and to assign a probability for-
mula to them describing their conditional probability dis-
tribution.

Following the proposed possible world interpretation
from [14], we specialize this general approach for the sake
of practical applicability. We restrict the knowledge base to
a voluminous factual part consisting of established ontolo-
gies and papers from the domain and to an uncertain part
defined by an arbitrary distribution over Bayesian network
structures with fixed set of domain variables. Furthermore,
we define a language with Bayesian network oriented func-
tions.

3 The hybrid probabilistic-logical semantics
Though the mentioned representations attempt to unify the
expressive power of logic and probability, in their final
forms they implement a pure probabilistic semantics, while
logical elements play role only at the model construction

phase. In our work, we propose a representation which en-
capsulates different knowledge sources, some with proba-
bilistic, some with logical semantics.

The probabilistic and the causal interpretations of BNs
ensure that structural features can express a wide range of
relevant concepts based on conditional independence state-
ments and causal assertions[20; 21]. To enrich this ap-
proach with subjective domain knowledge via free-text an-
notations, we introduced the concept of Probabilistic Anno-
tated Bayesian Network knowledge base (PABN-KB)[2].
Definition 1 A Probabilistic Annotated Bayesian Network
Knowledge BaseK for a fixed setV of discrete ran-
dom variables is a first-order logical knowledge base using
standard graph, string and BN related predicates, relations
and functions. LetG represent a target DAG structure in-
cluding all the target random variables. The knowledge
base includes free-text descriptions for the subgraphs and
for their subsets. We assume that the models of the knowl-
edge base differs only w.r.t.G (i.e. there is a bijection
G ↔ M ) and the distributionp(G) is available.

For a sentenceα in K, its probability is defined as the
expectation of its truth function

Ep(M|K)[1(α, M)] =
∑

G

1(α, M(G))p(G|K), (2)

where1(α, M) denotes theα’s truth-value in the model
M andM(G) denotes the model defined byG. This hy-
brid approach defines a distribution over the set of models
M by combining a logical knowledge base with a proba-
bilistic model. The logical knowledge base describes the
certain knowledge in the domain defining a set of models
(legal worlds) and the probabilistic part (p(G)) expresses
the uncertain knowledge over these worlds.

Note that the logical knowledge base usually excludes a
priori certain structuresG, so only an unnormalized distri-
bution is available. However, this is not a serious restric-
tion, sincep(G) usually is an unnormalized posterior.

4 A graphical model oriented FOL language
The basic probabilistic semantics of Bayesian networks
supports the formalization of two kinds of inference: (1)
predictive inference means the computation of probabilities
conditional on the known instantiation of some variables,
i.e. it can be used for the evaluation of isolated observa-
tion cases, (2) in case of parametric inference, we formulate
statements about the overall domain (i.e. the parametriza-
tion and structure of the model).

Feature learning is also a subset of this latter case, hence
the query language over a PABN-KB consists of statements
about the parametric, or more typically the structural fea-
tures of the model. Questions may contain grounded or
quantified closed sentences as well, e.g.“the Markov Blan-
ket1 (MB) of variableX consists of the variablesY1, ..YN ”
(ground sentence), or“the Markov Blanket of variableX
contains at leastN variables”.

1TheMarkov Blanket of a variable is the set which probabilis-
tically isolates it from the rest of the model. In a Bayesian net-
work it consists of the parents and the children of the node, and
the other parents of the children[20].
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The shortcoming of such a purely “model-based” lan-
guage is that its sentences may be difficult to interpret. The
usage of the previously introduced annotations may help
users better understand the result of the query. If we sup-
pose for example that every variable belongs to one of a
set of disjoint classes, the statement could be“The Markov
Blanket of variableX contains at least one member of
every class”(∀class ∈ Classes,∃Y ∈ class : Y ∈
MB(X)). Of course these queries may contain any binary
relation, as in our casemember (∈) over the annotations.

The above first-order language can be further extended
by using external knowledge sources (e.g. publication
repositories). These can be incorporated into the knowl-
edge base by including references of their elements in the
textual annotations, then relations of these outer sources
can be applied to the elements of our models as well.
The occurence of terms within scientific publications can
supplement queries, an example for this could be:“The
Markov Blanket of variableX contains at least one such
member of every class which was cited in publications be-
fore dateD” .

Summarizing, the elements of such a first-order logic
oriented towards annotated graphical models (AGM-FOL)
are the following:
• Possible worlds are Bayesian network structures, the

probability of each is defined as the posterior of the
model given observation datap(G|D). Any logical
predicate can be applied to these models, forming
statements about their structural features, e.g. Markov
blankets.

• This probabilistic foundation can be supplemented by
any kind of logical knowledge sources, like ontologies
or publication repositories.

• There are free-text or structured (e.g. XML) annota-
tions assigned to model elements, through which first-
order statements can be formulated about the models
and outer elements are linked to models.

• Sentences can be built from functions and predi-
cates, such as standard graph and set relations over
model elements (likedirectededge, directedpath,
MarkovBlanket, etc.) and string functions over an-
notations (likecontains),

5 The problem of the most probable
sentences

Probabilistic ABN-KB defines the truth value (i.e., its prob-
ability) of any given target well-formed first-order formula
in K. Frequently, however, we are interested in a larger set
of target sentences inK, for example if the grounding of
the closed sentence is subject to change. This suggests the
following definition.

Definition 2 Let S denote the set of well-formed first-
order, closed formulas in an annotated graphical model
oriented FOL languageL. The problem of themost proba-
ble sentences(MPS) consists of the identification of theK
most probable sentencesSK ⊆ S and optionally the com-
putation of their truth values according to Eq.2. If only
groundings are subject to change in sentence templates

definingS, then we call it themost probable groundings
problem. Using a set based loss function to quantify the se-
lection ofSK , we talk about thesentence subset selection
problem.

This definition generalizes themost probable explana-
tion problem (MPE) and thefeature subset selectionprob-
lem (FSS) (e.g., see[20] and[16] respectively). The MPE
problem aims at identifying the most probable instantia-
tions of target variables given certain evidences (in this
case the formalization of the annotated Bayesian network
knowledge base is different, because it is defined over val-
ues instead of structures). The FSS problem aims to se-
lect the most relevant input (i.e., independent) variables in
a conditional modeling framework.

Note that it is possible that a sentenceα is a tautology or
entailed by the factual knowledge baseK, so it has proba-
bility 1. Indeed, the purpose of the so-called target set is to
restrict the set of examined sentences to the relevant ones
for a particular question in the domain, which are not fully
determined by the factual part of the knowledge base.

The approach to the MPS problem depends on two fac-
tors. The first is the number of models|M| and the dis-
tribution over them, because in lack of analytic solution,
Monte Carlo (MC) methods or possibly Markov Chain
Monte Carlo (MCMC) methods have to be applied to ap-
proximate Eq. 2. The second factor is the number of target
sentences|S|, because search techniques have to be used
in case of a high cardinality ofS. Table 1 summarizes the
classification of approaches.

Table 1: Approaches to the MPS problem depending on the
number of the models and of the target sentences.

|S| is small |S| is large
small|M| exact computation

for all sentences
(Alg. 1)

search over sen-
tences using exact
score

large|M| MC estimation
for all sentences
(Alg. 2)

search over sen-
tences using MC
estimated score
(Alg. 3)

For small |M| and |S| we can enumerate all the pos-
sible/allowed sentences, and evaluate their probability ex-
actly according to Eq. 2, as shown in Alg. 1.

Algorithm 1 Exact computation of the posterior of every
sentence
Require: PABN-KB(K, p(G)), S
Ensure: Exact posteriors:∀s ∈ S: p(s)

for all s ∈ S do
for all G ∈ G do {enumerate worlds}

if M(K ∧ G) 6= ∅ then
if s true inK ∧ G then

p(s) += p(G)

More efficient algorithms are reported in Section 7.
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6 On the sample complexity of MPS
Before the computational considerations of the search
problem, let us investigate the statistical consequences of
using MC estimates for the truth values (i.e., probabilities)
of the sentences in a MPS problem (i.e., estimates of the ex-
pectations in Eq. 2). Specifically, we investigate the effect
of the cardinality of the target sentences|S| on the mean er-
ror of the selected sentencesSK ⊆ S. Initially, we assume
that an i.i.d. data setDN is available containingN samples
from the target distribution specified in the PABN-KBK.

The relative frequencies of the sentencessi ∈ S are de-
noted withP̂i. The loss of reporting the sentences selected
by the|S| dimensional binary vectorI is

L(I) = L(P , I) =
∑

i

IiL(si), where L(si) = 1 − Pi,

(3)
andL̂(I), L̂(si) denote the corresponding estimated losses
based onP̂ . The decision ruleδ(DN ) = I∗N is defined as
I∗N = argminI∈IK L(P̂(DN ), I), whereIK denotes the
set of|S| dimensional binary vectors with exactlyK ones.
Let I∗ = argminI∈IK L(P , I) denote an optimal set (i.e.,
it selects the empirically2 most probable sentences). The
error is defined as1

K
L(I∗N ) − 1

K
L(I∗). Then analogously

as in classifier selection[8],

1
K

L(I∗N ) − 1
K

min
I∈IK

L(I)

= 1
K

(L(I∗N ) − L̂(I∗N ) + L̂(I∗N ) − L̂(I∗)
︸ ︷︷ ︸

≤0

+L̂(I∗) − L(I∗))

≤ 1
K

(L(I∗N ) − L̂(I∗N ) + L̂(I∗) − L(I∗))

≤ 1
K
|L(I∗N ) − L̂(I∗N )| + |L̂(I∗) − L(I∗))|

≤ 2 max
s∈S

|p(s) − p̂N (s)|. (4)

It means that if we can estimate uniformly well the prob-
abilities of the sentences, then we can bound the error of
the selected sentences. Using the Hoeffding inequality[8],
we get forǫ accuracy andδ confidence

p(|
1

K
L(I∗N ) −

1

K
min
I∈IK

L(I)| ≥ ǫ)

≤ p(max
s∈S

|p(s) − p̂N(s)| ≥ ǫ/2) ≤ 2|S|e−Nǫ2/2 ≤ δ,

which shows that the sample complexity is

N ≥ 1/ǫ2(2 log(2|S|) + 2 log(1/δ)). (5)

Furthermore, the expected average error of the selected
sentences can be bounded as follows using the inequality
E[Z] ≤

√
log(ce)

2N
(which holds ifp(Z ≥ ǫ) ≤ ce−2Nǫ2 for

all 0 ≤ ǫ and some0 ≤ c) [8]:

Ep(DN )[L(I∗N ) − L(I∗)] ≤

√
log(2|S|) + 1

N/2
. (6)

2We use the empirical term w.r.t. the stochastic simulations as
well.

This shows that the sample complexity and the expected
error is proportional to the logarithm of the cardinality of
the set of target sentences|S|. Note that here the cardinality
of the set for selection|S| is independent of the sample size
N .

This result was derived assuming an i.i.d. sample from
the target distribution. Analogic results can be derived us-
ing MCMC variants of the Hoeffding inequality (e.g., see
[13]).

7 The search-and-estimate scheme: finding
relevant query instantiations

The exact computation of the probabilistic quantity of Eq 2
is usually not feasible by Alg. 1, because of the cardinality
of the model space. Hence, instead of an exhaustive enu-
meration a sampling method (typically an MCMC method,
see[11]) can be applied. The sampling (i.e.estimation)
can be incorporated into the whole algorithm in several
ways, considering its relation to the other main component,
namely thesearchpart.

Estimation posterior of every sentence If the cardinal-
ity of the search space (i.e. the possible instantiations and
forms of the sentence skeleton) is tractable, the sampling
can be placed within the search cycle, i.e. the probability
of each examined atomic sentence is calculated separately,
using a “dedicated” estimation run.

The main advantage of this approach is that the conver-
gence and the confidence issues can be handled separately,
sentence by sentence. On the other hand its drawbacks are
that it presumes that the relevant sentence instantiations are
available a priori.

Algorithm 2 Estimation posterior of every sentence
Require: PABN-KB(K, p(G)), S
Ensure: Estimated posteriors:∀s ∈ S: p̂(s)

for all s ∈ S do
N=0,G = G0

MCMC initialization
repeat{MC sampling of worlds (G ∈ G)}

if M(K ∧ G) 6= ∅ then
if s true inK ∧ G then

p̂(s) += 1
N++, G=MC-sampling

until std.error(̂p(s) )< δ
Normalizep̂(s) with N

A variant of the above can have the sampling cycle done
off-line, i.e. the sequence of the visited structures is created
prior to the search phase and then is reused for every con-
sidered sentence. The scheme of this method is the same as
of the previous one, offering a trade-off between the time
and the space complexity. In this latter, the sampling phase
has to be performed only once , but the storage of the sam-
ple has to be solved.

Estimation and search for the most probable sentences
Though previously the sampling phase was placed within
the search, this relation can be reversed: we perform one
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“large” sampling cycle, during which we update the esti-
mates of the examined sentences. The main advantage of
this approach is that we do not have to make any consid-
erations about the sentences prior to the estimation phase:
each visited structure indicates a set of sentences, i.e. those
which aretrue in the current world. These sentences are
then collected in a list, updating their cumulative probabil-
ities in each estimation step. This method eliminates sen-
tences with zero probability in a natural manner. In fact this
approach can be conceived as a two phased sample-then-
search method with a special search method exploiting the
estimation steps and using increasing prefixes of an offline
sample to decrease time complexity (see Alg. 3).

Algorithm 3 Estimation and search of sentences
Require: PABN-KB(K, p(G)), S, L
Ensure: Estimated posteriors:∀s ∈ SK : p̂(s)

N=0,G = G0

MCMC initialization
repeat{MC sampling of worlds (G ∈ G)}

if M(K ∧ G) 6= ∅ then
SK = SK∪GetValidSentences(K,G)
for all S ∈ SK do {MCMC update}

if s true inK ∧ G then
p̂(s) += 1

N++, G=MC-sampling
if L < |SK | then
SK=PruneToMostProbables(SK, L);

until std.error(̂p(s) )< δ

7.1 Informed search for sentences
Thethird “estimation and search” method leaves open the
question of finding promising sentences (i.e., the imple-
mentation of the functionGetV alidSentences(K, G)). If
the set of true instantiations in the extended knowledge
baseK ∧ G can be computed efficiently, the result set is
generated “exhaustively”. If this set grows too large, then
prior domain knowledge can be applied to direct the search
(i.e., to select the most promising subset of sentences to be
included in the Bayesian statistical update).

The pruning of the set of estimated sentences inSK can
be controlled in two ways. In the problem of the Most
Probable Sentences, it is based on the expected probabil-
ity of the sentences (i.e. sentences with a probability under
a certain threshold will be dropped). In the Sentence Subset
Selection problem, the overall loss of the set(!) of the esti-
mated sentences has to be optimized (e.g., the loss function
can express the overall probability and diversity of the set).

8 Results
To illustrate the above concepts, we have performed test
queries in a the domain of ovarian cancer using 35 vari-
ables[1]. The posterior probabilities were estimated us-
ing 782 records. As auxiliary logical knowledge source we
used a database containing62716 references of articles re-
turned by the PubMed system to the query“ovarian AND
(cancer OR tumor OR tumour OR mass)”by April 2007.

The implemented system consisted of the following
components: a standard C++ engine storing the Bayesian

network models and controlling the MCMC methods,
the auxiliary knowledge sources were stored in MySQL
databases connected to the central engine through C++
wrappers. For the definition and the evaluation of the pred-
icates we used the SWI Prolog engine.

The estimations were performed using Alg. 3. We com-
pared two MCMC methods, the DAG-based sampling pro-
ceeded directly on complete structures as described in[12],
and the ordering-based MCMC[10] (using 103 burn-in
steps,30000 samples, with maximum 4 parents and CH
priors).

The tested predicate was the following:
“What is the probability that the MB set of the variable

Pathology will contain at least one variable from each of the
5 variable classes and contain at least Y of the 5 variables
of the class ’Vascular’?”.

The most probable grounding (i.e., MB sets) are reported
in Table 2.

Table 2: The four most probable Markov blanket sets
of Pathology compatible with the target query (the prob-
abilities are 0.062, 0.052, 0.035, and 0.033, and 0.039
0.026 0.023, and 0.021 respectively). TheG and
the ≺ symbols denote the sets from the DAG-based
and the ordering-based MCMC methods. Variables
FamHist, HormTherapy, Parity, PMenoAge, Age,
PMenoY , PillUse, FHOvCa, andPain are never se-
lected, and the variablesBilateral, Ascites, PapF low,
WallRegularity, Shadows, RI, TAMX are always se-
lected, so they are not reported.

G1 G2 G3 G4 ≺1 ≺2 ≺3 ≺4

Meno 0 0 0 0 1 1 1 0
CycleDay 1 0 1 1 0 0 0 0
Volume 0 1 1 0 1 1 1 1
Fluid 1 1 1 1 0 0 0 0
Septum 0 1 1 0 1 1 1 1
ISeptum 1 0 1 0 0 0 0 0
Papillation 1 1 1 1 1 1 0 0
PSmooth 0 1 1 0 0 0 0 0
Locularity 0 0 0 1 1 1 1 1
Echog. 1 0 1 1 1 1 1 1
ColScore 0 0 0 0 1 1 1 1
CA125 0 0 0 0 1 1 1 1
PI 0 1 0 0 1 1 1 1
PSV 1 1 1 1 1 0 0 1
Hysterectomy 1 1 0 1 1 1 1 1
Solid 1 1 1 0 1 1 1 1
FHBrCa 1 0 0 1 1 1 1 1

9 Conclusion

In the paper, we introduced a method for fusing logical
knowledge bases and multivariate distributions inducing
probability for first-order sentences. We developed and il-
lustrated an extended first-order logic language with predi-
cates and functions oriented towards graphical models. We
formulated the concept of the “most probable sentences”
within this framework, which is a first-order generalization
of the “most probable explanation” problem in Bayesian
networks. We analyzed the sample complexity and the ex-
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pected error for this problem, and characterized the com-
putational approaches.

A novel system was introduced which encompasses and
integrates the components of logical and probabilistic infer-
ence: different MCMC sampling schemes and wrappers for
the factual knowledge sources. The separate components
(e.g. prolog and SQL engines, C++ MCMC samplers) were
integrated using a wrapper written in C++. The system was
tested in the field of ovarian cancer, and currently we are
deploying it to explore the genetic background of rheuma-
toid arthritis and asthma.

The results have shown that the method is capable of re-
porting relevant statements about a domain, however, the
formulation of “good” questions is not trivial. For the sake
of better usability the knowledge engineering aspects of the
methodology have to be considered, e.g. by constructing
query schemes which possibly yield interesting/relevant re-
sults.

An other extension of the introduced representation
could target the use of hierarchical Bayesian networks
as possible worlds, because many domains have a hi-
erarchic/modular structure. Such domain can better be
modeled by some extensions of Bayesian networks (e.g.
Object-Oriented Bayesian Networks[17]). The hierarchi-
cal description can be formalized as a stochastic graph-
grammar, which defines the probability of how the modules
can be derived from each other. The availability of such a
description allows the extension of the uncertain part of the
proposed hybrid knowledge base from Bayesian network
structures to include their hierarchical derivation.
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Abstract

Modelling gene regulatory networks is a key
goal in bioinformatics research. In this pa-
per we use Bayesian networks to identify reg-
ulatory genes and their targets. We focus
on identifying the regulatory structure at a
local level for individual target genes, tak-
ing into account multiple regulators acting
in combination and other influencing factors
such as disease type by incorporating addi-
tional parent nodes in the networks. We use
a well-studied regulatory module in E. coli to
validate our method prior to focusing on mi-
croarray expression data that has been gen-
erated in order to explore different types of
muscular dystrophy. We use the prediction
of gene expression measurements to evaluate
learnt networks. Our results indicate that
the most suitable regulatory model (single or
multiple regulators; incorporation of disease
type) varies with each individual gene - a con-
clusion that makes sense biologically. The re-
sults also show that the majority of genes are
best modelled using a simple single-regulator
network, indicating that it is only a smaller
subset of genes that require more complex co-
regulation models.

1 Introduction
Gene Regulatory Networks (GRNs) describe how the
expression level of genes effect, or regulate, the ex-
pression of other genes. Modelling these networks is
a topic of great interest in current bioinformatics re-
search. At the most basic level, regulatory interac-
tions occur where transcription factors (TFs - regula-
tor genes) activate (turn on) or repress (turn off) the
expression of certain genes. More complex interactions
involve feedback loops: TFs can regulate themselves.
TFs can control many genes (their targets) and in turn
each gene may be regulated by a set of TFs acting in
combination.

Gene expression can be measured using DNA mi-
croarrays - an experimental technique that allows the
expression of thousands of genes to be measured simul-
taneously. In this paper, we use Bayesian networks to

learn local regulatory interactions between genes from
microarray expression data that has been generated in
order to explore different types of muscular dystrophy,
a muscle wasting disorder.

Bayesian Networks (BNs) [Pearl, 1991] have be-
come a popular method for computational modelling
of GRNs from expression data [Friedman et al., 2000;
Hartemink et al., 2002; Pe’er et al., 2006] since they
are able to represent the network qualitatively (with
a network graph) and quantitatively (probability dis-
tributions quantify the strength of influences and de-
pendencies between nodes/variables in the network
graph) and thus are relatively easy to interpret by non-
statisticians (e.g. biologists). Prior to BNs, most anal-
yses performed on gene expression data were cluster-
ing techniques used to extract groups of co-regulated
genes. However, clustering only extracts groups of cor-
related genes and not the regulatory network struc-
ture. BNs are able to discover more complex, nonlin-
ear relationships and transparently represent the na-
ture of interactions (for example, how regulators act
in combination) through their conditional probability
distributions.

Our research focuses on identifying the nature and
structure of regulatory interactions at a local level -
in other words, which and how many regulators in-
teract together to control the expression of a certain
gene and how they do so. Many genes are regulated by
more than one TF and modelling this is a key goal of
our research. TFs may interact in a number of differ-
ent ways to effect regulation - for example, a pairing
of TFs may work where one is an activator and an-
other is a repressor. Whilst some work on BNs for
modelling regulatory networks has considered multi-
ple regulators, this has often been within the scope of
global regulatory networks [Segal et al., 2003] where
interactions between ‘modules’ of genes is the focus.
Our method aims to to discover a more detailed regu-
latory structure at a lower level, focusing on individual
interactions.

More recently, [Yeang and Jaakkola, 2006] have used
a method based on the use of conditional probability
functions to model regulatory control by multiple TFs.
This is similar to the BN framework, but the regula-
tory programs are not explicitly represented using the
network formalism. Whilst we use the BN conditional
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probability distributions in a similar way, to model the
combining nature of multiple regulators and to predict
gene expression values, our method differs from this
work as we also consider the effect of class informa-
tion (such as disease types) by incorporating it as a
node in the BN structure. Previously, [Tucker et al.,
2005] have used BN classifiers to identify disease types
in muscular dystrophy, but class information such as
this has not been incorporated into regulatory network
models previously.

It should also be noted that the research presented
in this paper constitutes the initial step of a longer-
term project on modelling gene regulation in muscular
dystrophy. Further work as part of the project will
involve modelling temporal information through time
nodes and dynamic Bayesian networks, the use of hid-
den nodes to model unobserved variables, and the in-
corporation of other data sources or expert knowledge
(such as multiple microarray gene expression datasets,
TF binding sites, the gene function ontology and tex-
tual information extracted from scientific literature).

This paper is organised as follows. Section 2.1 in-
troduces the concept of conditional independence and
BNs. In section 2.2 we outline how we can use BNs to
model gene regulatory networks. In section 2.3 we de-
scribe the algorithm used to discover local regulatory
structure. In sections 3 and 4 we discuss our results
from the application of our method to an E.coli dataset
and two different muscular dystrophy gene expression
datasets. Finally in section 5 we present our conclu-
sions.

2 Methods

2.1 Conditional independence and
Bayesian networks

The concept of conditional independence between sets
of variables or data is a key underlying principle of our
algorithm. Suppose we have three random variables
X,Y and Z. Then, X and Z are conditionally inde-
pendent given Y if p(X|Z, Y ) = p(X|Y ). A more in-
tuitive description of conditional independence would
be to say that once we know the value of Y , then X
and Z become independent as any further information
about Z will not change the outcome of X.

BNs are graph-based models of probability distribu-
tions that capture properties of conditional indepen-
dence between variables. A BN consists of two com-
ponents. The first is a Directed Acyclic Graph (DAG)
consisting of links between nodes that represent vari-
ables in the domain. If there is a link from node A
to another node B, then A is said to be a parent of
B, and B is a child or descendant of A. A link be-
tween nodes indicates a direct influence between the
parent and child variables. The second component is a
set of conditional probability distributions associated
with each node that quantify the strength of influence
from its parent nodes. Prior probability distributions
are specified for root nodes (those without parents).
Probability distributions may be modelled by discrete
(tabular) or continuous (e.g. Gaussian) distributions.

Figure 1: Conditional independence in Bayesian net-
works: the nodes W , X and Y are conditionally inde-
pendent given the value of Z.

(a) Standard regulatory
model: single regulator

(b) Multiple regulators

Figure 2: (a) shows a standard gene regulatory net-
work, involving a TF parent node to target genes Xi.
(b) is a modified version of the same network, but with
an additional parent node representing a second regu-
lating gene.

It can be shown that each node is conditionally in-
dependent of all its non-descendants given its parents
[Pearl, 1991]. For example, for the network shown in
Figure 1 the nodes W , X and Y are conditionally in-
dependent given the value of their parent node Z.

2.2 Bayesian networks to model gene
regulation

The notion of conditional independence can be applied
to gene regulation. It makes sense that genes which are
regulatory in nature (TFs) will render the genes that
they control independent. Therefore, we can represent
a simple regulatory structure involving a TF and its
target genes using a BN.

Suppose we have a set of target genes Xi and a reg-
ulatory gene TF . Then a network representing this
can be formed with the TF variable as a parent node
to the Xi nodes, as shown in Figure 2a. In this case
we have that the Xi are conditionally independent on
the TF. The network structure also makes sense in
terms of links between nodes i.e. the TF directly in-
fluences the values of the target genes. For control
by multiple regulators, additional parent nodes rep-

Figure 3: Incorporation of a class node to represent
the sample type
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Figure 4: Local regulatory structure types (clockwise
from top left): single regulator, two regulators with
class, single regulator with class, two regulators

resenting TFs can be added, as shown in Figure 2b.
Modelling class (e.g. disease type from different sam-
ples, including control/healthy samples) can be easily
incorporated by using a class node to represent disease
type, as shown in Figure 3.

2.3 Learning the local regulatory
structure

For each target gene we perform a search for the type of
regulatory structure (with/without class node, number
of TFs/regulator genes - see Figure 4), over all com-
binations of candidate regulator genes. With a pre-
selected set of candidate TFs, it is possible to perform
an exhaustive search.

We use the Bayesian Information Criterion (BIC)
to score candidate structures. The BIC function is a
combination of the model log-likelihood and a penalty
term that favours less complex models - as such it is
similar to the minimum description length:

BIC = log P (θ|D)− 0.5 k log(n)

where θ represents the model, D is the data, n is
the number of observations (sample size) and k is the
number of parameters. log P (θ|D) is the log-likelihood
while the term 0.5 k log(n) is a penalty term, which
specifically penalises more complex models with more
parameters. The BIC is good for dealing with small
samples of data as is common with microarray data,
as the penalty term helps to prevent overfitting.

For each target gene, we can identify the highest-
scoring combinations of TF(s) for each structure type
(e.g. single and multiple regulators; with or without
class information incorporated) and thus compare the
different models of regulatory structure.

Figure 5: Ecoli SOS network module, regulated by
the repressor LexA. Each of the 14 target genes are
significantly differentially expressed between wild type
and mutant samples.

3 Evaluation

We have evaluated our method on an E. coli dataset
and two Muscular Dystrophy (MD) datasets (human
and mouse models). The E. coli dataset is a smaller
problem, restricted to one network module with a sin-
gle known TF. We use the E. coli dataset to validate
our algorithm before applying it to the more compli-
cated MD data. This section contains details of the
datasets, experiments performed, and validation meth-
ods used. The experiment results are discussed in the
following section 4.

3.1 Datasets
For each dataset the gene expression values were dis-
cretised into three states using an equal frequency
method. Discretisation allows complex interactions to
be captured using relatively simple conditional proba-
bility distributions. We used three states as a balance
to mitigate against a loss of information but also avoid
overfitting.

E. coli data
We consider an example of a single network module -
an SOS repair system that includes > 30 genes with
one transcriptional regulator, LexA. Our aim is to eval-
uate whether the known TF, LexA, can be correctly
identified for each target.

The dataset consists of two gene expression time se-
ries for UV exposure, one for wild-type (healthy) cells
and one for lexA1 mutants, which are unable to induce
genes under LexA control. [Khanin et al., 2006] find
that fourteen of the target genes in the SOS repair sys-
tem are significantly differentially expressed between
healthy and mutant cells so we focus on these, shown
in Figure 5. A set of 101 candidate TFs was selected
from the RegulonDB database [Salgado et al., 2006].

Mouse MD data
Muscular dystrophies are a heterogeneous group of in-
herited disorders characterised by progressive muscle
wasting and weakness. A particular subset of muscu-
lar dystrophies is caused by mutations in genes coding
for constituents of the dystrophin-associated glycopro-
tein complex (DGC). Mutations in the dystrophin gene
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cause Duchenne muscular dystrophy, whereas muta-
tions in sarcoglycan genes are responsible for Limb-
Girdle Muscular Dystrophies.

The MDX mouse is a mouse model for Duchenne
muscular dystrophy, and beta-sarcoglycan-deficient
(BSG) and gamma-sarcoglycan-deficient (GSG) mice
are mouse models for Limb-Girdle Muscular Dystro-
phies 2E and 2C. Expression profiles were generated
from two individual mice (biological replicates) at
eight different points between 1 and 20 weeks. There
were technical replicates in the experiment, providing
data from 4 time-series (biological and technical re-
peats) for each mouse model. The dataset also in-
cludes expression profiles for a healthy (wild-type)
mouse model, giving four different classes (three types
of MD and one wild-type). More details can be found
in [Turk et al., 2005]. A set of 812 candidate TFs was
selected.

Human MD data
The second MD dataset contains expression profiles
of in vitro muscle differentiation for six human indi-
viduals: three healthy and three Duchenne MD pa-
tients. Each time series consists of 7 measurements
taken between 1 and 14 days. Therefore the dataset
contains three expression profiles in each of the two
classes (healthy and Duchenne MD). More details can
be found in [Sterrenburg et al., 2006]. A set of 296
candidate TFs was selected.

3.2 Experiments
For the MD dataset, in order to keep initial experi-
ments of a small size, for each dataset we selected the
top 50 most significantly differentially expressed tar-
get genes using a temporal Hotelling T 2 test algorithm
[Vinciotti et al., 2006]. For the E. coli dataset the set
of targets consisted of the 14 most significantly differ-
entially expressed genes (as shown in Figure 5).

We performed an exhaustive search over four struc-
ture types: a single regulator structure, a single regu-
lator with a class node, two regulators, and two reg-
ulators with a class node (all shown in Figure 4). All
possible combinations of regulators were considered,
selected from the set of candidate TFs.

The list of candidate TFs is supplied by biologists.
It should be pointed out that the set of candidates may
not be exhaustive. In particular some of the targets
may be unknown TFs. This could potentially affect
the directionality of arcs between genes. For example
if a target is actually a TF, it may actually be the
parent of another TF rather than its descendant.

3.3 Validation
Obtaining biological validation of the results is dif-
ficult. Most often, TF-target gene interactions are
unknown, and expensive to establish through labora-
tory experiments - one reason why this research is im-
portant. This is especially true for our MD datasets.
Sometimes limited supporting data, such as TF bind-
ing location data, is available to back up findings. For
the E. coli dataset we have some confirmed TF-target

Name Best Top Top lexA lexA
structure TF acc rank acc

umuC 1P class soxS 0.81 2 0.94
umuD 1P class metJ 1.00 5 0.50
ruvA 1P class phoP 0.75 9 0.38
ruvB 2P class lexA,gcvR 0.81 1 0.81
recA 1P class mall 0.88 7 0.88
recN 1P class lexA 0.94 1 0.94
dinF 2P gutM,caiP 0.63 4 0.75
dinI 2P class lexA,gcvR 0.81 1 0.81
uvrB 2P class lexA,gcvR 0.81 1 0.81
yebG 1P class mall 0.88 7 0.88
yijW 2P malT,melR 1.00 15 0.75
sbmC 1P class uidR 0.75 8 0.88
sulA 2P uidR, rob1 0.88 5 0.38
lexA 1P class lexA 0.94 1 0.94
Mean - - 0.85 4.8 0.76
St.
dev - - 0.10 4.1 0.20

Table 1: E. coli results: for each target gene, the high-
est scoring TF(s), their prediction accuracy and the
ranking and prediction accuracy of true TF lexA is
provided. Structure descriptions refer to the number
of parent TFs (1P, 2P) and whether a class node was
used.

interactions to compare our findings with. However
this list of interactions is by no means exhaustive.

Therefore, as an indicator of performance we have
used prediction of unseen gene expression measure-
ments. Using the BN we can predict the value of tar-
get genes (i.e. its discrete expression state) based on
observed values of the TF(s) and class nodes where
appropriate.

To ensure reliable and consistent results we used k-
fold cross validation (with k = 3 or 4 depending on
the number of samples and class distribution of each
dataset) where the BN conditional probability distri-
butions were learnt based on the whole dataset minus
the kth fold, and prediction was performed on the un-
seen kth fold. The target prediction accuracy is the
percentage of correct predictions over the unseen data
fold, averaged over all k folds.

For each target gene, we compare the different net-
work structures using the average target predictive ac-
curacy for the highest scoring (in BIC) network for
each target gene.

4 Results

4.1 E. coli data
Table 1 lists the highest scoring regulator(s), together
with the network structure type and its prediction ac-
curacy for each of the 14 target genes.

LexA is found to be the highest scoring TF for 5
out of 14 regulators (sometimes paired with another
TF) with target prediction accuracy always over 0.8.
We can also see that LexA scores highly for each tar-
get - within in the top 10% of candidate TFs 99% of
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Name Best Highest- Target
structure scoring TF accuracy

MTUS1 1P BACH1 0.81
STX3A 1P SET 0.79
ACAA2 1P BACH1 0.71
PIG8 1P class HDAC7A 0.83

IMPA2 1P class ELF4 0.67

Table 2: Human MD - target genes modelled best with
1 parent TF

the time (the exception being gene yijW). Table 1 also
shows the rank and accuracy of the highest scoring
TF combination involving lexA for each target. For
example, for the target umuC, lexA is the second high-
est scoring (BIC) TF after soxS, and obtains a higher
prediction accuracy of 0.94. Similarly for the target
dinF, the TF combination lexA, nhaR ranks fourth be-
hind highest scoring combination gutM,caiP and has
a higher target prediction accuracy of 0.75.

The high scoring TFs that have been found in ad-
dition to LexA may be unknown gene relationships of
biological interest. For example, the pairing lexA and
gcvR is selected as the highest scoring TF combination
for three target genes. This could be an indication that
gcvR plays an important role in this E. coli network
module.

4.2 Human MD data
Tables 2 and 3 show the target prediction accuracy for
the highest scoring TF(s) for a selection of targets. We
find that in many cases a particular network structure
performs much better than others, indicating that a
particular gene may be regulated by one or by two TFs,
and/or that its regulatory program depends on class.
For example, target gene FGG performs best with 2
regulators, obtaining prediction accuracy of 71% in
this case, whilst PIG8 is best described with 1 TF,
obtaining 83% prediction accuracy.

Moreover, the results show that the most suitable
network for a particular target with one TF can be
improved by the addition of another TF or class node.
For example, the highest scoring 2-parent TF combi-
nation for target FGG is NFIB and PHF10, obtaining
71% predictive accuracy. The highest scoring 1-parent
network is the TF PHF10, obtaining only 48% accu-
racy. A similar effect occurs with other genes.

We find that the majority of genes - 68% - are best
described with a simple 1-TF network. The remainder
require a more complex 2-TF network.

The addition of a class node seems more successful
with some genes than others. This is an interesting
point as the target genes selected are the most differ-
entially expressed between healthy and diseased data
samples. Therefore we might expect a class node to be
important. However some targets, for example FGG
and EIF3S10, appear more suited without a class node
- but the highest scoring TFs in these cases are signif-
icantly differentially expressed themselves, making a
class node more redundant. For targets where a class

Name Best Highest- Target
structure scoring TF accuracy

FUNDC2 2P SET,FOXJ3 0.81
EIF3S10 2P SET,ZNF406 0.76

FGG 2P PHF10,NFIB 0.71
LIPA 2P class PDCD2,RBBP6 0.64

LRRFIP2 2P NACA, PHF16 0.67

Table 3: Human MD - target genes modelled best with
2 parent TFs

Name Best Highest- Target
structure scoring TF accuracy

Dlk1 1P class Klf4 0.93
Plagl1 1P class Phf1 0.83
Fpr-rs3 1P class Scand1 0.80
Capn6 1P class Lhx5 0.78
Abca3 1P class Nfatc1 1.00
Catna1 1P class Myf6 0.93

Table 4: Mouse MD results - most genes were best
modelled with 1 parent TF and a class node

node is important (e.g. LIPA and IMPA2) the highest
scoring TFs are not as differentially expressed.

Some targets did not obtain good prediction accu-
racy under any network structure due to of a lack of
quality data for these genes - 10% of target genes have
no network structure obtaining greater than 50% pre-
diction accuracy (where random is 33%).

4.3 Mouse MD data
The results from the mouse data do not show such a
broad variation in network structure across the target
genes as the human data. Table 4 shows that in all
cases only one parent TF is necessary. Whilst in some
cases, 2 parent TFs provides good accuracy, invariably
one parent TF does even better. For example for gene
Dlk1, 2 parent TFs and a class node obtains a good
74% accuracy, but just one parent TF and a class node
obtains an excellent 93% prediction rate. Similarly to
our findings from the human data results, when a class
node is not necessary, the highest scoring TF is itself
significantly differentially expressed between classes.

4.4 Results summary
We applied the algorithm to E. coli gene expression
data, in order to validate our method by comparison
to a known regulatory network motif. Our results were
impressive - we were able to identify the known repres-
sor LexA as the highest scoring gene just over a third
of the time and LexA was in the top 10% of candidate
TFs 99% of the time. We also applied the algorithm to
more complex muscular dystrophy data, where there
is less knowledge about known regulator-target inter-
actions.

Over all datasets, our results showed that the most
suitable network structure depends on the target gene.
Biologically, the fact that some targets are better con-
trolled with 2 regulators and some with a single reg-
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ulator makes sense as every gene is controlled by a
different regulation program, which may consist of 1,
2 or more TFs.

The results also show that the majority of genes are
best described with a simple 1-TF network, indicating
that it is only a smaller subset of genes that require
more complex co-regulation models. In particular this
is the case with the E. coli and human MD datasets,
although all mouse genes were best described with only
one TF.

For some genes there was not enough data to obtain
good prediction accuracy under any network structure
indicating that in some cases there is a lack of quality
data necessary to make reliable predictions and asser-
tions about the regulatory network structure.

5 Conclusions and further work
In this paper we have investigated different Bayesian
network structures to model the regulatory program
of a set of given target genes. We have applied the
algorithm to an E. coli and two muscular dystrophy
gene expression datasets. Our results indicate that
the most suitable network model (single or multiple
regulators; incorporation of disease type) varies with
each individual gene - a conclusion that makes sense
biologically. We also find that the majority of target
genes are regulated by only one TF. It is only a small
subset of genes that require a more complex model.

In this paper we have only considered regulation
models of up to 2 TFs. In reality a gene maybe con-
trolled by a complex program of many TFs. Though
algorithm complexity is also a factor, the small size of
many gene expression datasets prevents reliable results
for > 2 TF networks. Indeed for some genes in our ex-
periments there was not enough data to obtain good
prediction accuracy under any network structure.

In future work we intend to integrate other types
of data (such as multiple microarray gene expression
datasets, location binding data, text mining analysis
on biology literature and gene ontology information)
into our algorithm to alleviate these data issues and
improve reliability and robustness of results. We also
plan to investigate incorporating temporal informa-
tion, which is a key aspect of gene regulation - for ex-
ample in feedback loops, through Temporal Bayesian
networks and Dynamic Bayesian networks.
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Abstract

Tensor decompositions are introduced as a novel
approach to probabilistic classification. The
approach is validated by means of a clinical
database consisting of data about 1002 patients
that suffer from hepatic disease. The approach
performs comparably to results that have been
obtained using a naive Bayes classifier.

1 Introduction
We present a novel probabilistic classification technique
which is based on the decomposition of a multiway array,
also known as atensor. Components of the decomposition
are given by a set of vectors that allow for a compact rep-
resentation of the original tensor. We call classifiers that
use this techniquedecomposed tensor classifiers, and test
their performance by means of a database that contains data
about 1002 patients that present with hepatic disease. Clas-
sification performance is analyzed and compared with that
of the naive Bayes classifier[1].

2 Tensors and their Decompositions
A tensor is a concept taken from multilinear algebra which
generalizes the concepts of vectors and matrices.
Definition 1. Let I1, . . . , IN ∈ N denote index upper
bounds. AtensorA ∈ R

I1×···×IN is an N-way array
where elementsai1···in

are indexed byij ∈ {1, . . . , Ij} for
1 ≤ j ≤ N .

We call N the order of a tensor, such that a tensor of
order one denotes a vectora ∈ R

I1 , and a tensor of order
two denotes a matrixA ∈ R

I1×I2 . The outer product
A ◦ B of two tensorsA ∈ R

I1×···×In andB ∈ R
J1×···×Jn

is defined as the tensorC ∈ R
I1×···×In×J1×···×Jn such that

ci1···inj1···jn
= ai1···in

· bj1···jn
for all elements ofC. The

rank of a tensor is then defined as follows.
Definition 2. A tensor of orderN has rank one if it can
be written as an outer producta(1) ◦ · · · ◦ a

(N) of vectors.
The rank of a tensorA is defined as the minimal number of
tensorsA1, . . . ,AK of rank one such thatA =

∑K

k=1 Ak .

One way of finding a rank-1 approximation of a tensor
A is by means of thehigher-order power method(HOPM)
as described in Ref[2]. The method finds a tensor̂A =

λ·b(1)◦· · ·◦b(N), with scalarλ and unit-norm vectorsb(n),
1 ≤ n ≤ N , that minimizes a least-squares cost function.
A greedy approach to finding a sum of rank-1 terms is to
apply the higher-order power method to the residuals that
remain after obtaining a rank-1 approximation. By defining
A1 ≡ A andAk ≡ Ak−1 − HOPM(Ak−1) the following
rank-K approximation of a tensorA is obtained:

RK(A) ≡

K∑

k=1

HOPM(Ak) . (1)

For our classification purposes we start HOPM from one
random initialization since we have observed no significant
differences when using more elaborate schemes. The algo-
rithm has converged when the increase in fit between the
tensor and its approximation that is gained after one itera-
tion drops below a small error criterionǫ.

3 Classification with Tensor Decompositions
We focus on a multisetA = {a1, . . . ,an} that represents
our data, where an instanceai = (xi

1, . . . , x
i
N ) consists of

evidence(xi
1, . . . , x

i
N−1) and a class labelxi

N . We assume
that all variables are discrete and useIj with 1 ≤ j ≤ N to
denote the finite number of valuesxj of a variableXj . The
basic idea is to obtain an approximation of aincomplete
tensorA using a tensor decomposition. Letx denote the
evidence and letn(x, xN ) stand for the number of times
(x, xN ) occurs inA. We transformA into an incompletely
specified tensorA ∈ [0, 1]I1×···×IN , such that

ax1···xN
=

1

n
n(x, xN ) (2)

for all (x, xN ) for which some(x, j) with 1 ≤ j ≤ IN

occurs inA. Hence,ax1···xN
is undefined for unseen evi-

dencex, which implies that the tensor is incomplete. The
elementax1···xN

is used to represent an estimate of the joint
probabilityp(x, xN ). We may use a sparse representation
of tensorsA ∈ [0, 1]I1×···×IN , whereN may be large, pro-
vided that only some of the elements are defined. In case
of probabilistic classification, our interest is in computing
p(xN | x) based on our estimate ofp(x, xN ). Although
p(x, xN ) is approximated byRK(A)x1···xN

, we have no
guarantee that the tensor approximation represents a proper
probability distribution for unseen evidence (which is the
goal of probabilistic classification), since the approxima-
tion may be unnormalized or even lying outside the unit
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interval. Therefore, we use the following transform when
computing the conditional probability ofXN givenx:

p(xN | x) =
R+

K(A)x1···xN∑
1≤j≤IN

R+
K(A)x1···xN−1j

(3)

whereR+
K(A)x1···xN

is defined as

RK(A)x1···xN
− min

{

0, min
j

(RK(A)x1···xN−1,j)

}

,

which ensures that we sum over positive terms by making
(small) negative terms non-negative. We use the termde-
composed tensor classifier(DTC) to denote a classifier that
uses the approximationRK(A)x1···xN

for the purpose of
classification, as shown in Algorithm 1.

Algorithm 1 Decomposed tensor classification.
input: Atrain, Atest, K

transform the datasetAtrain into the tensorAtrain using (2)
learn the approximationRK(Atrain) using (1)
for all rows(x) ∈ Atest do

for j = 1 to IN do
computep(j | x) using (3)

end for
assign class labelL(x) = arg maxj{p(j | x)}

end for
return class labelsL

In order to examine the performance of decomposed ten-
sor classifiers, we have made use of the COMIK dataset,
which was collected by the Copenhagen Computer Icterus
(COMIK) group and consists of data on 1002 jaundiced
patients that may be classified into one of four diagnostic
categories[3]. As a preprocessing step, we have computed
the mutual information between evidence variables and the
class variable, and selected the eighteen evidence variables
that show highest mutual information (MI) with the class
variable as the basis for classification. Classification per-
formance of the decomposed tensor classifiers is compared
with that of a naive Bayes classifier using a ten-fold cross-
validation scheme. Since the COMIK dataset contains
missing values, and the decomposed tensor classifiers re-
quire complete data, we have used multiple imputation to
create three complete datasets from the incomplete dataset.
Since we have no knowledge about the missing data mecha-
nism, we make the (admittedly unrealistic) assumption that
data is missing completely at random, and use the prior
probabilities of the evidence variables to determine the im-
puted values. This allows a comparison in terms of classifi-
cation performance between the naive Bayes classifier and
the DTC, where performance is defined as the percentage
of correctly classified cases and averaged over the ten folds
and over the three complete datasets.

The comparison of the classification accuracy of the de-
composed tensor classifier with that of the naive Bayes
classifier is shown in Fig. 1. The highest average accuracy
for the decomposed tensor classifier is reached at nineteen
components with an accuracy of 76.75%, whereas for the
naive Bayes classifier, the average classification accuracy
is 77.25%. Although the naive Bayes classifier and the
decomposed tensor classifier operate differently, they per-
form comparably with respect to classification accuracy. If
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Figure 1: Average classification accuracy.

we inspect the classifications that were made by the classi-
fiers then it is interesting to see that only 254 out of a total
of 2955 cases (8.60%) have been classified differently by
the two classifiers. Out of these 254 cases, the naive Bayes
classifier assigned 107 cases to the correct class, whereas
the decomposed tensor classifier assigned 93 cases to the
correct class. Hence, the classifiers are able to classify
different cases correctly, suggesting that there are certain
problems for which the naive Bayes classifier is more suit-
able, and other problems for which the decomposed tensor
classifier is more suitable.

4 Conclusion
We have shown that tensor decompositions can be used for
the purpose of probabilistic classification. The classifica-
tion performance of the DTC on a problem in medical di-
agnosis is comparable to that of the naive Bayes classifier.
The different mode of operation, together with the results
concerning correctly classified cases, suggest that there
may be particular problems for which this new technique
outperforms the naive Bayes classifier. Current limitations
are the requirements that data is discrete and complete, and
the fact that learning the classifiers requires more computa-
tional resources than the (easy to learn) naive Bayes classi-
fier. This work has demonstrated the potential of this new
classification technique. At present, practical usefulness of
the DTC requires further validation and a more complete
understanding of the conditions under which the technique
may be appropriate.
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Abstract 
The data clustering of Visual Field test points is 
an important pre-processing step in the modelling 
of a number of ophthalmic conditions, e.g. glau-
coma and ocular hypertension. However, there 
has been a recent increase in the advent of new 
clustering methods that claim superior perform-
ance over classical methods. Thus, it has become 
increasingly difficult to choose the right kind of 
method for many applications. This has led to the 
development of ensemble clustering methods 
such as Robust and Consensus Clustering. In this 
paper we compare the scalability of Consensus 
Clustering to a modified version which is seeded 
with the results of Robust Clustering. We show 
that the search space can be reduced significantly 
using our technique, producing better results in a 
shorter execution time. We demonstrate our 
methods on an ophthalmic Visual Field dataset 
and synthetic data. 

1 Introduction 
The data clustering of Visual Field data test points is an 
important pre-processing step in the modelling of a num-
ber of ophthalmic conditions. Often the number of obser-
vations per patient is less than the number of Visual Field 
points. This can lead to many models encountering prob-
lems, e.g. the Vector Autoregessive process [Swift and 
Liu, 2002]. Clustering the points into small highly related 
subsets can often avoid this problem. However, recently it 
has become harder for a practitioner to choose the correct 
method due to the explosion in the number of clustering 
methods available. Ensemble clustering methods, which 
combine a number of clustering results into a single set of 
clusters, can be used if there is no obvious choice of clus-
tering method. 
 There are many practical applications involving the 
partitioning of a set of objects into a number of mutually 
exclusive subsets, which is a known NP hard problem. 
Research associated with achieving this based on distance 
metrics or correlations is known as clustering. Any algo-
rithm which applies a global search for the optimal clus-
ters in a given data set will run in exponential time to the 
size of the problem space, and so a heuristic or approxi-
mate procedure is normally required to cope with most 
real world problems.  

Many different heuristic algorithms are available for 
clustering, perhaps the most common being K-Means and 
hierarchical clustering [McQueen, 1967; Ward 1963]. 
Most algorithms make use of a starting allocation of vari-
ables, for example, based upon random points in the data 
space or upon the most correlated variables and therefore 
contain bias in their search. They are also prone to becom-
ing stuck in local maxima during the search. There has 
also been research into the use of artificial intelligence 
techniques such as genetic algorithms, neural networks 
and simulated annealing to solve the grouping problem 
resulting in a more general partitioning method that can be 
applied to clustering [Falkenauer, 1998; Kohonen, 1989; 
Lukashin and Fuchs, 2001]. These methods aim to over-
come the biases and local maxima involved with heuristic 
searches but require the fine-tuning of parameters.  

Due to the high degree of variation between clustering 
methods, we have previously developed techniques for 
combining the results of these methods to produce more 
reliable clusters. In particular, we apply two algorithms 
for generating robust [Kellam et al., 2001] and consensus 
clusters [Swift et al., 2004] in the context of ophthalmic 
(Visual Field) analysis. Similar work can be seen in pro-
tein secondary structure prediction, where methods fail to 
completely agree, consensus algorithms are employed 
[Cuff et al., 1998]. These can either report only full 
agreements, or the majority of agreements. Additionally, 
in [Monti et al., 2003] a Consensus Clustering type tech-
nique was developed for testing the stability of clustering 
methods applied to gene expression data. This method 
differs from ours since the inputs to the consensus method 
are the results of running a single algorithm on datasets 
that are perturbations of the original. Strehl et al. investi-
gated the use of ensemble methods to combine a set of 
partitions [Strehl and Ghosh, 2003]. Yeung et al. have 
compared a number of clustering methods based upon a 
figure of merit metric which rates the predictive power of 
a clustering arrangement [Yeung et al., 2001]. In this pa-
per we compare the similarity of two clustering arrange-
ments using the Weighted-Kappa metric [Altman, 1997]. 
 Within this paper we present an improved version of 
the Consensus Clustering algorithm, which is seeded with 
the results of Robust Clustering. We carry out extensive 
analysis on our improved Consensus Clustering method, 
along with other well-documented clustering methods, on 
both ophthalmic (Visual Field) and synthetic data.  

This paper is organised as follows: Section 2 details the 
methods we use in this paper, along with notation and 
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comparison metrics used; Section 3 describes the datasets 
that are used in this paper, along with a description of the 
experiments carried out; Section 4 details the results of all 
of the experiments, and discusses their implications; fi-
nally, Section 5 draws some conclusions. 

2 Methods 

2.1 Notation 
Let G = {g1, …, gm} be a partition of the variables 
{x1, …, xn.}. The union of all the gi is {x1, …, xn.} and 
gi∩gj=φ , 1≤i≠j≤m where gij is the ith element of the jth 
cluster/group and si is size of each cluster/group gi of G.  

2.2 Clustering Techniques 
Both Robust Clustering and Consensus Clustering require 
a number of clustering results as input to them. The meth-
ods we use within this paper are described within Table 1. 
  

Method Abbreviation Distance Metric 
PAM PAM Correlation 

K-Means KME Euclidean 
Hierarchical (Average) HAV Correlation 

Hierarchical (Complete) HCO Correlation 
Hierarchical (Single) HSI Correlation 
Hierarchical (Ward) HWA Correlation 

Hierarchical (McQuitty) HMC Correlation 
Hierarchical (Median) HME Correlation 
Hierarchical (Centroid) HCE Correlation 
Model Based Clustering MBC N/A 

 
Table 1. Clustering Methods. 

 

A description of PAM can be found in [Kaufman and 
Rousseeuw, 1987] and model based clustering in [Fraley 
and Raftery, 2002]. 

 

Input: List: all pairs (i,j) from the agreement matrix such that all 
corresponding Aij contain the maximum possible agreement 

1) The i and j from the first element of List form the first 
robust cluster 

2) For all of the remaining i,j pairs in List, i and j are  
searched for within the current robust clusters 

3)  If i is found (in robust cluster x) and j is not found then  
 j is added to  robust cluster x 

4)  If j is found (in robust cluster y) and i is not found  
 then add i to robust cluster y 

5)  If i is found in robust cluster x and j is found in 
 robust cluster y then merge x and y  

6)  If i and j are not found then place i and j into a new  
 robust cluster 

7) End For 
Output: Set of Robust Clusters 

 
Table 2. The Robust Clustering Algorithm. 

2.3 Robust Clustering 
The Robust Clustering (RC) algorithm [Kellam et al., 
2001] is designed to take numerous sets of clusters as in-
put and uses these to generate a set of robust clusters. A 
robust cluster must only consist of objects that appear 
together in all the input clusters produced from different 
clustering algorithms. Firstly, an upper triangular n×n 

agreement matrix (called A) is generated with each cell 
containing the number of agreements amongst methods 
for clustering together the two variables, represented by 
the indexing row and column indices. This matrix is then 
used to cluster variables based upon their cluster agree-
ment (as found in the matrix). The algorithm works by 
taking in the agreement matrix in order to generate a list, 
List, which contains all the pairs (i,j) where the appropri-
ate cell in the agreement matrix contains a value equal to 
the number of methods being combined (i.e. full agree-
ment). This method is described in Table 2. Note that RC 
does not always assign all of the variables to robust clus-
ters. 

2.4 Consensus Clustering 
The RC algorithm is subject to discarding variables if only 
one clustering method fails to agree with the other meth-
ods. In fact, if no two variables have maximum agreement 
then no robust clusters will be found. Therefore, in order 
to generate clusters with high agreement across methods 
but not so restrictive as to discard otherwise consistent 
variables as happens with the RC algorithm, we have used 
an algorithm for generating consensus clusters. Consensus 
Clustering (CC) was introduced to analyse gene expres-
sion data in [Swift et al., 2004] and makes use of the 
agreement matrix, A. However, rather than grouping vari-
ables based only on full agreement, it attempts to maxi-
mise a metric which rewards variables in the same cluster 
if they have high agreement and penalises variables in the 
same cluster if they have low agreement. In particular, the 
algorithm tries to maximise agreement over all clusters 
(the best arrangement will maximise Equation 1) using the 
function in Equation 2 to score each cluster, which we 
will refer to as the Fitness of a candidate CC arrangement. 
Within these equations, β is a user-defined parameter (the 
agreement threshold), which determines whether the score 
for the cluster is incremented or decremented. 

Definition 1. Max(A) is defined, where A is an agreement 
matrix, as the largest value in the upper triangle of A. 

Definition 2. Min(A) is defined, where A is an agreement 
matrix, as the smallest value in the upper triangle of A. 
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If β is less than or equal to Min(A), then Equation 1 is 
maximised when all variables are placed into the same 
cluster. Alternatively, when β is greater than or equal to 
Max(A), then Equation 1 is maximised when each variable 
is placed into its own cluster. The following two proofs 
have been adapted from [Tucker et al., 2001]. 

Proposition 1. If β ≥ Max(A), then a maximum for f(G) 
will occur when each variable is placed into their own 
cluster. 
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Proof. From Equation 2: if β ≥ Max(A) then 
.0≤− β

ikij ggA Therefore the maximum value for H(gi) will 

be zero, which will occur when each si = 1. If each si = 1 
then all variables will be in their own cluster.� 

Proposition 2. If β ≤ Min(A), then f(G) is maximised 
when each variable is placed into a single cluster. 
Proof. If β ≤ Min(A), then it holds that Aij-β ≥ 0 for all i, j 
(in the upper triangle). Therefore f(G) is greatest, if the 
sum of all of the H(gi) involve all of the elements of the 
upper triangle of A, this will occur only if all variables 
belong to one cluster. For a more complete version of 
these proofs see [Tucker et al., 2001].� 
 

A sensible value for β should be chosen that lies be-
tween the minimum and the maximum agreement, i.e. 
Min(A) ≤ β ≤ Max(A). Essentially all clusters produced by 
CC are scored by f(G), rewarding and preserving clusters 
with high agreement between members, whilst penalising 
and discarding clusters containing low agreement between 
members. A value for β should lie between the minimum 
and the maximum agreement so as not to skew the scoring 
function. For a uniformly and/or symmetrically distributed 
agreement matrix, (Max + Min)/2 is the mean value, there-
fore we penalise values below the mean agreement and 
reward above it. A search is needed to implement CC. 
There are many methods for performing a search. In 
[Swift et al., 2004] it was found that Simulated Annealing 
[Kirkpatrick et al., 1983] performed best because it is an 
efficient search/optimisation procedure that does not suf-
fer from getting stuck in local minimums. Table 3 de-
scribes the consensus clustering algorithm; a way of de-
termining suitable parameter values is suggested in [Swift 
et al., 2004]. 

 

Input: Agreement Matrix (n × n), A; Number of Iterations, Iter; 
Agreement Threshold, β, Initial Temperature, θ0; Cooling
Rate, c 

1) Generate a random number of empty clusters (≤n) 
2) Randomly distribute the variables 1..n between the clusters 
3) Score each cluster according to Equation 1 
4) For I = 1 to Iter do 
5)  Either Split a cluster, Merge two clusters or Move a 

  variable  from one random cluster to another 
6)  Set ∆f to difference in score according to Equation 1 
7)  If ∆f < 0 Then 
8)   Calculate probability, p, according to Equation 3 
9)   If p > random(0,1) then undo operator   
10)  End If 
11)  θi = c θi-1 
12) End For 
Output: Set of Consensus Clusters 

 
Table 3. The Consensus Clustering Algorithm. 

 

Note that random(0,1) (line 9) returns a random uniformly 
distributed real number between 0 and 1. The probability, 
p (line 8), is calculated by: 
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2.5 Robust Cluster Seeded Consensus Clustering 
It was noted in [Swift et al., 2004] that there was a sig-
nificant overlap between the robust clusters and the corre-
sponding consensus clusters. In fact, by definition any two 
variables that have full agreement should be contained 
within the same consensus cluster. Therefore, it makes 
sense to exploit the deterministic and efficient Robust 
Cluster search in order to reduce the search space when 
finding the Consensus Clustering results. This is achieved 
in our algorithm Robust Cluster Seeded Consensus Clus-
tering (RCCC) by mapping all variables which appear in 
the same robust cluster to a single new variable which 
represents that Robust Clustering result. (see Figure 1 for 
a graphical description). This effectively reduces the 

search space by RCRC
m

i
i −







∑

=1

where RCi is the set 

of variables in the ith robust cluster and RC is the set of 
robust clusters. Consensus Clustering can then be applied 
as normal to the dataset using the mapped variables. 

 

 
Figure 1. Mapping Robust Clusters to new variables to reduce dimen-
sionality. 

3 Datasets and Experiments 

3.1 Datasets 
Two datasets are used within this paper. Both datasets 
have an expected structure, i.e. there is a notion of the 
perfect clustering arrangement. This allows any clustering 
results to be evaluated for accuracy using a cluster com-
parison metric such as Weighted-Kappa [Altman, 1997]. 

The first dataset is the previously mentioned ophthalmic 
data which was the result of a study carried out in Austra-
lia called the Blue Mountain Eye Study [Healey and 
Mitchell, 2004], and will be referred to as the BMVF 
dataset. This study concerned the vision and prevalence of 
common eye diseases of an urban population, and was 
carried out between 1992 and 1994 on several thousand 
people. One of the sets of measurements taken during this 
study was based on Visual Field tests. To conduct visual 
field analysis the retina is divided into a set of 54 points, 
the level of sensitivity of the eyesight of a patient is tested 
at each point and is assigned a numerical value. A special-
ised machine is used to conduct these tests, which can 
take several hours for all the points of both eyes.  
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 Research has been carried out which maps the distribu-
tion of nerve fibre bundles around the optic nerve head 
[Garway-Heath et al., 2000], and current theory states that 
any measurements in the same nerve fibre bundle sector 
should be highly related. Within this paper it is aimed to 
test this theory by applying a number of clustering meth-
ods to the visual field dataset and then obtaining a consen-
sus set of clusters through the use of Consensus Cluster-
ing. The accuracy of the clustering methods and Consen-
sus Clustering can be directly measured using the WK 
metric and the allocation of visual field points to nerve 
fibre bundle. The mapping of the distribution of the visual 
field points can be found in [Garway-Heath et al., 2000]. 
Previous results of clustering Visual Field data can be 
found in [Mandava et al., 1993] and [Spenceley et al., 
1996]. 
 The second dataset is a synthetic set generated from the 
multivariate normal distribution (MVN). The variables 
forming each cluster are generated randomly from an 
MVN distribution with the same mean vector and covari-
ance matrix. This dataset was used in [Swift et al., 2004]. 
The dataset consists of predefined clusters ranging in size 
from 1 variable to 25 variables in size giving a total of 
325 variables within the dataset, each of these predefined 
clusters will be referred to as mvn(1), mvn(2),…,mvn(25). 
In order to test the scalability of the methods presented in 
this paper this dataset is further divided to create a series 
of increasing dimensionality synthetic datasets. 16 data-
sets are created, the first consists of the concatenation of 
mvn(1) to mvn(10) creating a 55 variable MVN dataset, 
the second consists of mvn(1) to mvn(11) creating a 66 
variable MVN dataset, etc..., and the sixteenth dataset 
consists of mvn(1) to mvn(25) creating a 325 variable 
dataset. It is expected that clustering methods should be 
able to separate the individual components of each of the 
MVN datasets, e.g. clustering the 55 variable MVN data-
set back to mvn(1), mvn(2),..., mvn(10). Spurious relation-
ships may exist between each MVN dataset, hence the 
results may not be perfect (i.e. achieving a Weighted-
Kappa of 1.0, see section 3.2). 
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Figure 2. Weighted-Kappa of CC, RCCC, the input clustering methods 
and their mean, mean+standard deviation (Mean+StDev) and mean-
standard deviation (Mean-StDev) for all the MVN datasets. 

3.2 Experiments 
The first set of experiments involved exploring the quality 
of existing clustering methods to CC and the novel RC 

Seeded CC, applying a number of existing clustering 
methods to the two datasets described above and compar-
ing the resulting clusters with the “original” arrangements 
dictated by the MVN distributions and the BMVF array 
arrangements. This was performed using the Weighted-
Kappa metric; the metric ranges from 1.0 (complete 
agreement) to -1.0 (total disagreement). 

Having compared the quality of the clusters we then 
look at the efficiency of the RC seeded CC compared to 
the standard CC. This is done by exploring the conver-
gence graphs for the two methods on the different datasets 
as well as the fitness and number of fitness function calls 
(FC) at the point of convergence. 

The CC and RCCC methods are stochastic algorithms so 
they were run ten times on each dataset and the results 
averaged, to reduce the chance of getting “fluke” results. 

4 Results 

4.1 Weighted-Kappa Comparison 
Figure 2 shows the WK results for the Consensus Cluster-
ing (CC) and the Robust Clustering Seeded Consensus 
Clustering (RCCC) along with the mean (+/- the standard 
deviation) of the input clustering methods for each MVN 
dataset. It can be seen that for smaller datasets (where n is 
less than 120) the best input clustering method does about 
the same as CC and RCCC. The consensus methods can 
be seen as a way to automatically select the best input 
method for smaller dimensionality datasets. However, for 
the larger datasets (where n is greater than 120) the con-
sensus methods do considerably better than the best of the 
input methods. This is reflected in results from the BMVF 
dataset shown in Figure 3 where the consensus methods 
generally do better than the other input methods. 
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Figure 3. Weighted-Kappa of CC, RCCC, the input clustering methods 
and their mean, max and min for the BMVF data. 
 

4.2 Convergence Analysis 
We now turn to the convergence of CC compared to 
RCCC. Figure 4 shows the convergence graphs of the 
MVN data for n=55, 105, 171 and 325 and Figure 5 shows 
the graphs for the BMVF dataset. For nearly all of these 
experiments, and on the larger dimensionality ones in par-
ticular, there is a clear improvement in efficiency when 
seeding the Consensus Clustering algorithm with robust 
clusters. Throughout the learning curve, the fitness is 
higher for RCCC and, as Table 4 shows, the final fitness 
is higher and the number of function calls is lower at the 
point of convergence. 
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 Unseeded Seeded 
n Fitness FC Fitness FC 
55 464.0 4123918.4 464.0 4155970.4 
66 628.0 3958294.3 628.0 4060154.2 
78 866.0 4369621.7 866.0 4485488.0 
91 998.0 4515860.1 998.0 4718021.4 
105 1120.0 4643804.1 1120.0 4756861.0 
120 1335.2 4747805.5 1336.0 5132994.3 
136 1573.0 4601307.7 1573.0 4848421.0 
153 1754.8 5262977.3 1792.7 5128405.2 
171 2097.0 5052788.8 2119.0 5123576.6 
190 2598.7 5089474.8 2599.0 5293983.5 
210 3144.2 5100526.1 3153.0 5297003.0 
231 3287.0 5969251.3 3344.6 5640023.2 
253 4147.1 5400520.9 4211.9 5414867.9 
276 4686.9 6048275.6 4700.9 5708973.8 
300 5080.5 6002740.1 5090.3 5581987.5 
325 5783.5 5768558.6 5805.9 5742477.3 

54(BMVF) 1151.0 2932766.6 1151.0 2728614.5 
 

Table 4. Number of Fitness calls (FC) and fitness at convergence. 
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Figure 4. Convergence Graphs for CC and RC Seeded CC for MVN data
with dimensionalities: 55, 105, 171 and 325. 
 

Figure 6 shows plots of the scaling curves for the differ-
ence in fitness between standard CC and the proposed 
RCCC as dimensionality increases, as well as the change 

in percentage of variables which are assigned to robust 
clusters.  The difference in fitness is the average between 
the seeded and unseeded fitness at each iteration. It ap-
pears that the maximum fitness will increase as dimen-
sionality increases (see Equation 1). It seems as if the dif-
ference in fitness is growing with an exponential curve as 
n increases whilst the percentage of robust clusters de-
creases linearly with a very small gradient. The Pearson’s 
correlation coefficients [Snedecor and Cochran, 1989] for 
both of these are 0.972. This suggests that for datasets 
with larger dimensionality RCCC should offer consider-
able savings in terms of efficiency resulting in a substan-
tially improved final fitness. 
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Figure 5. Convergence Graphs for CC and RC Seeded CC for the BMVF 
Data. 
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Figure 6. Scaling graphs of Difference in Fitness between CC and RCCC 
(top) and Percentage of Variables assigned to RCs (bottom) for increas-
ing Dimensionality. 

5 Conclusions 
In this paper we have shown that we can use ensemble 
clustering methods to cluster Visual Field test points into 
highly related subsets, which agree with known anatomi-
cal knowledge regarding the physiology of the eye. We 
have shown that ensemble clustering methods can suc-
cessfully combine the results of a diverse number of (po-
tentially biased) clustering methods into a reliable consen-
sus. The method presented in this paper is a useful pre-
processing stage, prior to the mathematical modelling of 
Visual Field deterioration. Each consensus cluster can be 
modelled independently using techniques such as Bayes-
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ian networks or the Vector Auto-regressive processes re-
quiring considerably less parameters than modelling the 
entire Visual Field, thereby reducing the risk of over-
fitting data. We have shown that the final clustering ar-
rangement found using our method is considerably better 
in terms of fitness calculated from the data and similarity 
to the original clusters found using the Weighted-Kappa 
metric. The results on the ophthalmologic BMVF dataset 
(and the MVN dataset) show that using Consensus Clus-
tering can improve the accuracy of clustering, if it is un-
known what the most appropriate method would be.  

Future work will use the consensus clusters to model 
Visual Field deterioration, in order to predict the progres-
sion of conditions such as glaucoma. The seeded ap-
proach, introduced in this paper, improves the efficiency 
of the Consensus Clustering method, which will enable us 
to look at simultaneously clustering both patients and field 
points on considerably larger datasets. 
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Abstract

The basic idea in biomarker discovery is the iden-
tification of highly discriminatory patterns be-
tween pathological samples and controls. Data
analysis is a challenging task due to the so-called
”small n, large p” problem: the relatively small
number of subjects must be discriminated by
time series consisting of hundreds of thousands
of measurements.
We developed a robust visual feature selection
method that uses different temporal abstractions
to identify high-level discriminatory patterns.
Furthermore, our method allows the ranking of
the resulting patterns based on analytical and vi-
sual information.

1 Introduction
Biomarkers are biochemical features or substances, like
proteins, that are specifically associated to a disease. Mass
spectrometry (MS) is a high-throughput technology that is
recently being used to discover disease-related proteomic
patterns in complex mixtures of proteins derived from
body fluids. Since known biomarkers, like PSA (Prostate
Specific Antigen) for prostate cancer, often suffer from
low specificity (while retaining high sensitivity) these pro-
teomic patterns represent a promising approach for the
early diagnosis of such diseases.

The result of a single MS run is a sequence of value
pairs composed of intensity, which is coupled to the quan-
tity of the detected substance, and mass-to-charge ratio
(m/z), which depends on the molecular mass of the de-
tected molecules and provides the information needed to
identify the specific substance. The raw signal is charac-
terized by several imperfections as a result of noise, ma-
chine miscalibration and various contaminants. Therefore,
proper pre-processing, like noise removal and normaliza-
tion, is needed.

There have been questions about the reproducibility and
the reliability of the detected biomarkers. These questions
are strongly connected with the feature selection process:
in early experiments, the raw signal, consisting of hundreds
of thousands of values, was used for classification without
taking into account the ”small n, large p” problem; irrepro-
ducibility was the consequence[Coombeset al., 2005].

In later works, the number of features was reduced by ex-
tracting peaks for the identification of discriminatory fea-
tures. However, due to high variance of up to 3.5% on
the detected m/z, peak alignment across the spectra be-
came crucial. To overcome this problem, a second ab-
straction level was introduced, namely regions of interest
(ROIs)[Fushiki et al., 2006], which are essentially peaks
grouped together based on their neighbourhood (see Figure
1).

Figure 1: Abstraction levels

Since then, there has been a lot of work on the ap-
plication of machine learning and statistical methods on
feature selection[Liu and Motoda, 1998; Geurts, 2001;
Bamgbadeet al., 2005], but most work considers only one
abstraction level while it has been observed that domain ex-
perts normally inspect both the peak and the ROI abstrac-
tion levels simultaneously during analysis. Furthermore,
such analytical methods lack the ability to consider visual
information such as peak geometries, which can substan-
tially reduce the false positive rate[Du et al., 2006].

There exist visualization tools for the analysis of time
series and mass spectrometry data, but to the best of our
knowledge, none of them provides a framework in which
analysts can perform analytical reasoning with the aid of
visualizations that take into account MS specific features
such as multiple abstraction levels. For example, Time
Searcher 2[Buonoet al., 2005] allows analysts to interac-
tively specify a pattern, such as peaks, to search for. While
it is a great tool for generic time series analysis, it is not
suited for biomarker discovery, since it does not provide
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support for the comparison and selection of retrieved pat-
terns for classification. SpecAlign[Wong et al., 2005] is
designed specifically for the analysis of mass spectrome-
try data, and includes features such as spectral processing
functions and spectra alignment capability, but it does not
allow the interactive feature selection based on there dis-
criminatory power.

In this paper we introduce a novel visual method for
feature selection in biological time-series. Our interactive
method is able to perform feature selection by (i) consider-
ing different levels of abstractions, (ii) taking into account
the biological variance and (iii) visually and analytically
ranking the identified features.

2 Method
The principle of ”Visual Analytics”[Thomas and Cook,
2006] is to combine the outstanding visual capabilities of
humans with the power of analytical methods to support
the knowledge discovery process. Most importantly, the
analyst is not only an interpreter of visual and analytical
output, but also takes an active role in driving the whole
process. According to[Thomas and Cook, 2006], the visu-
alization must:
• Facilitate the understanding of large heterogeneous

data sets
• Support the understanding of uncertain and incom-

plete data
• Provide adaptive representation for different user-

tasks.
• Support different data types on various levels of ab-

straction into a single representation.
Our approach is to employ visual analytics to the feature

selection process. With the aid of data mining techniques
and statistical measures, the analysts can retrieve a list of
biomarker candidates and have an objective means to com-
pare different results. Using visualization, they can judge
quickly and robustly whether a certain peak or ROI should
be included for classification. And by allowing interaction,
the analysts can easily incorporate their domain knowledge
into the biomarker discovery process and quickly explore
the parameter space.

2.1 Analysis
There are three steps in our approach: (i) peak finding, (ii)
grouping peaks to ROIs, (iii) and computing the histograms
of peak intensities for each group.
Finding peaks: To begin, we first search for interest-
ing features or candidate biomarkers individually for each
spectrum. We start with the identification of peaks by find-
ing the local maxima over a neighborhood; in order to in-
crease the robustness against noise, we place a threshold on
the noise-to-signal ratio at the peak. Similar to[Morris et
al., 2005], noise is estimated to be the median absolute de-
viation (MAD) divided by a factor. In our system, both the
noise-to-signal ratio threshold and the neighborhood size,
expressed as a percentage of mass per charge ratio, are user
specified and can be interactively adjusted by the analyst.
ROIs: Due to noise in measurements, peak locations can
have a m/z variance of up to 3.5%. We therefore group the

peaks across spectra according to their proximity in m/z
ratio, with a restriction on the maximum distances among
the peaks. We also restrict the minimum group size, since
peaks that are displayed in only a few spectra are most
likely resulted from noise or conditions that are not of inter-
est in this setting. Again, both restrictions are user-defined
and can be interactively adjusted to incorporate domain
knowledge, like the value of peaks based on their shape.
Computing histograms: For each ROI created in step 2,
we construct two histograms of peak intensities, one for
the controls and the other for the cases. By normalizing
the histograms by the size of their respective groups, we
have an estimate of the underlying distribution of intensi-
ties. We then compute the distance between the two dis-
tributions within each ROI using the Jensen-Shannon (JS)
Divergence:

Let Histp andHistc be the normalized histograms of
the patient and the control groups respectively. M is the
average ofHistp andHistc.

DJS = 1
2DKL(Histp||M) + 1

2DKL(Histc||M)

whereDKL(P ||Q) =
∑

i P (i)log P (i)
Q(i)

Jensen-Shannon Divergence is an extension of Kullback-
Leibler (KL) Divergence, which is an information theoretic
measure of the differences between two probability distri-
butions. Unlike KL divergence, JS divergence does not re-
quire absolute continuity in the distributions and is there-
fore more suited to our application. A comparison of the
JS divergence gives us a sense of how much discriminatory
power each ROI has.

2.2 Visualization
The feature selection process is supported by an interactive
interface consisting of five panels (Figure 2). The timeline
panel (panel 1) at the top is created to allow the analyst to
have an overall idea of where the ROIs reside. It consists
of a timeline that shows the range of mass per charge ratios
under inspection. Each ROI is highlighted on the timeline,
with the average peak location marked above or below the
timeline. The gray box indicates the range that is currently
being viewed.

The middle panel is the ROI panel (panel 2). It supports
two views: the heat map view and the histogram view. The
heat map view is essentially a table where each row repre-
sents a spectrum in the data, with detected peaks marked in
green. The intensity of the green corresponds to the height
of the peak, i.e. the darker the green is, the higher the peak
is. The ROIs are shown as black bounding rectangles in the
table. In the histogram view, the histogram set for each ROI
is displayed. As discussed in the previous section, there are
two histograms for each ROI; the left (red) histogram rep-
resents the controls, while the right (blue) histogram repre-
sents the cases. The Jensen-Shannon divergence between
the two histograms is displayed below the plot. To avoid
suppression due to high dynamic range in peak intensities
(up to 40%) in the overall spectra, the range for a histogram
set is determined according to the intensity range in the
peak group.

The spectra panel (panel 3) at the bottom shows plots of
the data spectra. This panel supports three different views
of the data: the normal view, the ROI view, and the group
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Figure 2: This shows the timeline panel (1), ROI panel (2), spectra panel (3), data panel (4), and the control panel (5) in
grouped heat map view.

view. In the normal view, each spectrum is plotted sepa-
rately to allow detailed inspection of individual spectrum.
In this view, a peak is marked with a red dot, and the m/z
range over which the peak location can vary is highlighted
in gray. The ROI view is similar to the normal view ex-
cept that only ROIs are displayed. In the grouped view,
only ROIs are displayed, but instead of plotting each spec-
trum separately, the data spectra are sorted into their la-
beled groups (control or case) and plotted collectively. This
facilitates the comparison across the two groups. To maxi-
mize the use of screen space, the ROIs are stacked together;
in other words, each plot is composed of subplots of peak
groups, created in the ROIs step. The peaks in each peak
group have been aligned with the average spectrum shown
in black. While information about the actual peak locations
of the ROIs is lost in this view, the analyst can easily refer
to the timeline panel for the m/z location.

On the right, there are the data panel (panel 4) and the
control panel (panel 5). The data panel shows the list of
spectra being analyzed. The control panel consists of slid-
ers for the adjustment of parameters such as maximum
noise-to-signal ratio and size of peak neighborhood, and
radio buttons to toggle between different views.

2.3 Interactive Exploration
The choice of parameters is of key importance to the anal-
ysis process. Different sets of peak neighborhood size and
maximum noise-to-signal ratio may lead to different sets
of regions of interest. In order to allow the analyst to ex-

plore the parameter space and incorporate his or her domain
knowledge into the selection process, fluid interaction and
fast system response are necessary. This is achieved by
dynamic query. The system first loads in a smaller sub-
range of the data spectra so that computations can be done
in real-time. The analyst can then adjust the parameters
using the sliders in the control panel. As the parameters
change, the displays in the timeline, ROI, and spectra pan-
els change accordingly. The fast feedback of the system
provides a means of instant evaluation and allows the an-
alyst to quickly find the desired set of parameters. After
a choice is made, the analyst can either test the set on an-
other sub-range for further refinement, or apply the set to
the complete range.

When viewing the complete range, a problem that arises
is the suppression of low peak intensities due to the high
dynamic range in intensities. We solve this problem by fol-
lowing the principle of ”overview first, details on demand”.
In the grouped view, each plot consists of a series of ROI
subplots. To examine a ROI in more detail, the analyst can
click on it to create a new plot of the ROI (Figure 3), scaled
according to its own range. Moving the mouse over a plot-
line not only highlights the spectrum but also displays the
label or name of the spectrum. This allows the analyst to
have a detailed view of a ROI as well as compare individual
spectrum against other spectra in the group.
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Figure 3: Detailed view of a ROI with a highlighted spec-
trum.

3 Case Study and Results
We tested the proposed visual feature selection method on
a MS dataset composed of 60 healthy and 60 prostate can-
cer patients. We focused on the commonly used m/z range
from 2,000 - 20,000 m/z, consisting of 95,743 measure-
ments. All spectra were pre-processed according to the
techniques described in[Morris et al., 2005; Yu et al.,
2005]. Using the spectra panel two low quality spectra
were identified and excluded by the two involved domain
experts.

To start off, for peak detection, the analysts explored dif-
ferent noise-to-signal parameters (from 0.2 to 0.9 in 0.1
steps) and peak neighborhood settings (from 1% to 10%
of the m/z value in 1% steps) to identify robust peaks and
reduce the amount of noise (Figure 4). With the help of the

Figure 4: Peak identification. Dots mark identified peaks,
gray boxes highlight the peak neighborhoods. Each plot
represents one spectrum.

visual interface they could apply their background knowl-
edge about peak shapes: starting with a high noise-to-
signal ratio and narrow peak neighborhoods, they identi-
fied the maximum number of peaks including a lot of false
positives caused by noise. Increasing step-wise the restric-

tions (lower noise-to-signal ratios and wider peak neigh-
borhoods) they estimated the proper levels for robust peaks.

Then to group the peaks into ROIs, the analysts had to
configure the region parameter properly to compensate for
the detectable m/z variance across the spectra. The mini-
mum group size was set to 40, which means that the same
ROI must appear in 40 spectra to be included (Figure 5).

Afterwards, the analysts switched to the histogram view
(see Figure 6) and ranked all 39 identified ROIs according
to the Jensen-Shannon Divergence.

We compared our method with the feature extraction
method proposed by Bamgbade et al.[Bamgbadeet al.,
2005]. To investigate the discriminatory power of the iden-
tified feature we used a support vector machine classifier
[Chang and Lin, 2001]. Additionally, we calculated the
overlap between the selected features and the top 10 can-
didate biomarker molecules found in[Villanueva et al.,
2006]. The results, summarized in Table 1, show that our
method did not generate a better classification rate; how-
ever, the higher overlap with[Villanuevaet al., 2006] sug-
gests the identification of more reliable candidate biomark-
ers.

Method Sensitivity Specifitiy Overlap with
[Villanuevaet
al., 2006]

Visual Method 78.5% 79.1% 80%
Evidence Ac-
cumulating

83.3% 80% 45%

Table 1: Results case study

4 Conclusion
We proposed a novel feature selection method based on an
interactive visual framework for the identification of dis-
criminatory features for biomarker discovery. We incor-
porated different levels of abstractions and integrated the
analyst in the selection process to take advantage of their
domain knowledge. The preliminary results show its valid-
ity for biological time series, where the visual aspect is of
high importance due to high sample variances and different
possible abstraction levels.
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Figure 5: Regions of interest (ROIs)

Figure 6: Identified discriminant ROIs in the histogram view
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Abstract 
In this paper we present several novel knowl-
edge-based visualization techniques for temporal 
and statistical associations for multiple patient 
records. These visualizations are part of an inter-
active system, called VISITORS, which enables 
intelligent visualization and exploration of pa-
tient longitudinal data. We finished the func-
tional evaluation, and are in the process of an us-
ability evaluation of the capability of clinicians 
to construct complex temporal queries. 

1 Introduction: Knowledge-Based Tempo-
ral Analysis 

In a medical world with a large volume of time-stamped 
information, the clinicians and medical researchers need 
useful, intuitive intelligent tools to process the multiple 
time-oriented patient data. Standard means, such as tables, 
statistical tools, and even more advanced temporal data 
mining techniques, are often insufficient, can help only in 
particular cases, or require special experience. 

To solve the computational aspect of this problem, we 
have been using the knowledge-based temporal abstrac-
tion (KBTA) method [Shahar, 1997] for automated deri-
vation of meaningful interpretations and conclusions, 
called temporal abstractions, from the raw time-oriented 
patient data, using a domain-specific knowledge-base 
(KB). The input of the KBTA method includes a set of 
time-stamped parameters (e.g., platelet counts) and events 
(e.g., bone-marrow transplantation (BMT)); and the out-
put is a set of interval-based, context-specific parameters 
at the higher level of abstraction (e.g., a period of nearly 3 
months of grade II bone-marrow toxicity). Furthermore, 
the output temporal abstractions can be efficiently visual-
ized. The KNAVE-II system, which we had developed 
previously [Shahar et al., 2006], supports the visualization 
and exploration of raw data and derived temporal abstrac-
tions for an individual patient or a small group of patients. 

However, to analyze clinical trials, or for quality as-
sessment purposes, an aggregated view of a group of pa-
tients is more effective than exploration of each individual 
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record separately. In addition, certain patterns can only be 
discovered through the analysis of multiple patients. 

Therefore, we have designed and developed a new sys-
tem called VISualizatIon of Time-Oriented RecordS 
(VISITORS) [Klimov, 2005] which combines the intelli-
gent temporal analysis and information visualization tech-
niques: 
• Time-oriented data are graphically displayed and 

explored for both individual and multiple patients. 
• The time in our conceptual and graphical represen-

tations is of major importance. It can be explored in 
various granularities, such as hour, day, and month. 
We also support a calendar (absolute) timeline and a 
timeline relative to special events (e.g., the six 
months following a BMT). 

• The computational reasoning supports not only a 
view of raw time-oriented data and their statistics 
but also a summarization of the raw data as clini-
cally meaningful concepts, based on the temporal-
abstraction domain ontology and the KBTA compu-
tational mechanisms. 

2 The VISITORS system 
VISITORS is an intelligent visualization system spe-

cific to the tasks of querying, knowledge-based visualiza-
tion and interactive exploration of time-oriented patient 
records. It interacts with the time-oriented mediator 
(which manages the relevant knowledge and data bases) 
through temporal aggregation queries: Select Patients 
Query, Select Time Intervals Query and Get Patients Data 
Query, based on the aggregation query-language seman-
tics [Klimov, 2007]. These queries retrieve the list of pa-
tients, list of relevant time intervals and time-oriented 
patients data. For example, the typical Select Patients 
Query is: ”Select all male patients, either younger than 20 
or older than 70, whose hemoglobin (HGB) state was ab-
stracted as “moderately low” or lower, during at least 
seven days, starting at least two weeks after BMT”. 

2.2 Temporal Association Graph 
The data set retrieved by the Get Patients Data Query can 
be visualized and explored using an appropriate visualiza-
tion [Klimov, 2005]. However, the most interesting task is 
to discover new interrelations or patterns, especially tem-
poral interrelations, within a set of patient data. For such 
purposes, we developed the temporal association graph. 
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Delegate Functions  
In order to aggregate the patients data we defined a “dele-
gate value” method: Given the patient’s time-oriented 
data for the specific concept (raw or abstract), for each 
patient, over a specific time interval, we calculate the 
delegate (representative) value of the patient’s data by 
using a representative function specific to each temporal 
granularity and defined in a KB or chosen by the user. For 
example, assume that the patient had on Jan 1 three labo-
ratory tests of the hemoglobin (HGB): 8.80 g/dl at 5AM, 
9.30 g/dl at 11AM and 11.90 g/dl at 8PM. If we select the 
mean as the delegate daily function, then the patient had a 
10 g/dl daily average value for HGB. However, the user 
can choose another suitable representative function (such 
as mode or maximum). 

Temporal Association Graph Interface  
In Figure 1 we show the temporal and statistical associa-
tions among four concepts selected by the user for 58-
patients group, retrieved by using a Select Patients Query. 
In this visualization we can see the distribution of the val-
ues of the HGB and Platelet state abstractions; and the 
WBC and RBC yearly average values for each patient 
over 1995. Values of all parameters for each patient are 
connected by lines. Only 45 patients in this group have 
data during 1995. 
 Edges between abstract concepts provide additional 
statistical information, and represent the relation of spe-
cific values of the first concept to specific values of the 
second concept. The edge width denotes the proportion of 
the patients population. The support, confidence and ac-
tual number of patients of relation are displayed on the 
edge. For example, the widest edge in Figure 1 represents 
a relationship between the “low” value of the Platelet state 
and the “moderately_low” value of the HGB state: 55.8% 
of the patients have this combination of values (i.e. sup-
port), while 96.6% of the patients who have the “low” 
value of the Platelet state, have the “moderately_low” 
value of the HGB state (i.e. confidence), and this associa-
tion is valid for 25 patients. 

In this visualization, by using direct manipulation, the 
user can dynamically apply additional constraints; e.g., we 
can answer the question “how constraining one parameter 
can affect the association between multiple concepts”. 
The user is able to select another range of the values for 
the raw-concept data by using trackbars, or to select a 
subset of the relevant values for the abstract concept. For 
example (See Figure 2), increasing the WBC value from 
1400 cells/ml to 5400 causes a refiltering of the patient 
data: in the new subgroup, there are no patients with a 
“very_low” value of the Platelet state, and only half of the 
patients have a “moderately_low” value of the HGB state.  

The system also supports displaying associations of one 
or several concepts among different time intervals, chang-
ing the order of displayed concepts, and displaying asso-
ciations in relative time (i.e. starting from some event).  

We used the parallel coordinates visualization in our 
system, one of the most popular multidimensional visuali-
zation techniques. This technique was previously used in 
The Cube system [Falkman, 2001]. With The Cube, a cli-
nician can interactively select a number of attributes of the 
patient record, inspect the resulting multiple 3D diagrams,  

 
Figure 1. Temporal association graph visualization 

 
Figure 2. Dynamic applying of constraints to the patient data 

and recognize the patients pattern (the similar patients 
have a parallel lines between attributes). 

However, we emphasize in our work the temporal as-
pects of the visualized data, automatic aggregation of pa-
tients and on a clinically meaningful summarization of 
raw patient data, enabled by using medical knowledge. 
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Abstract 

Although large training sets are supposed to 
improve the performance of learning algorithms, 
there are limits to the volume of data such an 
algorithm can handle. To overcome this problem, 
we describe an improvement to a progressive 
sampling method by guiding the construction of a 
reduced training set. The application of this 
method to neonatal intensive care data shows that 
it is possible to reduce a training set to a third of its 
original size without decreasing performance. 

1. Introduction 
Intensive Care Units generate large volumes of data - about 
1 MB per patient per day. However, such large volumes are 
difficult to analyze, so data mining or machine learning 
techniques are often used to learn classifiers for prediction 
and decision support. Although the general approach is to 
learn classifiers from the largest possible dataset, learning a 
classifier from too large a dataset can be computationally 
impossible or time-consuming and thus the training set must 
be reduced. 

‘Data reduction’ aims at aggregating the information 
contained in large datasets into manageable smaller 
information chunks, using simple tabulation, clustering, 
principal component analysis (PCA), etc. However, these 
methods need either data pre-processing or modification of 
the example datasets in such a way that it is more difficult 
to interpret the model which has been learned (e.g. PCA). 
Progressive Sampling (PS) [Provost et al. 1999] 
incrementally constructs a training set from a larger dataset 
without decreasing the classification performance and 
without altering the initial format of the examples. In this 
paper, we propose a variant of PS and show its application 
to the domain of Neonatal Intensive Care. 

2. Progressive Sampling 
Progressive Sampling (PS) starts with a small training 
subset (TS) of the full dataset (FDS) and incrementally 
extends TS until the learning accuracy satisfies some 

convergence criteria. The resulting dataset is expected to be 
smaller than FDS and to lead to (at least) the same 
performance. Figure 1 shows the general algorithm. 
 

Let FDS be the Full Dataset 
Let S = {n0, .. nk, … nK} be the planned sizes of TS 
k = 0; 
While not converged do 
   TS � computeTS(FDS) // copy nk examples from FDS to TS 
   M � learn(TS) // learn the model M  
   Evaluate(M, FDS) // evaluate M on FDS  
   inc(k) 
End do  
Return M 

Fig. 1 Progressive sampling algorithm. 
 

Before starting the learning process, the progressive 
sizes of TS are scheduled (planned). Then TS is used to 
learn the classifier model M (by a decision tree, neural 
network, etc.) which is tested until convergence is attained. 
The optimal training set is computed by mean of a learning 
curve which is used to retain the best balance between size 
and learning performance. Provost et al. [1999] have 
showed that when dealing with large volume of data, PS is 
more efficient than using the entire dataset. However, PS 
does not explicitly deal with unbalanced datasets. To face 
this problem, Ng and Dash [2006] introduced a method to 
improve the relative distribution of each class by over-
sampling the minor class in computeTS(FDS). But, as they 
emphasized, replicating examples from the smaller classes 
(over-sampling) leads to over-fitting.  

These approaches select the examples to be added into 
TS at random. We believe that it is possible to speed up the 
convergence by using a priori information to select the 
most appropriate examples to add.  

3. Guided Progressive Sampling 
Guided PS (GPS) uses a distance measure d between the 
samples in TS and the samples in FDS to guide the selection 
of samples to add to TS. Once M is learned, each ei∈FDS is 
tested to form the triple (ei, m(ei), d(ei)) where m(ei) is the 
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result of the classification of ei using M (m(ei)∈{correct, 
incorrect}) and d(ei) gives the distance from ei to the 
centroid of the class to which it actually belongs. This set of 
triples is used in computeTS(FDS) according to one of two 
strategies:  
1. GPS adds to each class in TS, the worst misclassified 

examples i.e. those with the highest values of d(ei). 
This is intended to improve learning robustness by 
considering the difficult cases. 

2. GPS+ extends GPS by additionally adding the best 
correctly classified examples i.e. with the lowest values 
of d(ei). This is intended to reinforce learning stability 
which can be distorted by only including the worst 
misclassifications. 

These choices rest on the assumption that learning is most 
influenced by the extreme examples of each class (correct 
classifications and misclassifications). The distance measure 
d does not need to be exact (otherwise it would be directly 
used to learn the model!) but is a heuristic estimate of how 
much the classification is wrong. 

4. Case study: bradycardia detection 
The method has been tested on the detection of bradycardias 
by decision tree learning (C4.5 with pruning). The dataset 
consists of thirteen heart rate (HR) time series each 
covering 24-hours recorded from premature babies 
receiving intensive care. The episodes of bradycardia were 
annotated by two clinical experts. Each example in FDS is 
described by 25 attributes (raw HR value and min, max, 
slope etc. over several centered windows). The size of the 
complete 13 record dataset is more than 80MB. Given such 
a large dataset, learning on the entire set is impossible. 
Moreover, the dataset is completely unbalanced. For 
example, in record #16234, the bradycardia class contains 
533 examples whereas the no-bradycardia class contains 
79875 examples, the bradycardias representing only 0.66% 
of the total dataset. However, this is to be expected, as 
bradycardia is defined as a short transient event. In addition, 
the records contain episodes of artifact that can perturb 
learning. 

Random sampling (RS), GPS, and GPS+ have been 
used. To try to balance the large difference between 
bradycardia and no-bradycardia, the initial TS contained 
100% of the bradycardias and 1% (selected at random) of 
the no-bradycardias. On each iteration, 3.33% more of the 
no-bradycardias were selected from FDS according to the 
particular strategy in use. Learning was stopped when the 
learning curve become sufficiently stable [Provost et al., 
1999].  

Fig.2 shows the number of classification errors against 
the training size for record #16234. GPS converged faster 
than GPS+ and RS. GPS+ and RS converged at the same 
iteration however GPS+ led to higher accuracy. GPS and 
GPS+ produced more errors at the beginning of the process 
as they initially selected the most difficult examples to 
classify but this led rapidly to a more stable plateau (fewer 

oscillations) than RS. The figure shows that after reaching 
the beginning of the plateau, the examples added do not 
provide information that has not already been learned by the 
decision tree. Results found with GPS led to 111 errors for 
TS=9317 examples. Thus around 90% of the dataset is not 
useful for learning. The decision tree learned with GPS led 
to the same performance (111 errors) as the decision tree 
learned from FDS but with a slightly smaller tree. The 
proportion of bradycardias is still not equally distributed 
but increased from 0.66% to 5.72%.  

Mean accuracy over the 13 datasets was 99.66% for RS 
(20 runs), 99.84% for GPS+ and 99.85% for GPS, with 
significant differences between GPS (or GPS+) and RS 
(p<0.04 in the worst case, p<0.0001 for #16234). 

5. Discussion 
Guided progressive sampling has shown to be more 
efficient than random progressive sampling for learning 
from a massive training set. Using a priori knowledge to 
guide the sampling leads to a faster convergence and a 
better selection of the “relevant” examples to use for 
learning. Further experiments will be undertaken to improve 
bradycardia detection with the reduction of larger datasets. 
This approach can also be useful in a situation with a small 
dataset to capture the “best” training examples.  

References 
[Provost et al., 1999] F. Provost, D. Jensen and T. Oates. 

Efficient progressive sampling. In Fifth ACM SIGKDD 
International Conference on Knowledge Discovery and 
Data Mining. San Diego, USA. 1999. 

[Ng and Dash, 2006] W. Ng and M. Dash. An Evaluation of 
Progressive Sampling for Imbalanced Datasets. In Sixth 
IEEE International Conference on Data Mining 
Workshops. Hong Kong, China. 2006. 

 
Fig. 2 Progressive learning for the record #16234.

                       Large marks show convergence.  
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Abstract

In this paper we discuss the weight of groups of
variables involved in the prediction of probabil-
ity of survival in patients admitted to an Intensive
Care Unit (ICU). The whole set of variables de-
scribe the state of critically ill patients, and it is
divided in three groups: clinical, monitoring and
laboratory data. The weight is assessed accord-
ing to the performance of the prediction models
that can be built with a group of variables us-
ing a method based on Support Vector Machines
(SVM). In this way, we measured the differences
between the relevance of monitoring and labo-
ratory data in some contexts with acknowledged
medical differences. Additionally, we identified
that most of the prediction capabilities of SVM
models are captured by a group of basic clinical
data that are routinely recorded in ICU admis-
sions. The conclusion is that it is possible to tai-
lor reliable and cheap prediction models for spe-
cific kinds of patients and ICUs.

1 Introduction
Predictions of probability of survival in critically ill pa-
tients are mainly used to measure the efficacy of Inten-
sive Care Unit (ICU) treatments. The risk stratification of
patients allows comparison of the observed outcomes ver-
sus accepted standards provided by score functions. Notice
that ICU assessment is very important since it is estimated
that end-of-life care consumes 10% to 12% of all healthcare
costs. Moreover, in 2001 the average daily cost per patient
in ICUs was about $3000 in the USA [Provonost and An-
gus, 2001]. On the other hand, the literature also shows
that prognoses have constituted an important dimension of
critical care, as patients and their families seek predictions
about the duration and outcome of illness [Lemeshow et
al., 1993].

The available models for predicting outcomes in ICUs
are usually scoring systems that estimate the probability
of hospital mortality of critically ill adults. This is the
case of APACHE (Acute Physiology And Chronic Health
Evaluation)[Knaus et al., 1991], SAPS (Simplified Acute
Physiology Score) [Le Gall et al., 1984], and MPM (Mor-
tality Probability Models) [Lemeshow et al., 1993]. The
score functions of these predictors were induced from data

on thousands of patients using logistic regression. The data
required by these systems is gathered, for each patient, in a
set of variables that can be split into 3 groups according to
the source of information: monitoring devices, laboratory
analysis, and demographic and diagnostic features.

In this paper we seek to measure the weight or relevancy
of these 3 groups of variables. The idea is to assess each
group of variables according to their performance when
they are used to learn the probabilities of survival. For this
purpose we shall use a method by Luaces et al. [2007]
based on Support Vector Machines SVM [Vapnik, 1998]
that optimizes the Area Under the ROC Curve (AUC) prior
to fit a sigmoid using the scaling algorithm of Platt [2000].
The next section details this Machine Learning method.

The aim of the paper is to gain insight into all the factors
that contribute to the actual prediction capabilities in dif-
ferent medical meaningful contexts. Thus, we shall discuss
the role of groups of variables in Units with and without
coronary patients, and in patients aggregated according to
the treatment location immediately prior to their ICU ad-
mission.

In all cases we found medical explanations to back our
achievements, but the contribution of the paper is that we
can provide accurate measurements. Moreover, our results
suggest that it is possible to build customized prediction
systems according to the peculiarities of ICUs and patients.
These predictors could be reliable, and their construction
and use could be cheap since they would require a small
number of variables. Let us recall that some of the vari-
ables used for the prognostic scores mentioned above are
not eventually part of the clinical routine, and may not be
registered in some patients. Therefore, simplifying the data
sets required could make the calculation of a score easier,
even in a retrospective manner.

The study presented here was done using data collected
in general ICUs at 10 hospitals in Spain, 6 of which include
coronary patients, while the other 4 do not treat coronary
diseases. The total number of patients considered in our
study was 2501, 19.83% of whom did not survive.

2 Predicting Probabilities with SVM
We shall face the prediction of probabilities task from the
point of view of Machine Learning. Thus, in order to in-
duce such predictions, we collect training sets of pairs of
descriptions of patient states and their outputs codified by
‘+1’ when the patient has survived, and ‘−1’ otherwise.
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The first temptation is to tackle this learning task as a bi-
nary classification since there are two classes. Unfortu-
nately, we must acknowledge that the performance of clas-
sification learners is not satisfactory in the ICU problem;
otherwise, nobody would turn to probabilities. However,
some useful knowledge, represented by probabilities, can
be drawn from data, despite accurate crisp predictions are
difficult to make.

An important issue when we are learning is to fix the way
in which we are going to measure the quality of the result
using the so-called loss functions. Formally, given a train-
ing set S = {(x1, y1), . . . , (xn, yn)} for a learning task,
the aim is to find a hypothesis h (from a given hypothesis
space) able to return outputs yi from entries xi of an input
space X that minimizes the average loss extended over the
set of independently identically distributed (i.i.d.) test sets
S′, usually represented by ∆(h, S′).

When predictions are discrete probability distributions,
usually the standard loss function is the average quadratic
deviation. If there are two possible outputs, the probability
loss is given by

∆Pr(h, S′) =
1
|S′|

∑
x′i∈S′

(h(x′i)− pi)2 (1)

where the hypothesis h returns the estimation of the prob-
ability h(x) = Pr(y = +1|x), and pi stands for the
observed probability of the i-th case, pi = Prtrue(y =
+1|xi).

The measurement in Equation (1) is frequently used
in medicine and meteorology, and is known as the Brier
[1950] index or score.

In the next section we shall spell out a method to learn
probabilities in this context using Support Vector Machines
(SVM), a state-of-the-art family of algorithms for learning
tasks [Vapnik, 1998].

2.1 Optimizing a loss function plus a sigmoidal
transformation

When used to learn a binary classification, SVMs compute
a function that returns continuous numbers: positive values
for cases of one of the classes, and negative for the other
class. This function is always a linear map in a so-called
feature space H where we represent the elements x of the
input space X . If φ : X → H is the representation map,
the classification learned by a SVM is accomplished by a
hypothesis

sign(f(x)) = sign(〈w, φ(x)〉+ b) (2)

where 〈·, ·〉 is the inner product that necessarily must ex-
ist in H, w ∈ H, and b ∈ R is a real number. Both w
and b are the unique solution to a quadratic convex pro-
gram that optimizes the margin between the classes, and
the errors measured with a given loss function. These two
aims are weighted by means of a regularization parameter
C. For instance, in classification SVM the loss function
counts the proportion of misclassified cases; therefore, the
SVM is asked to improve the accuracy of the classifier. In
symbols, this loss function is given by

∆Ac(h, S′) =
1
|S′|

∑
x′i∈S′

1{(h(x′i)6=y′i)} (3)

Formally, the convex optimization program to be solved
by the SVM is the following:

min
w,ξ

1
2
〈w,w〉+ C

n∑
i=1

ξi, (4)

s.t. yi(〈w, φ(xi)〉+ b) ≥ 1− ξi,
ξi ≥ 0, i = 1, . . . , n

It can be seen that w is a linear combination of the rep-
resentations inH of inputs of the training set S. Therefore,
the discrimination function (Eq. (2)) can be described by

f(x) = 〈w, φ(x)〉+ b =
n∑
i=1

αiyiK(xi,x) + b, (5)

where
K(xi,x) = 〈φ(xi), φ(x)〉 (6)

is called the kernel function of the transformation φ. We
shall use the rbf kernel that is defined by

K(xi,x) = e−
‖xi−x‖2

2σ2 . (7)

To learn a probability using SVM, it is crucial to trans-
form their scores or continuous outputs into probabilities.
This is what a method presented by Platt [2000] does. The
core idea is to fit a sigmoid, using a maximum likelihood
procedure. Thus we obtain, from the function of Eq. (5)
(that was learned to improve the accuracy), a hypothesis to
estimate probabilities

hac(x) = Pr(y = +1|x) =
1

1 + eAac·f(x)+Bac
(8)

The method described so far produces good results (see
the scores reported in section 4, Table 2); however, it could
be argued that even better results could be achieved if we
were able to include somehow the loss function of Eq. (1)
into the optimization problem of Eq. (4). But this is not
possible. However, following Luaces et al. [2007], we can
observe that the sigmoid of Eq. (8) is a strictly increasing
function that preserves the ordering induced by the function
f (Eq. (5)) that gives rise to the classification hypothesis.
Thus, it is reasonably to postulate that to compute Platt’s
sigmoid it is better to look first for a function like f whose
objective was to keep the ordering as coherent as possible
with the ordering of classes.

The advantage of this approach is that it is possible to
measure the degree of coherence of the orderings in a way
that can be then explicitly stated in an optimization con-
vex problem. In fact, the Area Under the ROC (receiver
operating characteristic) Curve (AUC for short) was inter-
preted by Hanley and McNeil [1982] as the probability of
a correct ranking induced by a function f ; in other words,
it is the probability that a randomly chosen subject of class
‘+1’ is (correctly) ranked by f with greater output than a
randomly chosen subject of class ‘−1’. Therefore, AUC
coincides with the value of the Wilcoxon-Mann-Whitney
statistic. The relationship between the AUC and the Brier
score has already been dealt in [Brier, 1950]. Therefore,
according to the probabilistic interpretation of AUC, the
complementary of this amount (1−AUC) can be used as a
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loss function. Thus, if g is a discrimination function like f
of Eq. (5), its loss evaluated on a test set S′ is

∆AUC(g, S′) = Pr(g(x′i) ≤ g(x′j)|y′i > y′j) =

=

∑
i,j:y′i>y

′
j
1{g(x′i)≤g(x′j)}∑

i,j 1{y′i>y′j}
(9)

The convex optimization problem devised to improve
this loss function is the following [Joachims, 2005; 2006]

min
w,ξ

1
2
〈w,w〉+ C

∑
i,j:yi>yj

ξi,j (10)

s.t. 〈w, φ(xi)〉 − 〈w, φ(xj)〉 ≥ 1− ξi,j ,
ξi,j ≥ 0, ∀i, j : yi > yj

The solution of this problem gives rise to a function

g(x)=〈w, φ(x)〉 =
∑
yi>yj

αi,j(K(xi,x)−K(xj ,x)) (11)

Then, using again Platt’s algorithm, we obtain

hAUC(x) = Pr(y = +1|x) =
1

1 + eAAUC ·g(x)+BAUC
(12)

3 Groups of Variables for Predicting
Probabilities

In the experiments reported in the next section, we shall
describe the state of patients using the set of variables em-
ployed by APACHE III, the golden standard of the field.
These variables, in addition to demographic and a brief
clinical history, include 16 acute physiologic records that
use the worst values from the first 24 hours in the ICU. In
order to study the prediction capabilities of these variables,
we have divided the whole set into 3 groups according to
the source of information of these variables, see Table 1.

We labelled the first group of variables with the tag clin-
ical. In this group we collect demographic and diagnostic
data adding simple tests or observations. Let us emphasize
that the recording of these data can be done without costs.

On the other hand, the second group of variables, moni-
toring, is formed by those data supplied by monitoring de-
vices. Finally, the third group of variables comes from lab-
oratory analysis.

4 Experimental Results
In this section we report a number of experiments carried
out with a real data set described in the next subsection.
The aim was first to show the performance of the SVM
methods described in section 2, and then to gain insight into
the weight of groups of variables involved when the pre-
dictions are sought in different contexts. We shall discuss
contexts defined by different kinds of ICUs, and contexts
characterized by the treatment location of patients immedi-
ately prior to ICU admission.

Group Variables

age, sex, mechanical ventilation,
pre-existing comorbilities,
major diagnostic category,

Clinical type of patient (scheduled or urgent surgery,
trauma, medical)

location prior to ICU (other hospital, ward,
scheduled or urgent surgery),

itemized Glasgow Coma Score

Monitoring temperature, blood pressure,
heart and respiratory rate, urinary output

gas exchange (PO2, PCO2 ),
white cell count, hematocrit,

Laboratory serum: sodium, blood urea nitrogen, creatinine,
albumin, bilirrubin, glucose

Table 1: The division of variables used to record the state
of UCI patients into 3 groups according to their source of
information

In all cases, performance estimations were made using a
10-fold stratified cross-validation on each of the data sets,
for all prediction methods except for APACHE III; since
it was already trained with a different data set, we used
the available data to test its predictions. Additionally, the
data was standardized according to the mean and deviation
observed on each training fold.

4.1 The Data Used in the Experiments

We used data collected from ICUs at 10 different Spanish
hospitals, 6 of which include coronary patients. The total
number of patients was 2501, and they were described us-
ing the set of variables of APACHE III detailed in section 3.
In order to be handled by SVM, we codified each discrete
variable using as many new binary variables (with values
0 and 1) as the number of possible values of the original
variable, only setting to ’1’ the variable corresponding to
the discrete value actually taken by the original variable.

First of all, we report [Luaces et al., 2007] a com-
parison of the SVM methods discussed in section 2 and
APACHE III. We used the customization of APACHE III
developed to improve its performance in Spanish ICUs
[Rivera-Fernández et al., 1998]. Notice that this is an unfair
comparison since APACHE III was trained with a cohort
of 17440 patients from 40 different hospitals in the USA
[Knaus et al., 1991]; the Spanish version used records of
10929 patients from 86 ICUs; while the available data sets
in our experiments only included 2501 patients. Neverthe-
less, this comparison is useful to test whether or not the
scores achieved by SVM methods are good enough to draw
some knowledge about the weight of different groups of
variables in different clinical contexts.

It is important to recall that the AUC achieved by
the Spanish version of APACHE III in our experiments,
82.27% (in percentage) is similar to the amount reported
by Rivera-Fernández et al. [1998]: 81.82%. This fact sup-
ports the representativeness of the sample of critically ill
patients considered in the experiments described here.

Table 2 shows the scores obtained. The data were orga-
nized in 13 different training sets, one for each Unit, two
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SVM(AUC) SVM(Ac) APACHE III
# patients Unit Bs·102 AUC ·102 Bs·102 AUC ·102 Bs·102 AUC ·102

108 1 17.12 75.82 18.60 70.60 14.73 81.76
189 2 18.87 73.51 19.98 69.23 17.10 77.80
194 3 17.35 75.32 18.97 65.88 15.92 78.20
194 4 10.89 77.20 11.42 74.93 9.61 86.17
195 5 11.02 84.44 10.94 82.41 10.79 88.78
239 6 15.69 74.87 16.37 69.12 14.59 77.62
269 7 9.93 81.09 10.96 75.75 8.52 88.02
297 8 12.05 84.86 12.77 81.44 11.27 87.37
337 9 10.96 81.35 11.28 77.91 10.71 81.30
479 10 10.71 79.32 11.20 71.74 12.18 78.22
919 {2,3,6,8} 14.94 79.75 15.00 78.46 14.32 80.86

1582 {1,4,5,7,9,10} 10.86 81.79 11.08 80.37 10.94 82.63
2501 all 12.34 81.51 12.29 81.22 12.18 82.27

Table 2: Performance of survival predictions by Units ordered by the number of patients (# patients). The learning methods
compared are the commercial APACHE III, and SVM followed by Platt’s algorithm to transform the output into a probabil-
ity. We have tested two SVM versions, SVM(Ac), which tries to optimize the classification accuracy, and SVM(AUC) that
optimizes first the Area Under the ROC Curve. In the SVM cases we used a 10-fold cross validation to estimate both the
Brier score (Bs) and AUC

collecting the data from non-coronary/coronary ICUs re-
spectively, and the last one containing all the data. We
observe that the version that optimizes the AUC first
(SVM(AUC)) outperforms (lower Brier score and higher
AUC) the version that optimizes first the classification ac-
curacy (SVM(Ac)). However, both SVM methods do not
reach the results of the commercial APACHE III, although
the differences decrease as the number of training cases in-
creases.

These results allow us to conclude that the method
SVM(AUC) is good enough so as to estimate the weight
of groups of variables in different medical contexts.

4.2 Groups of Intensive Care Units
From a medical point of view, probably the most obvious
division between ICUs can be stated into those that include
or not coronary patients. It is acknowledged that coronary
diseases generally have a lower mortality risk than other
critical illnesses. Moreover, there are important differences
in the treatments applied to patients in both kinds of ICUs.
Therefore, we decided to consider if there are also differ-
ences in the hypothesis that predict the probabilities of sur-
vival.

Table 3 shows the scores achieved by SVM(AUC) in
these kinds of Units considering different groups of vari-
ables defined in section 3. To contrast the results, we
included three datasets: coronary, non-coronary, and all
units. On the other hand, the groups of variables used were:
all variables, clinical, and clinical plus the other two groups
defined in section 3, laboratory and monitoring. We in-
cluded clinical in addition to these two specialized groups
since clinical variables constitute somehow the basic infor-
mation about a patient that it is routinely recorded.

First of all, we observe that the basic clinical variables
provide surprisingly good results. So, in AUC the differ-
ences with the whole set of variables are just around 3
points down, while in Brier score the gap is 0.7 when the
units of these scores are multiplied by 102.

When we add monitoring or laboratory variables to the
clinical ones, we almost reach the maximum predictive ca-
pacity. In the dataset of patients from all Units, the dif-
ferences are inappreciable. But in ICUs with coronary pa-
tients, monitoring is more useful for a prediction task than
laboratory variables. On the other hand, we have the op-
posite situation in Units without coronary patients. These
results are consistent when we measure the performance
with AUCs or Brier scores.

4.3 Groups of Patients

The second context where we studied the differences of
weight of variable groups arose from considering the treat-
ment location of patients immediately prior to ICU admis-
sion. Table 4 reports the number and percentages of pa-
tients for each location in the whole dataset of 2501 patients
and the percentage of dead. Notice that survival percent-
ages are dramatically different, thus we used the situations
with higher dead in order to deepen our knowledge about
the weight of variables.

Therefore, we now consider 3 contexts to study the per-
formance of the groups of variables as we did in the experi-
ments reported in the preceding subsection. Table 5 gathers
the results so obtained. We observe, that in the case of pa-
tients that come from a different hospital, no matter if they
come from ICU, ward, or any other location of the other
hospital, laboratory data are more predictive than monitor-
ing. On the other hand, for patients who come from a ward
of the same hospital, to predict their survival probabilities,
monitoring devices are more useful than laboratory data; in
fact, it is preferable to get rid of laboratory data that in this
case act as a noise source.

The third situation considered is that of patients whose
admission in an ICU is after an urgent surgery. Probably
this is a too broad circumstance that includes too many dif-
ferent cases; in fact, we observe that in this case monitoring
and laboratory variables weight the same.
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All ICU Units Coronary Units Non-Coronary Units
Bs·102 AUC ·102 Bs·102 AUC ·102 Bs·102 AUC ·102

All var. 12.34 81.51 10.86 81.79 14.94 79.75

Clini.+Moni. 12.57 80.50 10.91 81.33 15.46 77.62
(Dif. all var.) (-0.23) (1.01) (-0.05) (0.46) (-0.52) (2.13)

Clini.+Lab. 12.57 80.54 11.33 79.79 15.05 79.49
(Dif. all var.) (-0.24) (0.97) (-0.47) (2.00) (-0.11) (0.26)

Clinical 12.94 78.80 11.44 78.33 15.78 76.54
(Dif. all var.) (-0.61) (2.71) (-0.58) (3.46) (-0.84) (3.21)

Table 3: Performance of survival predictions of SVM(AUC) by groups of ICU units and groups of variables using 10-
fold cross validation. Small differences (in bold) both in AUC and Brier score (Bs) let us realize that monitoring has
more relevancy than laboratory data in Units with coronary patients; in units without these patients, we have the opposite
situation

Other hospital Ward Scheduled surgery Urgent surgery Urgencies Totals

% pat. 7.16% 20.03% 15.11% 9.08% 48.58% 100%
# pat. 179 501 378 227 1216 2501

% dead 27.93% 36.53% 7.94% 25.11% 14.49% 19.83%

Table 4: Distribution of patients according to the treatment location immediately prior to their ICU admission. In some
cases (in bold) the percentage of dead is significantly high

4.4 Discussion

We have described two prediction contexts where labora-
tory data is more useful than monitoring in order to pre-
dict survival: Units without coronary patients, and patients
coming from other hospitals. In both cases the dead risk
of patients is usually related to multi-organic (respiratory,
renal or hepatic) failures. The medical way to control the
evolution of these diseases is by means of laboratory data,
what explains the results obtained.

On the other hand, monitoring is more useful than lab-
oratory data for patients coming from a ward of the same
hospital of the ICU considered, or for Units with coronary
patients. In these cases, survival is mostly threatened by
cardiovascular complications, and they are controlled by
means of monitoring devices.

5 Conclusions

We have presented a reliable method to estimate hospital
survival probability of critically ill patients. The method is
based on SVM aimed at optimizing the classification AUC
followed by Platt’s scaling algorithm [2000].

Using this tool, we have identified some medical con-
texts where the weights of monitoring and laboratory vari-
ables have meaningful differences. These results have clear
medical explanations, but the novelty is that now weight
differences can be measured in a precise sense.

Additionally, we have established that most of the pre-
diction capability of SVM models can be reached by a
group of basic clinical variables. This group is formed by
demographic and diagnostic data adding simple tests or ob-
servations that are routinely recorded for ICU admissions.

From a practical point of view, the implication of the re-
search reported here is that it is possible to tailor cheap and

reliable prediction systems according to the peculiarities of
ICUs and kinds of patients.
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Abstract
Estimating the reliability of individual predic-
tions or classifications is very important in sev-
eral applications such as medical diagnosis. Re-
cently, the transductive approach to reliability
estimation has been proved to be very efficient
when used with several machine learning clas-
sifiers, such as Naive Bayes and decision trees.
However, the efficiency of the transductive ap-
proach for state-of-the art kernel-based classi-
fiers was not considered. In this work we deal
with this problem and apply the transductive re-
liability methodology with sparse kernel classi-
fiers, specifically the Support Vector Machine
and Relevance Vector Machine. Experiments
with medical and bioinformatics datasets demon-
strate better performance of the transductive ap-
proach for reliability estimation compared to re-
liability measures obtained directly from the out-
put of the classifiers. Furthermore, we apply the
methodology in the problem of reliable diagnos-
tics of the coronary artery disease, outperforming
the expert physicians’ standard approach.

1 Introduction
Decision-making is a complicated process that carries a
certain amount of imperfectness and therefore cannot be
considered completely reliable. However, it is often crucial
to know the magnitude of diagnosis’ (un)reliability in order
to minimize risks, for example in the medical domain risks
related to the patient’s health or even life. One of the rea-
sons why machine learning methods are infrequently used
in practice is that they fail to provide an unbiased reliability
measure of predictions.

Although there are several methods for estimating the
overall performance of a classifier, e.g cross-validation,
there is very little work on estimating the reliability of indi-
vidual classifications. The transductive reliability method-
ology as introduced in [Kukar and Kononenko, 2002]
computes the reliability of an individual classification, by
studying the stability of the trained model when the train-
ing set is perturbed (the newly classified example is added
to the training set and the classifier is retrained). For reli-
able classifications, this process should not lead to signif-
icant model changes. The transductive reliability method-

ology has been applied on traditional classifiers like Naive
Bayes and decision trees with interesting results. Here, we
examine the effectiveness of this methodology when ap-
plied on sparse kernel-based classifiers, such as the Sup-
port Vector Machine (SVM) and the Relevance Vector Ma-
chine (RVM), and compare transductive reliability estima-
tions with reliability measures based on the outputs that
SVM and RVM provide. SVMs and RVMs produce state-
of-the-art classifiers that are used in a wide variety of prob-
lems. The aim of this paper is to evaluate the advantages of
using the transduction principle to assess the reliability of
individual classifications made with SVM/RVM. We also
apply the methodology for diagnosis of the coronary artery
disease (CAD) using kernel-based classifiers and compare
our results to the performance of expert physicians using
an established standard methodology.

2 Transductive Reliability Estimations
There have been numerous attempts to assign probabilities
to machine learning classifiers’ (decision trees and rules,
Bayesian classifiers, neural networks, nearest neighbour
classifiers, . . . ) in order to interpret their decision as a
probability distribution over all possible classes. In fact,
we can trivially convert every machine learning classifier’s
output to a probability distribution by assigning the pre-
dicted class the probability 1, and 0 to all other possible
classes. The posterior probability of the predicted class
can be viewed as a classifier’s confidence (reliability) of its
prediction. However, such estimations may in general not
be trustworthy due to inherent applied algorithm’s biases.1
Reliability estimation of a classification (ỹ) of a single ex-
ample (x), given its true class (y) should have the following
property:

Rel(ỹ | x) = t ⇒ P (ỹ 6= y) ≤ 1− t (1)

If Eq. 1 holds, or even better, if it approaches equality,
a reliability measure can be treated as a confidence value
[Melluish et al., 2001].

Transduction is an inference principle that takes a train-
ing sample and aims at estimating the values of a discrete or
continuous function only at given unlabelled points of in-
terest from input space, as opposed to the whole input space

1An extreme case of inherent bias can be found in a trivial
constant classifier that blindly labels any example with a prede-
termined class with self-proclaimed confidence 1.

Allan Tucker and Carlo Combi (chairs) IDAMAP 2007 workshop 53



for induction. In the learning process the unlabelled points
are suitably labelled and included into the training sample.
The usefullness of unlabelled data has also been advocated
in the context of co-training. It has been shown [Blum and
Mitchell, 1998] that for every better-than-random classifier
its performance can be significantly improved by utilizing
only additional unlabelled data.

The transductive reliability estimation process and its
theoretical foundations originating from Kolmogorov com-
plexity are described in more detail in [Kukar and
Kononenko, 2002].

In practice, transductive reliability estimation is per-
formed in a two-step process, featuring an inductive step
followed by a transductive step.

• An inductive step is just like an ordinary inductive
learning process in Machine Learning. A Machine
Learning algorithm is run on the training set, inducing
a classifier. A selected example is taken from an inde-
pendent dataset and classified using the induced clas-
sifier. An example, labelled with the assigned class is
temporarily included into the training set (Figure 1a).

• A transductive step is almost a repetition of an induc-
tive step. A Machine Learning algorithm is run on
the changed training set, transducing a classifier. The
same example as before is taken from the independent
dataset and is classified using the transduced classifier
(Figure 1b). Both classifications of the same example
are compared and their difference (distance) is calcu-
lated, thus approximating the randomness deficiency.

• After the reliability is calculated, the example in ques-
tion is removed from the training set.

The machine learning algorithm, whose reliability is being
assessed, is assumed to provide a probability distribution p
that describes the probability that its input belongs at each
possible class. In order to measure how much the model
changes, we calculate the distance between the probability
distribution p of the initial classifier and the probability dis-
tribution q of the augmented classifier, using the Symmet-
ric Kullback-Leibler divergence, or J-divergence, which is
defined as

J(p, q) =
n∑

i=1

(pi − qi) log2

pi

qi
. (2)

J(p, q) is limited to the interval [0,∞], with J(p, p) = 0.
For the ease of interpretation, it is desirable for reliabil-
ity values to be bounded to the [0, 1] interval, J(p, q) is
normalized in the spirit of Martin-Löf’s test for random-
ness [Kukar and Kononenko, 2002; Li and Vitányi, 1997,
pp. 129], to obtain the transductive reliability measure
(TRE) used in our approach:

TRE = 1− 2−J(p,q). (3)

Due to non-optimal classifiers resulting from learning in
noisy and incomplete datasets, it is inappropriate to select
a priori fixed boundary (say, 0.90) as a threshold above
which a classification is considered reliable. To deal with
this problem, we split the range [0, 1] of reliability esti-
mation values into two intervals by selecting a threshold

T . The lower interval [0, T ) contains unreliable classifi-
cations, while the higher interval [T, 1] contains reliable
classifications. As a splitting point selection criterion we
use maximization of the information gain[Dougherty et al.,
1995]:

Gain = H(S)− |S1|
|S| H(S1)− |S2|

|S| H(S2), (4)

where H(S) denotes the entropy of set S, S1 = {x :
TRE(x) < T} is the set of unreliable examples and
S2 = {x : TRE(x) > T} is the set of reliable results.

Note that our approach is considerably different from
that described in [Gammerman et al., 1998; Saunders et al.,
1999]. Their approach is tailor-made for SVM (it works by
manipulating support vectors) while ours requires only that
the applied classifier provide a probability distribution.

3 Kernel-Based Methods
Kernel methods have been extensively used to solve clas-
sification problems, where a training set {xn, tn}N

n=1is
given, so that tn is the target for training example xn. The
targets tn are discrete, e.g. t ∈ {0, 1} for binary classi-
fication, and they describe the class where each training
example belongs.

Kernel methods, are based on a mapping function φ(x)
that maps each training vector to a higher dimensional fea-
ture space. Then, inner products between training examples
are computed in this new feature space, by evaluating the
corresponding kernel function K(xi, xj) = φ(xi)T φ(xj).
This kernel function, provides a measure of similarity be-
tween training examples. This similarity measure, is much
more flexible than the inner product xixj , however it intro-
duces the additional task of selecting an appropriate map-
ping function φ. In practice, learning algorithms do not
require computation of the mapping function φ, but only
inner products which are evaluated by the corresponding
kernel function K(xi, xj).

Recently, there is much interest in sparse kernel meth-
ods, such as the Support Vector Machine (SVM) and
the Relevance Vecor Machine (RVM). These methods are
called sparse because, after training with the full dataset,
they make predictions using only a small subset of the
available training vectors. These training vectors, which
are used for predictions are called support vectors (SV) in
the case of SVM and relevance vectors (RV) in the case of
RVM. The main reason why sparse kernel methods are so
interesting and effective, is that during training, they auto-
matically estimate the complexity of the dataset, and thus
they have good generalization performance on both simple
and complex datasets. In simple datasets only few sup-
port/relevance vectors will be used, while in more difficult
datasets the number of support/relevance vectors will in-
crease. Furthermore, making predictions using only a small
subset of the initial training examples is typically much
more computationally efficient.

3.1 Support Vector Machine
The support vector machine (SVM) classifier, is a kernel
classifier that aims at finding an optimal hyperplane which
separates data points of two classes. This hyperplane is op-
timal in the sense that it maximizes the margin between the
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Figure 1: Transductive reliability estimation.

hyperplane and the training examples. The SVM classifier
[Cortes and Vapnik, 1995] makes decisions for an unknown
input vector, based on the sign of the decision function:

ySV M (x) =
N∑

n=1

wnK(x, xn) + b (5)

After training, most of the weights w are set to exactly zero,
thus predictions are made using only few of the training
vectors, which are the support vectors.

Assuming that the two classes are labeled with ’−1’ and
’1’, so that tn ∈ {−1, 1}, the weights w = (w1, . . . , wN )
are set by solving the following quadratic programming
problem:

min
w,b

1
2
wT w (6)

subject to tn(wT φ(xn) + b) ≥ 1

The above formulation can only be applied in cases where
the data points are separable. However, it can be extended
in order to treat non-separable cases, by introducing the
auxiliary variables ξ = (ξ1, . . . , ξN ):

min
w,b,ξ

1
2
wT w + C

N∑
n=1

ξn (7)

subject to tn(wT φ(xn) + b) ≥ 1− ξn

ξn ≥ 0

SVM makes predictions based on the decision func-
tion of eq. (5). Positive values of the decision function
(ySV M (x) > 0) correspond to class ’1’, while negative
values (ySV M (x) < 0) correspond to class ’−1’. Further-
more, the absolute value of the decision function provides
a measure of the certainty of the decision. Values near
zero, correspond to points near the decision boundary and
therefore may be unreliable, while large values of the deci-
sion function should correspond to reliable classifications.
In practice, we can obtain a reliability measure, scaled in
[0, 1], by using the sigmoid function σ(x) = 1/(1+exp(x):

RESV M = |2σ(ySV M (x))− 1| (8)

3.2 Relevance Vector Machine
The relevance vector machine (RVM) classifier [Tipping,
2001], is a probabilistic extension of the linear regression
model, which provides sparse solutions. It is analogous to
the SVM, since it computes the decision boundary using
only few of the training examples, which are now called
relevance vectors. However training is based on different
objectives.

The RVM model y(x;w) is the output of a linear model
with parameters w = (w1, . . . , wN )T , with application of
a sigmoid function for the case of classification:

yRV M (x) = σ(
N∑

n=1

wnK(x, xn)), (9)

where σ(x) = 1/(1 + exp(−x)). In the RVM, sparse-
ness is achieved by assuming a suitable prior distribution
on the weights, specifically a zero-mean, Gaussian distri-
bution with distinct inverse variance αn for each weight
wn:

p(w|α) =
N∏

n=1

N(wn|0, α−1
n ). (10)

The variance hyperparameters α = (α1, . . . , αN ) are as-
sumed to be Gamma distributed random variables:

p(α) =
N∏

n=1

Gamma(αn|a, b). (11)

The parameters a and b are assumed fixed and usually they
are set to zero (a = b = 0), which provides sparse solu-
tions.

Given a training set {xn, tn}N
n=1 with tn ∈ {0, 1} train-

ing in RVM is equivalent to compute the posterior distri-
bution p(w,α|t). However, since this computation is in-
tractable, a quadratic approximation log p(w|t, α) ≈ (w −
µ)T Σ−1(w−µ) is assumed and we compute matrix Σ and
vector µ as:

Σ = (ΦT BΦ + A)−1 (12)

µ = ΣΦT Bt̂ (13)

with the N × N matrix Φ defined as [Φ]ij = K(xi, xj),
A = diag(α1, . . . , αN ), B = diag(β1, . . . , βN ), βn =
yRV M (xn)[1− yRV M (xn)] and t̂ = Φµ + B−1(t− y).
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The parameters α are then set to the values αMP that
maximize the logarithm of the following marginal likeli-
hood

L(α) = log p(α|t) = −1
2

[
N log 2π + log|C|+ tT C−1t

]
,

(14)
with C = B−1 + ΦA−1ΦT . This, gives the following
update formula:

αn =
1− αnΣnn

µ2
n

(15)

The RVM learning algorithm iteratively evaluates formulas
(12),(13) and (15).

After training, the value of yRV M (x) = y(x; µ) can be
used to estimate the reliability of the classification deci-
sion for input x. Values close to 0.5 are near the decision
boundary and therefore are unreliable classifications, while
values near 0 and near 1 should correspond to reliable clas-
sifications. In our experiments, we used the reliability mea-
sure

RERV M = |2yRV M (x)− 1|, (16)
which takes values near 0 for unreliable classifications and
near 1 for reliable classifications.

3.3 Incremental Relevance Vector Machine
An interesting property of the RVM model that can be ex-
ploited in the transductive approach, is that it can be trained
incrementally, as proposed in [Tipping and Faul, 2003].
The proposed incremental algorithm, initially assumes an
empty model, that does not use any basis functions. Then,
it incrementally adds, deletes and re-estimates basis func-
tions, until convergence. It is based on the observation that
the marginal likelihood, see eq. (14), can be decomposed
as:

L(α) = L(α−n) + l(αn), (17)
where L(α−n) does not depend on αn and

l(αn) = log αn − log(αn + sn) +
q2
n

αn + sn
, (18)

with sn = φT
nC−1

−nφn and qn = φT
nC−1

−nt̂. Here, C−n =
B−1 +

∑
i 6=n α−1

n φnφT
n denotes the matrix C without the

contribution of the n-th basis function, so that C = C−n +
α−1

n φnφT
n , sn is the “sparseness” factor that measures how

sparse the model is and qn is the “quality” factor that mea-
sures how well the model fits the observations. Based on
this decomposition, analysis of l(αn) shows that it is max-
imized when

αn = s2
n

q2
n−sn

if q2
n > sn (19)

αn = ∞ if q2
n ≤ sn (20)

Based on this result, the following algorithm is proposed
in [Tipping and Faul, 2003]:

1. Initially assume an empty model, set an = ∞, for all
n

2. Select a training point xn and compute the corre-
sponding basis function φn as well as sn and qn.
(a) if q2

n > sn and αn = ∞ add the basis function
to the model, using eq. (19) to set αn

(b) if q2
n > sn and αn < ∞ re-estimate αn

(c) if q2
n <= sn remove the basis function from the

model, set αn = ∞
3. Compute Σ and µ, using eq. (12) and (13)

4. Repeat from step 2, until convergence.

4 Experimental Evaluation of Transductive
Reliability Estimations in Medical and
Biomedical Problems

In this section, we apply the transductive reliability
methodology in a series of classification problems and
compare the performance of transductive reliability esti-
mations, with respect to the reliability measures that are
directly computed based on SVM and RVM outputs.

Tranductive reliability estimations, are obtained follow-
ing the procedure described in Section 2. After training the
model and computing its output for a new test point x∗, we
add this test point to the training set with the predicted label
and retrain the model. Transductive reliability estimations
are obtained by measuring the distance between the output
distributions of the two models.

In the case of RVM we also considered a modification,
where we used the incremental training algorithm to ob-
tain fast transductive reliability estimations. Specifically,
after adding the new training point x∗, instead of retrain-
ing from scratch, we can use the incremental algorithm to
continue training the previous model. This is much more
computationally efficient, and in the experiments it appears
to provide better performance than the standard approach
of training from scratch.

In order to evaluate the performance of the reliability
estimation methods, we apply the following procedure.
We perform leave-one-out cross-validation on the available
training dataset and compute a prediction for the class of
each training point and a reliability estimation (RE) of
this prediction. Afterwards, we can discriminate reliable
and unreliable classifications by selecting a threshold (T )
for the reliability measure. Using an ideal reliability mea-
sure all correct classifications should be labeled reliable
(RE > T ), while all incorrect classifications should be
labeled unreliable. Thus, an evaluation of the reliability
measure is obtained by computing the percentage of cor-
rect and reliable classifications, and the percentage of in-
correct reliable classifications. Plotting these percentages,
for many values of the threshold, produces an ROC curve,
which illustrates the performance of the reliability estima-
tion method.

Allthough the ROC describes the overall efectiveness of
a reliability measure, in practice, a single threshold value
has to be used. This is selected by maximizing the informa-
tion gain, as explained in Section 2. The information gain
may also be used to compare the performance of several
reliability measures. Table 1 shows the information gain
that is achieved by: i) using directly the SVM/RVM relia-
bility estimates RESV M and RERV M , ii) using the trans-
duction reliability principle (TRE). Results are shown for
two medical datasets from the UCI machine learning repos-
itory and the leukemia bioinformatics dataset. It is clear
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Method hepatitis new-thyroid leukemia
RESVM 0.106 0.083 0.054
TRESVM 0.120 0.092 0.073
RERVM 0.109 0.068 0.089
TRERVM 0.178 0.062 0.062
TRERVM(inc) 0.133 0.072 0.107

Table 1: Information gain of SVM/RVM reliability estimations and transductive reliability estimations.

that when SVM is used, transduction provides better infor-
mation gain for all datasets. The same happens with incre-
mental RVM, while when typical RVM is used, transduc-
tion is better in two of the three cases.

4.1 Diagnosis of Coronary Artery Disease

Coronary artery disease (CAD) is the most important cause
of mortality in all developed countries. It is caused by
diminished blood flow through coronary arteries due to
stenosis or occlusion. CAD produces impaired function
of the heart and finally the necrosis of the myocardium –
myocardial infarction.

In our study we used a dataset of 327 patients (250
males, 77 females) with performed clinical and laboratory
examinations, exercise ECG, myocardial scintigraphy and
coronary angiography because of suspected CAD. The fea-
tures from the ECG an scintigraphy data were extracted
manually by the clinicians. In 228 cases the disease was an-
giographically confirmed and in 99 cases it was excluded.
162 patients had suffered from recent myocardial infarc-
tion. The patients were selected from a population of
approximately 4000 patients who were examined at the
Nuclear Medicine Department, University Clinical Centre,
Ljubljana, Slovenia, between 1991 and 1994. We selected
only the patients with complete diagnostic procedures (all
four levels) [Kukar et al., 1999].

Physicians apply a stepwise diagnostic process and use
Bayes law to compute a posterior probability of disease,
based on some diagnostic tests and a prior probability ac-
cording to the age, gender and type of chest pain for each
patient. Reliable diagnoses are assumed to be those whose
posterior probability is over 0.90 (positive) or under 0.10
(negative). We considered treating the problem by training
an SVM or an RVM classifier and using the transductive re-
liability principle to estimate the reliability of each classifi-
cation. For evaluation purposes, we performed leave-one-
out cross-validation, and for each example we predicted a
class and a reliability of the classification. We then split-
ted classifications to reliable and unreliable by computing
the threshold that maximizes the information gain and mea-
sured the percentage of reliable diagnoses (with the relia-
bility measure above some threshold), and errors made in
this process (percentage of incorrectly diagnosed patients
with seemingly reliable diagnoses). The results are shown
in Table 2, where it can be observed that when the trans-
duction principle is used along with SVM and incremental
RVM, the achieved reliability estimations performance is
better compared to physicians. Furthermore, in Figure 2
ROC curves are plotted separately for the cases of positive
and negative examples.

5 Conclusions
We applied the transduction methodology for reliability
estimation on sparse kernel-based classification methods.
Experiments on medical datasets from the UCI repository
and a bioinformatics gene expression dataset, indicate that,
when used with kernel-based classifiers, transductive relia-
bility estimations are more accurate than simple reliability
measures based on the outputs of kernel classifiers. While
no experimental comparison with the specific approach of
Gammerman et al. [1998] was made due to different imple-
mentation (our experiments were performed within Mat-
lab), experiments with other classifiers [Kukar, 2004; 2006]
show that our methodology, while completely generic, per-
forms similarly to tailor-made transductive methods.

We also applied the transductive methodology in the
problem of CAD diagnosis, achieving better reliability es-
timation performance compared to the standard physicians
procedure.
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Positive Negative
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Table 2: Comparison of the performance of expert physicians and machine learning classification methods for the CAD
dataset.
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Abstract 
We present a model to assess genetic susceptibility 
toward disease manifestation. The model is based on 
post-processing analysis of association rule mining 
results. The model is validated using periodontal dis-
ease records from the data warehouse of ACTA in the 
Netherlands combining phenotype information such 
as disease severity with microbial measurements, 
environmental factors or patient demographics. Vali-
dation is performed by incorporating or integrating 
genetic susceptibility index results with decision tree 
learning, structural equation modeling, and metrics on 
microbial values. Initial analysis demonstrates that 
the proposed index represents a reliable disease pre-
dictor. We present results and discuss the implica-
tions in bioinformatics research and practice. 

1 Introduction 
Assessment of genetic susceptibility toward disease mani-
festation represents a key endeavor in the integration of 
genotype and phenotype information. The search for ge-
netic markers and candidate disease-modifying genes is 
receiving considerable attention. Single nucleotide poly-
morphisms (SNP’s) in genes encoding molecules of the 
host defense system are assessed in addition to other re-
cords of the patients such as, environmental, clinical, and 
microbial measurements.  
A patient record may incorporate heterogeneous informa-
tion such as: SNP’s, age, gender, patient history (i.e., 
smoking, ethnic origin), clinical and microbial measure-
ments. Integration is not trivial since heterogeneity across 
data does not make them amenable to uniform treatment. 
SNP data are symbolic while the other aforementioned 
components may be symbolic or numeric. Therefore, the 
classical model of patient records used to learn disease (or 
therapeutic) patterns may fail to generate meaningful re-
sults since different types of data may require different 
algorithmic treatment during learning. Furthermore, ge-
netic markers denote susceptibility toward disease mani-
festation and it would be useful to exploit the information 
hidden into them and to derive a genetic susceptibility 
index (GSI). 

This article presents a GSI assessment model. The model 
is motivated by the work of Ackoff (1958) on behavioral 
communication and the specific variation elaborated by 
Moustakis (2006). In the work of Ackoff central concepts 
on which the theory is based are purposefulness and 
knowledge gain. Purposefulness implies that choice is 
available and the entity involved is capable of choice. 
Knowledge gain relates to the added value as result of 
choice, or, of learning as result of choice. The work of 
Moustakis focuses on a knowledge gain computation 
model, which is based on learning outcome.  
In the present article we present a methodology, which 
enables the derivation of a GSI from SNP’s. We use asso-
ciation rule mining (ARM) to form disease and healthy 
status patterns using genetic markers. In the sequel we 
derive weights for the genetic markers and combine the 
weights to assess: (a) genetic susceptibility indices for 
each marker, )(SNPGSI ; and, (b) the susceptibility of 
each individual toward disease manifestation 

)(RecordGSI . In the sequel we demonstrate two indica-
tive ways that exploit susceptibility indices in learning. 
We demonstrate methodology using the periodontitis data 
warehouse (PDW) from ACTA (2005). We conclude the 
article by discussing results and placing work reported 
herein in context with biomedical research. We stress that 
results drawn from our work are still in progress. 
In the following sections we overview the characteristics 
of the periodontitis data (section 2), the methods that sup-
port )(SNPGSI  and )(RecordGSI  assessment (section 
3), the results we obtained using the periodontitis data 
(section 4), and conclude the article, and discuss areas for 
further work on the subject (section 5). 

2 Periodontitis case study 
Periodontitis is a chronic inflammatory disease of the 
supporting tissues of the teeth. If left untreated, teeth may 
show exposed root surfaces, in conjunction with red, 
swollen gums that easily bleed. Periodontitis is clinically 
defined by deepened pockets (>4 mm) and loss of attach-
ment. 
Etiology of periodontitis is multifactorial and involves 
infectious components, environmental factors and genetic 
susceptibility.  
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The PDW developed by ACTA (2005) incorporates over 
850 records of periodontitis and control patients. Records 
incorporate SNP’s, which are represented via gene, locus 
and genotype triplets; sixty two triplets are recorded 
across all records. However, the number of SNP’s re-
corded is not the same for each individual and they range 
from three up to thirteen. In addition, there are records of 
seven bacterial species (Actinobacillus actinomycetem-
comitans, Porphyromonas gingivalis, Prevotella inderme-
dia, Tannerella forsythensis, Peptostreptococcus micros, 
Fusobacterium nucleatum and Campylobacter rectus), 
ethnic origin (based on the origin of parents and of the 
grandparents) as well as age, gender, smoking status, 
periodontal status (pocket depth and attachment loss), and 
severity assessment (valued over a nominal scale: 
healthy=0, mild periodontitis=1, and severe periodonti-
tis=2).  
Results presented herein are limited to the individuals 
with Caucasian origin; the group is composed of 675 indi-
viduals; 314 healthy, 94 mild periodontitis and 268 severe 
periodontitis individuals. A detailed presentation of re-
cords and record statistics is beyond the scope of this arti-
cle and thus we skip it; however, as need arises we will 
present details of the data in the sequel. 

3. GSI assessment process 
We launched an association rule inquiry using SNP and 
disease status. Disease status was aggregated into two 
groups: Healthy and Diseased. ARM was performed using 
the HealthObs software (Potamias et al, 2005) while the 
basic algorithm that was used is also presented by 
Agrawal and Srikant (1994), and Mannila et al (1994).  
Formally ARM is defined as follows: let },,,{ 21 miiiI K=  
be a set of literals, called items and let D be a set of trans-
actions, where each transaction T is a set of items such 
that IT ⊆ . An association rule is an implication of the 
form YX ⇒ , where IX ⊂ , IY ⊂ , and ∅=∩YX . 
The rule YX ⇒  holds in the transaction set D with con-
fidence c if, c% of transactions in D that contain X also 
contain Y. Confidence establishes significance of associa-
tion rule. Rule YX ⇒ has support s in the transaction set 
D if, s% of transactions in D contains YX ∪ . Support 
measures usefulness of the association. Given a set of 
transactions D, ARM proceeds to discover associations, 
which exhibit support and confidence values higher than 
specific thresholds, specified by the user: minimum sup-
port and minimum confidence.  
We limited rule generation to rules with confidence equal 
to 100%. An example of a rule that was derived is: 
{CARD15_Locus_3020insC_Genotype_11 & TGF-
beta_Locus_cod25_Genotype_11} THEN Diseased. This 
specific rule has support equal to sj %, which means that it 
covers sj % of the diseased records.  
Thus the rule incorporates a knowledge gain, which, how-
ever, must be split equally between the SNP’s which par-
ticipate in rule formation. The sj % metric represents 
knowledge gain, which in the specific rule is split equally 
to the two SNP’s that participate in rule formation. Thus 
each of the participating SNP’s receives a credit, which is 
equal to: 2);( ii saSNPGSI = , where ai is a rule counter.  

Each SNP receives two types of credit: the first type asso-
ciates with rules that link with diseased status and the sec-
ond type associates with rules that are linked with healthy 
status. The overall disease-linked credit of a SNP is as-
sessed by summing across all );( iaSNPGSI  values, 
namely: ∑= );();( iaSNPGSIDSNPGSI . Similarly, for 
the same SNP a GSI that relates to healthy status 

);( HSNPGSI  is calculated. Then the overall GSI for each 
SNP is assessed by combining the two polar GSI values. 
We form a ratio in which the numerator corresponds to 

);();( SNPHGSISNPDGSI − and the denominator to the 
addition of the two values: );();( SNPHGSISNPDGSI + . 
The result is denoted by )(SNPGSI and based on the 
aforementioned definition 1)(1 +≤≤− SNPGSI .  
Following the definition of the GSI for each SNP we pro-
ceed to the assessment of the GSI with respect to each 
record by summing across the individual )(SNPGSI for 
the SNP, which are expressed in the record.  

4. Results 
The process presented in section 3 was applied on the 
PDW data. ARM generated 55 rules for the Healthy group 
and 91 rules for the diseased group (both mild and severe 
periodontitis together). Assessment of )(SNPGSI decom-
posed the markers across the -1 to +1 range. Out of 62 
SNP’s 7 markers received -1 value, which is associated 
with periodontal health and 9 markers received +1 

)(SNPGSI value, which is associated with periodontal 
disease. Many other SNP’s ranged in-between -1 and +1 
while 12 markers achieved a zero score, which indicates a 
complete neutral genetic susceptibility to periodontitis. 
The remaining SNP’s ranged in-between.  
We carried on with the assessment of )(RecordGSI score 
values. Assessment was conducted over 675 Caucasian 
records and was also linked with severity of periodontitis 
(Table 1).  
 
Table 1. )(RecordGSI values and disease status.  
 

    Healthy Diseased 
Record-

GSI 
No of 

records  Mild Severe 

GSI ≤ 1 206 85% 5% 10% 
1 <GSI ≤ 2 102 50% 5% 45% 
2 <GSI ≤ 3 169 29% 19% 52% 
3 <GSI ≤ 4 130 23% 24% 53% 
GSI > 4 68 12% 24% 64% 

Total 675       
 %   46,52% 13,93% 39,56% 

 
)(RecordGSI correlates well with disease presence. 

When the overall score is less than 1 the predisposition 
toward healthy status is 85% and when it is higher that 4 
the predisposition toward disease is 88%. In addition, 
when score value ranges between 1 and 2 there is a 50/50 
chance toward either disease or healthy status. 
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The next step was to incorporate )(RecordGSI and 
)(SNPGSI in further analysis. Decision tree learning us-

ing C4.5 (Quinlan, 1993) failed to produce good results 
judged by the average error rate during randomized V-
cross folding validation by setting V=10. The dataset was 
split into five groups according to the 

)(RecordGSI scores reported in Table 1 and in each set 
decision tree learning was applied using age, smoking 
status, and the percentage values of the seven bacterial 
species. Average classification error ranged between 18% 
(for the 1)(Re ≤cordGSI  group) and 54% (for the 

3)(Re2 pcordGSI≤ group. Low classification accuracy 
convinced us that although )(RecordGSI assessment 
might have been in the right direction there should be an-
other way of using the results. 
We tested two different roads: (1) to replace 

)(RecordGSI numeric values with qualitative equivalents 
using an ordered scale with values: low, neutral, and high 
and then to proceed to decision tree learning; and, (2) to 
work by exploiting the detailed microbial percentage val-
ues in conjunction with )(RecordGSI scores. 

4.1 Decision tree results 
Decision tree induction was pioneered by Quinlan (1986) 
and it represents one of the most popular classification 
methods. The method proceeds by assessing information 
gain of features and then selects the most informative fea-
ture to create a decision branch and then to proceed. It is a 
non-backtracking process, which means that the the algo-
rithm never looks back; however, it is fast and computa-
tionally efficient.  
In the conducted experiment we used as features: age, 
smoking status, )(RecordGSI - valued as low, neutral or 
high, the seven microbial percentage values, and perio-
dontal status as class valued either as healthy or diseased. 
In )(Re cordGSI valuation high implies that the individual 
has high predisposition or genetic susceptible toward pe-
riodontitis while neutral or low valuations imply either no 
predisposition at all or good defense against disease. The 
qualitative assessment of GSI(Record) values was moti-
vated by individual GSI(SNP) values; the records, which 
included at least one SNP with GSI(SNP) value of -1 were 
classified as being low in terms of GSI(Record) and re-
cords that included at least one GSI(SNP) with +1 value 
were valued with high GSI(Record). All other records 
were marked as neutral. In cases where a record included 
at least one SNP with a -1 value and at least one SNP with 
a +1 value it was marked as neutral.  
Classification accuracy improved significantly. During 
V=10 cross-fold validation average classification error 
was 4.95% and when GSI(Record), high, neutral and low 
values, were removed error climbed up to 27.97%. 

4.2 Exploitation of microbial measurements 
The second experimental round involved linking of 
GSI(Record) score values with the microbial percentage 
values. Two different experiments were conducted. In the 
first experiment all microbial percentage values were 
added and formed an m metric. In the second experiment 
only three microbial percentage values were considered 
and formed an m3 metric; the consideration of only three 

microbial values was motivated by Socransky et al (1998) 
and van Winkelhoff et al (2002). The m metric aggregates 
the seven bacterial species, namely: (1) 
A.actinomycetemcomitans, (2) P. gingivalis, (3) P. inter-
media, (4) T. forsythensis, (5) P. micros, (6) F. nucleatum, 
and (7) C. rectus. The m3 metric considers only bacterial 
species #1, #2 and #4 from the list, which is included in 
the m metric. 
 
Table 2. Probability of an individual being periodontal healthy 
when GSI(Record) is linked with microbial values (m metric). 
 

Probability of Healthy Status 

m(%) value range GSI(Record) 
value range 

0, ≤ 3 >3, ≤ 35 >35 
GSI ≤ 1 97% 44% 
1 <GSI ≤ 2 63% 32% 
2 <GSI ≤ 3 36% 4% 
3 <GSI ≤ 4 67% 22% 3% 
GSI > 4 12% 0% 

 
The results using the m metric are summarized in Table 2. 
The GSI(Record) correlates well with the sum percentage 
of the periodontitis associated bacteria. For example, 
when the susceptibility index is less or equal than one the 
individual can harbor high percentage (≤35%) of the 
seven microbial species and still be periodontal healthy. 
Conversely, when susceptibility increases (>4) even at 
low percentage (≤35%) of bacteria the probability of 
healthy status is low, only 12%. 
However, GSI(Record) performs less well when it comes 
to discriminating between mild and severe periodontal 
disease. 
 
Table 3. Conditional probability of severe periodontitis given 
that the person is diseased. Entries in the table correspond to 
probabilities. 
 

m value range  GSI(Record) 
value range 

0, ≤ 3 > 3, ≤ 35 >35 
GSI ≤ 1 100% 78% 
1 <GSI ≤ 2 90% 82% 
2 <GSI ≤ 3 83% 84% 
3 <GSI ≤ 4 74% 
GSI > 4 82% 

 
Conditional probability results summarized in Table 3 
indicate that GSI(Record) values and microbial aggregates 
do not correlate well. 
When investigation was limited to three microbial species 
alone (m3 metric) results were analogous to those obtained 
with the metric (and reported in Table2 and 3) – see for 
example, Table 4.  
The conditional periodontal disease probability results 
when m3 is used are similar with results presented in Ta-
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ble 3 and demonstrate the poor correlation between the 
aggregate of the three microbial values and GSI(Record). 
A third attempt to exploit microbial and GSI(Record) val-
ues was via structured equation modeling (SEM). SEM is 
a multivariate statistical technique, which is used to repre-
sent, estimate, and test hypotheses about relations between 
observed and latent variables. SEM is a method widely 
used in the behavioral sciences and it is an a priori tech-
nique, meaning that the researcher must specify a model 
in order to conduct the analysis (Kline, 2005). In SEM 
parameters are estimated by minimizing the difference 
between the observed co-variances and those implied by 
the model.  
 
Table 4. Probability of an individual being periodontal healthy 
when GSI(Record) is linked with the three microbial values (m3 
metric). 
 

Probability of Healthy Status 

m3 value range GSI(Record) 
value range 

= 0 > 0, ≤ 2 >2, ≤ 10 > 10 
≤ 1 100% 87% 22% 
1 <GSI ≤ 2 100% 82% 57% 12% 
2 <GSI ≤ 3 67% 22% 5% 
3 <GSI ≤ 4 38% 26% 5% 
>4 67% 0% 

 
We generated a structural model that shows significant 
association between GSI and bacterial species #2, #3, and 
#4, and then between these species and periodontal dis-
ease severity code (=0 for healthy, =1 for mild periodonti-
tis and =2 for severe periodontitis). In addition to that, an 
independent link was generated between species #1 and 
disease severity code. We present the SEM model in Fig-
ure 1. 
The model in Figure 1 corresponds to the regression equa-
tion: Periodontal severity code = 0,43 * GSI(Record) + 
0,26 * T. forsythensis + 0,24 * P. gingivalis + 0,09 * P. 
intermedia + 0,10 * A.actinomycetemcomitans. The model 
was assessed using Analysis of Moment Structures 
(AMOS version 4.01 software) and explains 47% of the 
variation in disease severity code.  

4.3. Discussion of results 
In section 3 we presented the basics of GSI(SNP) and 
GSI(Record) calculation. In the sequel section 4 we pre-
sented the application of the susceptibility metrics in the 
periodontal disease data of ACTA. 
Decision tree analysis was based on a qualitative repre-
sentation of GSI(Record) values, which, in turn, were 
based on individual GSI(SNP) values. Classification accu-
racy improved significantly with respect to accuracy if 
genetic marker data were not used. This finding confirms 
that genetic markers add value to disease prediction. 
The results presented in Tables 2 – 4 confirm to a large 
extent the susceptibility index value ranges reported in 
Table 1. Moreover, on the side of the m (or m3) metrics 
the results confirm what is already known, which is that 

high microbial values are associated with periodontal dis-
ease manifestation – see for instance (van Winkelhoff et 
al. 2002). However, microbial value ranges intermingle 
between healthy and diseased individuals causing difficul-
ties in discriminating between the two groups: see for 
instance Socransky et al (1998). 
 

 
Figure 1. Linking GSI(Record) with microbials and disease 
severity code. The values on the arrows correspond to standard-
ized regression weights. The model fits well the data; TLI = 
1.000, CFI = 1,000, and RMSEA = 0.000. TLI is the Tucker 
Lewis Index, CFI is the Comparative Fitness Index and 
RMSEAis the Root Mean Square Error Approximation. No strict 
thresholds for these statistics currently exist, but the following 
general guidelines have been suggested in the literature: TLI and 
CFI values above 0.9 and RMSEA values less than 0.05 are 
generally interpreted as indicating good model fit [AMOS, 1999; 
Baumgartner & Homburg, 1995; Shook et al., 2004]. 
 
An additional validation of the GSI(SNP) and 
GSI(Record) calculation model comes from the SEM ex-
periment. Despite the rather low percentage of variance in 
disease severity code explanation (equal to 47%) the 
model shows interesting direct and indirect associations 
(see Figure 1) as well as a significant link between the 
susceptibility index and disease status – the latter con-
firms once more the results presented in Table 1. 
The implications of susceptibility index assessment are 
critical to bioinformatics research and practice. Essen-
tially, GSI(SNP) and GSI(Record) point toward the inte-
gration of genotype and phenotype information and the 
improvement of clinical practice and decision-making. 
Genetic susceptibility to disease manifestation is already 
confirmed and in particularly for periodontal disease ear-
lier studies – see previous studies for instance Micha-
lowicz et al (2000), Loos et al (2005) and  Laine et al 
(2001, 2005), among others, provide sufficient evidence. 
However, what is missing is an operational tool, which 
will take research results a step forward. Once, genetic 
susceptibility profile reaches the clinical practice level 
then it will become part of the patient’s records. The clini-
cian will be able to use the genetic profile of the patient, 
and via concrete and valid models and procedures incor-
porate genetics into medical decision-making and reason-
ing. The integration of genetic information into routine 
medical practice represents a challenging area of endeavor 
and is cast towards enabling the implementation of ge-
nomic medicine (Martin-Sanchez et al, 2004).  
Blois (1988) argues that medical reasoning is vertical and 
demands the effective integration of multiple disciplines 
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as one moves from the molecular level to the organ, sys-
tem levels and finally to the individual level. Addition of 
genetic information confirms the argument of Blois yet it 
adds to complexity since an additional and rather large set 
of data need to incorporated in the scene. 

5. Concluding remarks 
We started this study as a data mining project. Our aim 
was to quarry into the data warehouse of ACTA, use the 
periodontal records and to derive useful disease and 
healthy status patterns. We soon realized that the data that 
were available were not balanced. By that we mean that 
records did not have the same size and also incorporated 
heterogeneous data. In the genetic part information was 
encoded in terms of gene, locus and genotype and the 
combination of the three yielded 63 possible values. (In 
reality only 62 values were used). Thus in an early attempt 
we valued SNP’s as binary features and then proceeded to 
equalize record size by incorporating all 63 possibilities in 
each record. Results were poor and to a large extent in-
comprehensible from a medical point of view. Equalizing 
record size gave us the opportunity to use decision tree 
learning, which at the outset seems to be a right tool to use 
[Kodratoff et al, 1994].  
To overcome difficulties with record size we attempted to 
discard genetic data and to focus on microbial values. 
Results were again poor and that did not surprise us given 
earlier research findings reported in the literature – for 
example by [Socransky et al, 1998] not to mention that 
decision tree learning may prove naïve when it comes to 
numerically value features and association rule mining 
does not work at all with numerically valued attributes. 
During decision tree learning a numerically valued feature 
is split into two intervals and then treated as binary (on the 
basis of the less or equal and greater than threshold).  
The two failures led us to the conclusion that we should 
take a different road. A road that would give a chance to 
the dataset to provide us with the optimum information 
that it would be able to provide. Symbolic data (such as 
SNP expressions) could speak well for themselves if they 
were used with the right learning algorithm and such was 
association rule mining (ARM). But ARM was not 
enough. We needed a procedure to take ARM results a 
step further and create an index that would summarize the 
output. At that point the rather old model of Ackoff  
joined the process and furnished us with the concept of 
knowledge gain – the operational structure was already 
available – see [Moustakis, 2006]. The combination 
yielded the genetic susceptibility indices we were looking 
for. Before continuing we should clarify that attribute 
assessment has been a long standing issue in inductive 
learning – see for instance the work of Baim [Baim, 
1988]. The researcher interested in attribute weight value 
assessment may look into the literature and find other (and 
possibly better) ways of doing the work.  
The next step was to validate susceptibility index values. 
At the SNP level we identified SNP’s that are defenders, 
SNP’s, which are betrayers, SNP’s, which have not de-
cided whether they are defenders or betrayers (these are 
the SNP’s with zero susceptibility index value), and fi-
nally SNP’s, which lie in-between and are either inclined 

toward defense or are inclined toward treachery. We pre-
sented a simple calculation formula to assess an overall 
susceptibility index score given the individual SNP sus-
ceptibility values. One may argue that the model is too 
simple. The argument may be correct yet there is not 
guarantee that a more complex model would yield better 
results; in addition, a more complex model would necessi-
tate the formulation (and subsequent testing) of hypothe-
ses and to this end one should keep in mind Occam’s ra-
zor.  
The fact that simplicity works is proven by the decision 
tree results that we achieved when genetic susceptibility 
was interpreted as low, neutral or high. We could have 
stopped at that point given the good classification accu-
racy (more than 95% during randomized testing) that we 
achieved. We did not do so because the trees were poor in 
content. Poor means that the tree provided a result, which 
was about the same with the result presented in Table 1.  
Thus we decided to go along and to take susceptibility for 
an extra ride. We correlated susceptibility with microbial 
values and concluded our investigation in Tables 2 – 4 
and in Figure 1. We found that the susceptibility index 
correlates with microbial values and on top of that ex-
plained why microbial values alone can be confusing with 
respect to disease manifestation.  
Of special interest is the result that structural equation 
modeling provided – see Figure 1. The model that we 
learned shows direct and indirect association between the 
susceptibility index, selected microbial values and disease 
presence; it also shows that actinobacillus is an independ-
ent agent of disease status and is not affected directly by 
the genetic markers. 
The results we present herein correspond to work in pro-
gress. Further confirmation is necessary at the SNP level; 
is for instance CARD15_Locus_2104_Genotype_11 a 
loyal defender against periodontitis? Or, should on the 
basis of a +1 GSI(SNP) value for FcyRIIIa with Lo-
cus_158VoverF_plus559 and Genotype_11 be considered 
as a disease flag? To inquiry further, extensive biomedical 
literature search - possibly with the aid of text mining, is 
necessary. 
The article tells a story. It shows how a hybrid data min-
ing technique may be used to numerically assess a genetic 
susceptibility index. It also shows that effective mining in 
data that contain heterogeneous information requires hy-
brid algorithmic structures. We hope that other research-
ers will find our story interesting and pursue it in different 
domains.  
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Abstract

A well-known problem in critical care is the oc-
currence of erroneous measurements (“artifacts”)
in monitoring data. Experienced clinicians ig-
nore these measurements when they interpret the
data. For inexperienced clinicians, as well as
computerized medical assistants, however, arti-
facts must be removed. This paper compares
the performance of four artifact filtering proce-
dures on monitoring data from a Dutch adult
ICU. Three procedures (moving median filtering,
ArtiDetect, and tree-based filtering) were earlier
described in the literature; the fourth procedure is
a new combination of existing approaches. The
evaluation was carried out on blood pressure and
heart rate measurements from cardiac surgery pa-
tients during their postoperative recovery. None
of the four procedures was superior on all types
of variables. It is advised to employ a well-
chosen inductive bias when choosing an artifact
filtering procedure for a given variable.

1 Introduction
Clinical treatment in anaesthesia and critical care requires a
close and continuous watch on the patient’s vital functions.
For this reason, operating theatres and intensive care units
(ICUs) are equipped with monitoring systems for auto-
matically measuring and recording many clinical variables
with high frequency. Monitoring data, however, often con-
tain inaccurate and erroneous measurements (“artifacts”),
caused by interferences on transducer signals and mis-
placement of probes[Cunninghamet al., 1994]. Such mea-
surements hamper interpretation and analysis of the data, as
they do not reflect the true state of the patient. In practice,
experienced clinicians ignore artifacts when they inspect
monitoring data. For inexperienced clinicians and resi-
dents, however, artifacts may pose serious problems and in-
duce incorrect beliefs on the patient’s condition. Similarly,
computerized medical assistants that operate on monitor-
ing data may be led astray by artifacts, resulting in incor-
rect warnings and recommendations[Miksch et al., 1996;
Michel et al., 2003; Charbonnier, 2005].

During the last decade, several procedures for automatic
detection of artifacts in monitoring data have been de-
scribed in the literature. These procedures can be used to

filter out artifacts from the data, thus facilitating interpreta-
tion of the data by clinicians and computerized assistants.
A most basic, and frequently applied, procedure ismoving
median filtering[Mäkivirtaet al., 1991; Jakobet al., 2000;
Hoare and Beatty, 2000]. It removes data points with a
relatively high or low value as compared to a moving me-
dian smoother. More sophisticated is the procedure de-
scribed by C. Caoet al. [Caoet al., 1999], calledArtiDe-
tect, which considers both absolute and relative peaks in
the data. C.L. Tsienet al. [Tsienet al., 2000] compute var-
ious moving statistics (e.g. mean, median, slope, standard
deviation) and select those that predict artifacts well by su-
pervised learning. The procedures of Cao and Tsien have
been evaluated by their developers, but not by others.

This paper compares the performance of these three arti-
fact detection procedures on a set of monitoring data from
a Dutch adult ICU. In addition, a fourth procedure, which
was designed by the authors and combines the three proce-
dures described above, is evaluated.

The evaluation is carried out on 30 series of blood pres-
sure and heart rate measurements from cardiac surgery pa-
tients during their postoperative recovery. The same data
were used in a preliminary experiment that was presented
at last year’s IDAMAP workshop[Verduijn et al., 2006]
which compared three different smoothing techniques (ker-
nel smoothing, local regression, and smoothing splines) in
a filtering procedure that resembled moving median filter-
ing. We were able to filter out roughly 50% of all artifacts
in that study; the differences between the three smoothers
were small.

2 Data and methods

2.1 Monitoring data
Monitoring data were used of the department of Intensive
Care Medicine of the Academic Medical Center in Ams-
terdam, The Netherlands. At this department, patients are
monitored by Philips IntelliVue Monitor MP90 systems1.
The monitoring data are recorded with a frequency of one
measurement per minute in the Metavision ICU informa-
tion system developed by iMDsoft2.

Our study is restricted to three physiological variables
that concern the cardiovascular system: mean arterial blood

1www.medical.philips.com
2www.imdsoft.com
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pressure (ABPm), central venous pressure(CVP), and
heart rate (HR). These variables are recorded in the ICU
information system with equal frequency, but they differ
greatly in their variability. For instance, arterial pressure
and heart frequency are much more amenable to sudden
changes than venous pressure.

The study population consisted of 367 patients who un-
derwent cardiac surgery at the AMC in the period of April
2002 to June 2003. All available values for the three car-
diovascular variables were retrieved from the ICU infor-
mation system, yielding time series of several thousands
of measurements for each patient. Using visual inspection
of these data, 30 subseries with a relatively rough course
were selected for our experiment. Each of these subseries
included several hundreds of measurements (durations of
two to five hours); they originated from 18 different pa-
tients. Overall, 10 ABPm, 13 CVP, and 7 HR subseries
were selected, with a total length of 2701, 3193, and 2005
minutes, respectively.

The 30 time series were inspected by four senior ICU
physicians from the Academic Medical Center (where the
data were recorded). Their individual judgments were sub-
sequently harmonized in a consensus meeting. Thirty mea-
surements (1.1%) in the ABPm time series were judged
as artifacts, 70 measurements (2.2%) in the CVP time se-
ries, and 46 measurements (2.3%) in the HR time series.
We used the consensus judgments as reference standard for
tuning and evaluating the automated filtering procedures.

2.2 Automated filtering procedures
Methods for automated artifact detection assume that each
measurementx(t) in a series is composed of the actual
physiological statef(t) of the patient at time at timet, and
a random termε(t) representing the measurement error at
time t. So, we have that

x(t) = f(t) + ε(t) (1)

for all time pointst where measurements are made. The er-
ror termε(t) is itself probably composed of multiple terms
or factors with varying distributions. When|ε(t)| is large,
we say thatx(t) is anartifact. It is then better to replace
x(t) by a reconstruction off(t), or to removex(t) from
the series. In this study, we confine ourselves to removing
x(t), which is calledfiltering.

The main problem for artifact detection methods is that
we neither knowf(t) norε(t). Roughly speaking, there are
three directions to solve this problem:
A. One can focus onf(t) + ε(t), and decide that when

this quantity is large (in the absolute sense), thenε(t)
must have been large, and thereforex(t) is an artifact.

B. One can try to reconstructf(t), and then estimateε(t)
as the difference ofx(t) and the reconstruction̂f(x).

C. One can try to reconstructε(t) directly by considering
the variance ofx.

Below, we describe the four automated filtering procedures
that were applied and evaluated in this study. Each proce-
dure employs one direction, or a combination of the above
directions, and they jointly cover the spectrum of possibil-
ities.

Moving median filtering A well-known approach to ar-
tifact filtering is based on direction B, and uses a statisti-
cal measure of central tendency to estimatef(t). A pop-
ular choice is the median, which is very flexible due to its
lack of distributional assumptions. The approach classi-
fies measurementx(t) as artifact when the absolute resid-
ual |x(t)− f̂(x)| is larger than a given thresholdδx.

Becausef may vary over time,̂f(t) is obtained by com-
puting the so-calledmovingmedian on a small setx(t− k),
x(t− k + 1), . . ., x(t + k) of measurements in the vicinity
of x(t). Here,ws = 2k + 1 is called thewindow size.

In our study, we obtained moving medians of the time
series for varying window sizes (i.e., 5, 11, 21, 31, 41, 51,
61, 71, 81, 91, and 101 minutes), and calculated the cor-
responding absolute residuals. For each of the three vari-
ables, window sizews and classification thresholdδx were
subsequently optimized by cross-validation on the data, us-
ing the artifact reference standard that was defined by the
four clinicians.

ArtiDetect ArtiDetect [Caoet al., 1999] is a procedure
that combines two detectors, based on directions A and
C, respectively. Thelimit-based detectorclassifies mea-
surementx(t) as artifact when it is outside an interval
Ix = [lb, ub] of admissible values. For each remaining
data pointx(t), thedeviation-based detectorsubsequently
estimatesε(t) asx(t)’s contribution to the moving standard
deviation ofx, and classifiesx(t) as artifact when̂ε(x) is
larger than a given thresholdνx.

For each of the three variables, we determined interval
the parameterslb anduv, the window size of the moving
standard deviation, and the classification thresholdνx with
cross-valdiation on the data, again using the consensus-
based reference standard. For the moving standard devi-
ation, the same eleven possible window sizes were consid-
ered as in the moving median.

Tree induction procedure Both moving median filtering
and ArtiDetect employ moving statistics for artifact detec-
tion, and use the data to optimize the associated parameters
(thresholds, window sizes). However, both procedures are
biased by the choice of statistic and the term that they at-
tempt to reconstruct.

C.L. Tsienet al. [Tsienet al., 2000] have proposed an
approach where the data is used to select both the appropri-
ate statistic(s) and the associated parameters. To this end,
a large number of moving statistics are computed for vary-
ing window sizes, and a multivariate tree model is induced
from them. The available artifact reference standard is em-
ployed as class variable during tree induction. The proce-
dure also takescontext informationinto account, by com-
puting the moving statistics not just for variablex but also
for variables that were simultaneously measured.

In our study, we induced a tree model for each of the
three variables as follows. First, we obtained eight mov-
ing summary statistics (i.e., mean, median, slope coeffi-
cient of a linear model, absolute value of that slope coeffi-
cient, standard deviation, maximum value, minimal value,
and range) of the time series for three window sizes: 3, 5,
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and 10 minutes.3 These moving summarystatistics were
also obtained for the simultaneously measured time series
of the two other variables in our study. The resulting 72 fea-
tures (8 summary statistics× 3 window sizes× 3 variables)
were subsequently used as predictive features for inducing
a tree model.

Combined procedure As the three procedures described
above may complement each other we integrated these pro-
cedures into a combined procedure, which operates as fol-
lows. First, interval and window size parameters for Ar-
tiDetect’s limit-based detector are derived from the data.
After exclusion of all measurements that are classified as
artifacts by this detector, for eachx(t) the absolute resid-
ual |x(t) − f̂(x)| with respect to the moving median̂f(x)
is determined, andε(t) is estimated asx(t)’s contribution
to the moving standard deviation ofx (as in ArtiDetect’s
deviation-based detector). This is performed for the eleven
window sizes that we used in these procedures. A multi-
variate tree model is subsequently built from the resulting
22 features. Note that we do not consider simultaneous
measurements in the combined procedure.

2.3 Evaluation
We tuned the procedures for automated filtering to the 10
ABPm, 13 CVP, and 7 HR time series with the aim to com-
pare their performance for the different variables. To make
optimal use of the available data, we evaluated the per-
formance of the procedures using 10-fold cross-validation.
We used the consensus judgement of the measurements as
reference standard, and we quantified the performance in
terms of the sensitivity (i.e., the proportion of artifacts that
have been classified as such by the automated filtering pro-
cedure) and the positive predictive value (i.e., the propor-
tion of measurements that have been classified as artifacts
by the automated procedure that are artifacts according to
clinical judgement). As the non-artifacts were overrepre-
sented in the time series (>97%), we do not report the
specificity and negative predictive value.

3 Results
Table 1 lists the number of data points that were excluded,
and the performance of each of the four filtering proce-
dures. For ABPm, ArtiDetect has the best sensitivity (23
out of 30 artifacts detected) while moving median filter-
ing has superior PPV (only 2 false positives). Overall, the
performance of both procedures is reasonable on this vari-
able, whereas the other two procedures perform poorly. For
CVP, all procedure obtain satisfactory results. ArtiDetect
and the combined procedure are notable for very good re-
sults, in terms of both sensitivity and PPV. For HR, the
combined procedure is better than the others, with a reason-
able to good performance (35 out of 46 artifacts detected,
7 false positives). ArtiDetect performs remarkably poor on
this variable (15 artifacts detected, 9 false positives).

Figure 1 (next page) visualizes the results of the four
filtering procedures on a series of ABPm measurements.

3Theseare the same window sizes as were employed by Tsien
et al. [Tsienet al., 2000] in their study.

Table 1: Number of data points classified as artifacts, sen-
sitivity, and positive predictive value (PPV) of each of the
four filtering procedures, listed per variable type (ABPm,
CVP, and HR). All results obtained with 10-fold cross-
validation.

Variable Procedure Excl Sens PPV

ABPm Median filtering 22 0.667 0.909
ArtiDetect 36 0.767 0.639
Tree induction 26 0.600 0.692
Combined procedure 32 0.667 0.625

CVP Median filtering 86 0.871 0.710
ArtiDetect 61 0.843 0.967
Tree induction 61 0.729 0.836
Combined procedure 65 0.857 0.923

HR Median filtering 29 0.543 0.862
ArtiDetect 24 0.326 0.625
Tree induction 40 0.565 0.650
Combined procedure 42 0.761 0.833

The left-hand graph showsthat moving median filtering
(crosses) only classified large outliers in the ABPm time
series as artifact, while neglecting smaller artifact peaks.
ArtiDetect (circles) also correctly identified a number of
such less extreme artifacts, at the expensive of two false
positives. These two data points were not considered as ar-
tifacts in the consensus judgment as they were part of an
increasing trend; ArtiDetect turned out to be not able to
discern these data points. The right-hand graph shows that
the combined procedure (circles) behaved almost similarly
as ArtiDetect on this series with two exceptions: it cor-
rectly classified one of ArtiDetect’s false positives as a non-
artifact, but it did not identify the artifact that is halfway the
sudden increase to 160 mmHg. The tree induction proce-
dure of Tsienet al. (crosses) failed to classify a large outlier
in the series as artifact that has another outlier as neighbor
measurement; one of the small outliers in the series was
correctly identified as artifact by this procedure.

Table 2 and 3 list, for each of the monitoring variables,
the parameters that were estimated from the data in mov-
ing median filtering and in ArtiDetect’s limit-based detec-
tor and deviation-based detector. The parameters of the
moving median filter reflect that the variable CVP is least
amenable to sudden changes: the filter uses a relatively
large window size and small classification threshold to de-
tect artifacts. The variable also has a relatively small range
of admissible values, as appears from Table 3. For the HR
variable, no upper bound on valid measurements could be
established.

Table 2: Estimated window sizes (ws) and classification
thresholds (δx) for the moving median filter.

Variable ws δx

ABPm 11 51
CVP 91 16
HR 101 39
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Figure 1: Results ofautomatedfiltering on a series of 500 ABPm measurements. Shaded circles represent data points
that were judged to be artifacts by the physicians (reference standard, 8 data points). Left-hand graph (a): results of
moving median filtering (crosses) and ArtiDetect (circles). Right-hand graph (b): tree induction procedure by Tsienet
al. (crosses) and combined procedure (circles). All results were obtained by training and testing on separate sets (10-fold
cross-validation).

In both the procedure of Tsienet al. and the combined
procedure, a class probability tree is induced from the data.
Due to space restrictions, we only display two of the re-
sulting trees, and summarize the others. Figure 2 shows
the two tree models that were induced for filtering CVP
data. The left-hand tree, resulting from Tsienet al.’s pro-
cedure, uses a variety of different moving statistics to de-
tect artifacts, including range, median, absolute value of
the slope coefficient, and minimum value. The tree almost
exclusively refers to CVP values, and uses only one of the
other variables, ABPm, for a small set of cases. Closer
scrutiny reveals that the tree imitates the limit-based detec-
tor of ArtiDetect at various places, using the moving me-
dian statistic with window size 3. For instance, the right-
hand subgroup of the upper left branch judges data points
with a moving median smaller than 0 to be artifacts with
82% certainty. The right-hand side of the tree similarly
contains a branch where data points with a moving median
greater than 41 are classified as artifacts with 100% cer-
tainty. Note that these boundaries exactly correspond to
those of ArtiDetect’s limit-based detector (Table 3). An-
other interesting phenomenon occurs at the rightmost leaf
of the tree. This leaf represents data points in unstable parts

Table 3: Estimated parameters for ArtiDetect: ranges of ad-
missible values (Ix) for the limit-based detector), and win-
dow sizes (ws) and classification thresholds (νx) for the
deviation-based detector.

variable Ix ws νx

ABPm [1,154] 11 2.96
CVP [0,41] 31 0.72
HR [39,∞) 91 0.35

of a CVP time series(range≥ 16)without a clear trend (ab-
solute slope coefficient< 5). They are estimated to have a
high probability (88%) of being an artifact. A similar prob-
ability is found for relatively high CVP values that have
been measured in the context of low mean arterial blood
pressure measurements (rightmost of the two lowest leafs).

The right-hand tree, resulting from the combined pro-
cedure after filtering extreme values using the limit-based
detector of ArtiDetect, uses statistics that quantify the mea-
surements’ contribution to the time-dependent standard de-
viation for a variety of window sizes. Statistics related to
the deviations from the reconstructed time series (direction
B of Sec. 2.2) were not included. Note that the primary split
of the tree exactly corresponds to ArtiDetect’s deviation-
based detector for this variable (Table 3). When compared
to ArtiDetect’s deviation based detector, the combined pro-
cedure employs four extra features describing a measure-
ment’s contribution to the standard deviation.

Table 4 summarizes the moving statistics and number
of leaf nodes of the tree models induced from the ABPm,
CVP, and HR data in the tree induction procedure of Tsien
et al. It appears from this table that moving statistics of
the simultaneously measured blood pressure(s) was used as
context information for filtering the CVP and HR data. No
context information was used for filtering of ABPm time
series. The included statistics and number of leaf nodes in
the tree models that are induced in the combined procedure
after filtering extreme values using the limit-based detector
are summarized in Table 5. The primary split in the tree
model for HR time series, an absolute error statistic, turned
out to be an important filtering feature; this finding explains
the poor performance of ArtiDetect for these data.
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Figure 2: Treemodelsfor filtering CVP time series as resulted from a) the tree induction procedure of C.L. Tsienet al., and
b) the combined procedure. The models that are shown here were derived from the entire data set (no cross-validation).
Note that the second tree was built after exclusion of 51 data points that were classified as artifacts by the limit-based
detector. Each internal node is labeled with the moving statistic that is used for classification and the associated window
size (ws). Each leaf node is labeled with the estimated probability of being an artifact, and, between brackets, the number
of observations in the relevant subgroup of the data set.

Table 4: Moving statistics and corresponding window sizes
(between brackets) included in the tree models resulting
from the procedure of Tsienet al., and size of trees (number
of leaf nodes).

Variable Included statistics Size

ABPm ABPm: standard deviation (3),
median (3), absolute value of
slope coefficient (3), mean (3)

8

CVP CVP: range (3), absolute value of
slope coefficient (3), median (3)

7

ABPm: min. value (5)
HR HR: median (3), min. value (10) 6

ABPm: mean (5)
CVP: min. value (3)

4 Discussion and conclusions

We have applied and evaluated three existing procedures
and one new procedure for filtering artifacts from ICU
monitoring data. None of the procedures was superior in
detecting artifacts for all three clinical variables: median
filtering outperformed the others on mean arterial blood
pressure, ArtiDetect and the combined procedure were best
on central venous pressure, and the combined procedure
had again the better performance on heart rate. The tree
induction procedure of Tsienet al. was never superior to
all other procedures. ArtiDetect had the largest variation in
performance among the three variables.

Table 5: Results for the tree models induced in combined
procedure, after application of ArtiDetect’s limit-based de-
tector. The statistics (absolute error and contribution to the
standard deviation) with corresponding window sizes (be-
tween brackets) as included in the tree models, and size of
trees (number of leaf nodes).

Variable Included statistics Size

ABPm contr to sd (11,101) 3
CVP contr to sd (31, 51, 21, 61, 5) 7
HR abs residual (91, 51)

contr to sd (21, 41, 61, 101) 10

In a preliminary study on thesame data, we compared
three different smoothing techniques (kernel smoothing, lo-
cal regression, and smoothing splines) in a filtering proce-
dure that resembled the moving median filter[Verduijn et
al., 2006]. In that study, theoretically impossible (e.g., neg-
ative) blood pressures were removed before the filters were
applied, and for these variables the results can therefore not
be compared directly to the current results. For heart rate,
however, both sensitivity and positive predictive value were
inferior to the moving median filter that was applied here.

The current study is the first one to externally validate
and compare the filtering procedures by Caoet al. and
Tsienet al. External validation, i.e., validation at sites other
than the one that was used for development, is important
because procedures may be implictly geared towards the
local situation in which they were developed[Justiceet al.,
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1999]. A similar implicit source ofbias may exist when de-
velopers evaluate their own procedure[Friedman and Wy-
att, 2006]. Both types of bias may explain the relatively
modest performance that was found in this study, compared
to the performance reported in the original studies.

A third source of bias in our study is the fact that the time
series were selected for their relatively rough course, and
stable time series were therefore underrepresented. The re-
sults therefore do not represent the performance of the pro-
cedures on monitoring data in general. We expect that the
two relatively inflexible procedures (moving median filter-
ing and ArtiDetect) will have more trouble on such data.

In contrast to many other studies in the field of artifact
detection, our reference standard was not defined by a sin-
gle expert but based on consensus among four senior ICU
clinicians. Because the notion of ‘artifact’ is vague and in-
herently subjective, we believe that a consensus-based stan-
dard is preferable to single-expert standards. The definition
of a consensus-based standard is however laborious, and
for this reason our dataset was smaller than in most other
studies on artifact detection.

Our data is additionally characterized by absence of
combined probing, the simultaneous measurement of mul-
tiple variables by a single probe. Combined probing is rare
in adult ICUs, but customary in neonatal ICUs. It leads
to correlations in the occurrence of artifacts in the vari-
ables in question. Because C. Caoet al. developed their
ArtiDetect procedure on neonatal data, they also proposed
a correlation-baseddetector in addition to the limit-based
and deviation-based detectors. As all variables in our study
were measured with separate probes, we have not imple-
mented the correlation-based detector. Our version of Ar-
tiDetect therefore differs from the original one, but we do
not expect this has influenced the results.

Also the tree induction procedure of C.L. Tsienet al.
was slightly modified in our application. In the original
study [Tsien et al., 2000], the binary variable indicating
the occurrence of artifacts was smoothed in a preprocessing
step: measurements were marked with true if the majority
of measurements in a surrounding window of five measure-
ments were originally labelled as artifacts. In the smoothed
outcome therefore onlyartifact episodesremain, and the
procedure is geared towards detecting such episodes. Be-
cause artifact episodes were scarce in our dataset, we de-
cided to not apply the preprocessing step. Perhaps that the
procedure, which performed relatively poor in our study,
was set at a disadvantage by this decision.

To summarize, a reasonable performance was obtained
on our data, but no single procedure outperformed the
others on all variables. Because of the large differences
between variables, we conclude that is wise to employ
a well-chosen (e.g. clinically motivated) inductive bias
when choosing an artifact detection procedure for a given
variable. Furthermore, the performance of ArtiDetect and
Tsien et al.’s procedure was substantially lower in our study
than in the original investigations, stressing the need for
external validation studies in this field. Finally, we be-
lieve there is room for improvement in the methods that are
based on machine learning. A possible direction for future
research is rule induction.
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Abstract
Discretization is widely used in data mining as a 
preprocessing step; discretization usually leads to 
improved performance. In time series analysis 
commonly the data is divided into time windows. 
Measurements are extracted from the time win-
dow into a vectorial representation and static 
mining methods are applied, which avoids an ex-
plicit analysis along time. Abstracting time series 
into meaningful time interval series enables to 
mine the data explicitly along time. Transform-
ing time series into time intervals can be made 
through discretization and concatenation of equal 
value and adjacent time points. We compare in 
this study five discretization methods on a medi-
cal time series dataset. Persist, a temporal discre-
tization method yields with the longest time in-
tervals and lowest error rate.

1 Introduction
Time oriented data presents an exceptional opportunity to 
analyze data, having a better and more natural analysis. 
Often, features from time series, such as minimal value, 
are extracted and represented as vectors for further use in
static data mining algorithms. This is made through win-
dowing, in which the data is divided to time windows and 
measurements are extracted from the window. It is very 
hard to determine the window size and this approach 
avoids the explicit time representation. Converting time 
series to time intervals series presents a more compact 
representation of the time series, which enables an effi-
cient analysis of the data and further mining operations 
explicitly along time [Moskovitch and Shahar, 2005]. 
However, to transform time series to time interval series a 
temporal abstraction method should be applied. This can 
be made through discretization and concatenation of the 
discretized values. In this study we present five types of 
discretization methods, three are static and two consider 
the time explicitly. For the task of mining time intervals 
we are interested in long time intervals and low level of 
error relative to the original dataset.
We start with a detailed background of time intervals min-
ing, as the motivation for this study. Later we present 
temporal abstractions and discretization methods. In the 
methods section we present the methods we used in the 

study and finally we discuss the results and present our 
conclusions.

2 Background

2.1 Mining Time Intervals
The problem of mining time intervals, a relatively young 
field, is attracting a growing attention recently. Generally, 
the task is given a database of symbolic time intervals to 
extract repeating temporal patterns. One of the earliest 
works was made by Villafane et al [1999], which searches 
for containments of intervals in a multivariate symbolic 
interval series. Kam and Fu [2000] were the first to use all 
Allen's relations [Allen, 1983] to compose interval rules, 
in which the patterns are restricted to right concatenation 
of intervals to existing extended patterns, called A1 pat-
terns. Höppner [2001] introduced a method using Allen's 
relations to mine rules in symbolic interval sequences and
the patterns are mined using an Apriori algorithm. Höpp-
ner uses a k2 matrix to represent the relations of a k sized 
pattern. Additionally, Höppner proposes how to abstract 
the patterns or make them more specific. Winarko and 
Roddick [2005] rediscovered Höppner’s method, but used 
only half of the matrix for the representation of a pattern, 
as well as added the option to discover constrained tempo-
ral patterns. Similar to Winarko and Roddick [2005], Pa-
papetrou et al [2005] rediscovered the method of mining 
time intervals using Allen's relations. Their contribution 
was in presenting a novel mining method consisting on 
the SPAM sequential mining algorithm, which results in 
an enumeration tree; the tree spans all the discovered pat-
terns.
A recent alternative to Allen's relations based methods 
surveyed earlier was presented by Mörchen [2006], in 
which time intervals are mined to discover coinciding 
multivariate time intervals, called Chords, and the repeat-
ing partially ordered chords called Phrases.
Mining time intervals offers many advantages over com-
mon time series analysis methods commonly applied on 
the raw time point data. These advantages include mainly, 
a significant reduction in the amount of data, since we 
mine summaries of the time series, based on temporal 
abstraction methods. In addition a restriction of short time 
window is not needed and unrestricted frequent patterns 
can be discovered. However, in order to enable mining of 
time series through time intervals the time series have to 
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be abstracted to time intervals. This can be done based on 
knowledge acquired from a domain expert [Shahar, 1997] 
or based on automatic data driven discretization methods.

2.2 Temporal Abstraction
Temporal abstraction is the conversion of a time series to 
a more abstracted representation. This abstracted repre-
sentation is usually more comprehensive to human and 
used as a preprocessing step to many knowledge discov-
ery and data mining tasks. The Knowledge Based Tempo-
ral Abstraction (KBTA) presented by Shahar [1997], in-
fers domain-specific interval-based abstractions from 
point-based raw data, based on domain-specific knowl-
edge stored in a formal knowledge-base, e.g. the output
abstraction of a set of time stamped hemoglobin meas-
urements, include an episode of moderate anemia during 
the past 6 weeks. However, while the KBTA applies the 
temporal knowledge and creates abstractions that are 
meaningful to the domain expert, such knowledge is not
always available. Moreover, the domain expert knowledge 
provided is not always the proper one for knowledge dis-
covery and mining tasks, but rather for his routine activi-
ties, such as diagnosis. Thus, there are several automatic 
data driven methods which can be used for this task, 
which is the focus of this paper.
The task of temporal abstraction corresponds to the task of 
segmenting the time series and characterizing the data in 
each segment. Segmenting time series [Keogh et al., 1993] 
is the task of representing a time series in a piecewise 
linear representation, which is the approximation of a time 
series length n with k straight lines, usually k<<n. Three 
common approaches for segmenting time series are: Slid-
ing Window approach, in which a segment is grown until a 
specified error threshold is reached. Top Down approach
repeatedly splitting the series according to best splitting 
point from all considered points, until a stopping criterion 
is met. Bottom Up approach starts by segmenting the se-
ries with small segments and then iteratively merges adja-
cent segments. A survey on temporal abstraction methods 
is given in [Höppner, 2002].

2.3 Discretization
Many data mining algorithms and tasks can benefit from a 
discrete representation of the original data set. Discrete 
representation is more comprehensive to human and can 
simplify, reduce computational costs and improve accu-
racy of many algorithms [Liu et al., 2002]. Discretization 
is the process of transforming continuous space valued 
series },...,{ 1 nxxX  into a discrete valued se-
ries },...,{ 1 nyyY  . The next step is usually to achieve 
interval based representation of the discretized series. The 
main part of the discretization process is choosing the best 
cut points which split the continuous value range into dis-
crete number of bins usually referred to as states. Discre-
tization methods are mainly categorized as supervised vs. 
unsupervised methods.
Unsupervised discretization does not consider class in-
formation or any given label. For time series class infor-
mation is usually not available and unsupervised methods 
are needed. Two common methods are equal width discre-
tization (EWD) and equal frequency discretization (EFD). 

Another method is k-means clustering [MacQueen, 1967],
in which the time series values are grouped into k clusters 
(states) represented by centroids, from which the states 
and the cut points are deduced.
Supervised discretization considers class information,
which for time series is often unavailable. There are many 
supervised discretization methods available in the litera-
ture. Known methods for supervised discretization 
[Dougherty et al, 1995] are, decision tree discretization, 
heuristic methods and entropy minimization based meth-
ods consisting on Shannon entropy [Shannon, 1948]. Two 
common decision tree algorithms using entropy measure 
are ID3, [Quinlan, 1986], and C4.5, [Quinlan, 1993] and
error based methods [Kohavi and Sahami, 1996]. A good 
survey and framework for discretization is given in [Liu et 
al., 2002]. In this study we will focus on the application of 
unsupervised discretization methods to time series.

2.4 Temporal Discretization
Temporal discretization refers to the discretization of time 
series, usually made by unsupervised means, as a preproc-
essing step in transforming the time series into time inter-
vals series. Most of the discretization methods do not con-
sider the temporal order of the values in a time series 
since most of them were developed for static data. How-
ever, recently several methods were proposed, in which 
the temporal order is considered. Symbolic Aggregate 
approXimation (SAX) [Lin et al., 2003] is a method for 
symbolic representation of time series. SAX was the first
method developed explicitly to discretize time series, 
based on the Piecewise Aggregate Approximation (PAA)
[Keogh et al., 2000] which is a time series segmenting 
algorithm. However, SAX does not explicitly consider the 
temporal order of the values. Later Mörchen and Ultsch 
[2005] introduced Persist which considers the temporal 
order of the time series and selects the best cut point based 
on persisting behavior of the discretized series. We will 
elaborate later on these two methods in the methods sec-
tion. Another discretization method for time series is sug-
gested by Dimitrova et al. [2005]. The method combines 
graph theory to create the initial discretization, and infor-
mation theory to optimize this discretization. The number 
of states returned is a number determined by the method.
The Gecko [Salvador, 2004] algorithm for identifying 
states in a time series is a clustering algorithm which dy-
namically determines the number of states. Another 
method is HMM [Bilmes, 1997], hidden Markov model.
In HMM the time series is assumed to have been created 
by states which are hidden, this hidden model is assumed 
to be a Markov process. HMM is not a discretization 
method in the sense of resulting in a set of cut points, in 
HMM the state sequence directly created.

3 Methods

3.1 Discretization methods
We examined the following five discretization methods on 
medical time series. Apart from Persist, which considers 
the temporal order of the values in the time series, and 
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SAX, which was designed for time series discretization,
all methods are static data discretization methods.
3.1.1 Equal Width Discretization
Equal Width Discretization (EWD) determines the cut 
points by dividing the value range into equal width bins, 
as shown in figure 1. Note the amount of values in each 
bin is based on the distribution of the values.
3.1.2 Equal Frequency Discretization
Equal Width Discretization (EFD) divides the value range 
into bins having equal frequency of values in each bin as 
shown in figure 1.

Figure 1. An illustration of the distributed values along the
value range after EWD and EFD discretization.

3.1.3 K means Clustering
K-means clustering with Euclidean distance measure is a
simple method that was chosen in this study as a represen-
tative for discretization method via clustering. K-means 
clusters the data into k clusters which are represented by 
the centroids. The clustering algorithm begins with a ran-
dom or more educated choice (more efficient due to the 
sensitivity of the clustering process to the initial selection) 
of clusters centroids. The second step is to assign each 
data point to the cluster that has the closest centroid. After 
every data point has been assigned, the k centroids are 
recalculated as the mean value of each cluster. These two 
steps are repeated until no data point is reassigned or the k
centroids no longer change. The resulting clusters or cen-
troids are used as the states of the discretization process.

All the three methods presented EWD, EFD and K-means 
are all static methods, which do not consider the temporal 
order of the time series.
3.1.4 SAX
Symbolic Aggregate approXimation is one of the first 
discretization methods designed specifically for time se-
ries data. SAX consists of two steps, in the first step the 
time series is converted into a less granular representation
and in the second step the abstracted time series is discre-
tized into fixed number of states. The first step is the 
PAA, Piecewise Aggregate Approximation, in this step 
the temporal aspect of the data is taken into account. PAA 
is a representation of time series },...,{ 1 nxxX  by the 

vector },...,{ 1 mxxX   (m<n), where each ix  is the mean 

value of n/m sequential observations of X. Two important
PAA properties are dimensionality reduction and lower 
bounding. In dimensionality reduction, time series of
length n are considered as a point in a n dimensional 
space, that can be reduced to a m dimensional space 
(m<n) after performing PAA dimensionality. In lower 
bounding, the distance between two PAA represented 
series is less or equal to the distance between the original 
two series, which guarantees no false dismissals; the PAA 
part of SAX is the time oriented part, which considers the 
temporal aspect. The second and main step of the SAX 
method, the discretization of the PAA output, is based on 
the assumption that normalized time series have a Gaus-
sian distribution and the desire to produce equal probabil-
ity states. Therefore the time series is normalized and dis-
cretized into fixed number of states according to prede-
termined cut points which produce equal-sized areas un-
der Gaussian curve (the cut points chosen respectively to 
the selected number of states).
3.1.5 Persist
New univariate discretization method designed specifi-
cally for the purpose of knowledge discovery in time se-
ries, which for the first time explicitly considers the order 
of the values in the time series. Given a set of possible 
(discrete) symbols S = {S1,…,Sk) of a time series of length 
n, Persist computes the marginal probability P(Sj) of a 
symbol Sj and the transition probabilities given in a k×k
matrix A(j,m) = P(si=Sj|si-1=Sm), in which the self transi-
tions are the values on the main diagonal of A. In this ap-
proach the assumption is that if there is no temporal struc-
ture in the time series, the symbols can be interpreted as 
independent observations of a random variable according 
to the marginal distribution of symbols, thus, the probabil-
ity of observing each symbol is independent from the pre-
vious state, i.e. P(si=Sj|si-1,…,si-m) = P(Sj|si-1). Based on 
this Markovian model, if there is no temporal structure the 
transition probabilities should be close to the marginal 
probabilities. Otherwise if the states show persistence 
behavior, which is expected to result in long time inter-
vals, the self transition probabilities will be higher than 
the marginal probabilities. The Persist algorithm is based 
on a measure based on the Kullback-Leibler Divergence 
[Kullback & Leibler, 1951], which indicates which cutoffs 
lead to a discretization which will result eventually in long
time intervals. Persist method was compared to common 
discretization methods, and showed to achieve relatively 
good results. However Persist only deals with time series 
that comes from uniform sampling.

3.2 ICU Dataset
An ICU dataset of patients who underwent cardiac sur-
gery at the Academic Medical Center in Amsterdam, the 
Netherlands, in the period of April 2002-May 2004. Two 
types of data were measured: static data including details 
on the patient, such as age, gender, surgery type, whether 
the patient was mechanically ventilated more than 24
hours, and temporal data which were used for the study. 
The temporal data, included two types of variables: high 
frequency variables (measured each minute): mean arte-
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rial blood pressure (ABPm), central venous pressure 
(CVP), heart rate (HR), body temperature (TMP), fraction 
inspired oxygen (FiO2) and level of positive end-
expiratory pressure (PEEP). FiO2 and PEEP variables are 
parameters of the ventilator. The variables base excess 
(BE), creatinine kinase MB (CKMB), glucose value 
(GLUC), and cardiac output (CO) are low frequency vari-
ables (measured several times a day). The data contains 
664 patients, among which 196 patients were mechani-
cally ventilated for more than 24 hours.

3.3 Evaluation measures
Evaluating unsupervised methods, particular discretization 
methods is a challenging task since there is no clear objec-
tive, such as accuracy in supervised methods. Thus, com-
monly in the evaluation of unsupervised methods, the 
evaluation measures are derived from the study objec-
tives.
The time series abstraction task we present here includes 
the process of discretization, which results in correspond-
ing time series labeled with the states representative value.
The following process is the concatenation of adjacent
points labeled with the same state label. The output of this 
state is an interval based time series. We hereby define the 
evaluation measures we used to evaluate the performance 
of each discretization method. Generally, our goal was to 
find the method which results with the longest time inter-
vals, which smoothes the time series towards the task of 
mining. On the other side we also wanted to minimize the 
error defined by the difference between the state value and 
the original value.

3.3.1 Mean and Standard deviation of Time Intervals
To measure the length of the time intervals resulted from 
each method we calculated the mean and standard devia-
tion of the resulting time intervals, as shown in formula 1.

    221 , IEIE
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Where |I| is an interval length and E(|I|) is the expected 
value of |I|.
3.3.2 Error measures
To define the error or distance measure which measures
the states representation relatively to the original values of 
the time series, we used the Euclidean distance by which 
we measure the distance among the original value and the 
state value, as shown in formula 2.
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Where X=x1…xn is the original time series and Y=y1…yn is 
the discretized series, the value of every yi is one of the 
discrete states representatives values.
Note that implementing this measure is straightforward, 
but it isn’t clear which value represents in the best way the 
state which includes an interval of values. Due to the sen-
sitivity of this error measure to the state representative 
value, we defined two different state representative val-
ues. States mean error called Error1, in which the state 
representative value is the mean value the two cut points 

defining the state. State observation mean error, called
Error2, in which the state representative value is chosen 
to be the mean value of all the original values within the 
state.

4 Evaluation and Results
The goal of this study was to perform an extensive evalua-
tion on the discretization methods on the time series data 
presented in the ICU dataset. We applied all the five dis-
cretization methods, presented in section 3.1, with 3, 4
and 5 number of states. Finally, for each method and each 
amount of states the evaluation measurements were calcu-
lated. Additionally, we provide here statistical properties 
(standard deviation, mean, and number of observations) to 
characterize the original time series.

Table 1 – The characteristics of each time series. The amount
of time points (n), minimal and maximal values and mean 
and standard deviation of the values.

N Min max Mean ± std
TMP 416665 31.00 40.00 36.77 ± 0.85

HR 455613 0.00 230.00 79.62 ± 14.50

PEEP 460146 0 20 8.05 ± 2.76

ABPm 452285 26 193.4 77.34 ± 12.10

FiO2 460774 25.8 100 44.67 ± 8.00

CVP 431885 0 44 13.98 ± 4.61

CI 3216 0.99 5.99 2.54 ± 0.68

GLUC 4234 0 26.6 8.50 ± 2.86

CKMB 2028 1.1 465.2 40.08 ± 47.49

BE 4077 -22.3 13.5 -2.54 ± 2.74

4.1 High frequency variables
The high frequency variables (TMP, HR, PEEP, ABPm, 
FiO2, and CVP) were evaluated with the proposed meas-
urements, after applying the five discretization methods. 
Generally, the results were similar in terms of the per-
formance of the methods. Moreover, since we were inter-
ested in finding the best method and the best amount of 
states and due to the lack of space in the paper, we present 
the mean values of the variables.
Table 2 presents the mean and standard deviation length 
of the intervals of all the variables for each amount of 
states (s), having 3, 4 and 5 states, and for each method, as 
well as Error1 and Error2. EWD and Persist achieved the 
highest mean interval length. While Persist was the best in 
the 3 states discretization, EWD was the best in the 4 and 
5 states. Usually high mean length had also high standard 
deviation. In average, while the mean length in the 3 
states was higher than in the 4 and 5 states, the last two 
had the same averaged mean. Error1 and Error2 showed 
inconsistency in the preferred method, which is reason-
able due to the expected sensitivity to the chosen state 
representative values. The methods having the highest 
mean length had also the lowest Error1, which is quite 
surprising since we expected to see a tradeoff. In addition, 
while in the averaged mean length (according to states) 
there was no difference between 4 and 5 states, the aver-
aged errors decreased as more states were used.
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Table 2 – The mean and standard deviation length, and er-
rors of the high frequency variables. EWD and Persist 
achieved the highest values of mean length and in general the 
3 states had achieved the highest averaged mean.

S Method Mean ± std Error 1 Error 2
Persist 132.38 ± 195.75 4927.61 3297.91

SAX 68.05 ± 115.06 9865.52 2378.70

EWD 109.73 ± 163.82 6673.67 2804.78

EFD 66.54 ± 111.27 10209.05 2477.25

k-means 72.56 ± 122.35 9696.55 2355.80
3 Avg 68.19 ± 141.65 8274.48 2662.89

Persist 82.48 ± 152.34 4417.61 2799.02

SAX 54.49 ± 95.08 8025.43 2042.51

EWD 100.64 ± 158.88 4212.42 3013.21

EFD 45.34 ± 85.96 8880.72 2156.79

k-means 57.98 ± 99.73 7090.87 1921.77
4 Avg 55.9 ± 118.40 6525.41 2386.66

Persist 61.15 ± 121.07 4136.87 2316.51

SAX 43.53 ± 81.42 6767.22 1767.01

EWD 86.48 ± 142.02 3527.18 2658.20

EFD 38.86 ± 75.22 7892.18 1988.65

k-means 47.93 ± 86.09 5531.14 1543.19
5 Avg 55.59 ±101.16 5570.92 2054.71

4.2 Low frequency variables
The low frequency variables were summarized in the 
same way the high frequency variables, the results shown
in table 3. The low frequency variables have two prob-
lematic issues, in the context of our work, since they were 
not measured uniformly, but manually. This is problem-
atic in two phases, the discretization, in which SAX and 
Persist, which are the more temporal methods are assume 
the time series have fixed gaps. In addition in the interpo-
lation step we assume the time points can be concate-
nated.
Persist and EWD achieved the highest mean interval 
length. However, here Persist outperformed in the 3 and 4 
states and EWD in the 5 states. In average, less number of 
states created longer intervals and higher errors rate, and a 
tradeoff observed between the mean length and level of 
error. The longer the mean interval length, the highest the 
error.
Persist achieved the lowest Error1 in 3 and 4 states and k-
means for 5 states. In Error2, Persist achieved the lowest 
error for 3 states, EWD for 4 states and k-means for 5 
states. In general, a higher correlation was observed 
among the two error measures, unlike in the high fre-
quency variables.

5 Discussion
We presented here the problem of time series discretiza-
tion, as a preprocessing method in which the time series 
are transformed to time interval series. Generally, in such 
process we would like to have the highest mean length of 
intervals and minimal error when comparing the discre-
tized data to the original values.

Table 3 The mean and standard deviation length, and errors 
of the low frequency variables. EWD, Persist and k-means 
achieved the highest values of mean length and in general the 
3 states had achieved the highest averaged mean.

S Method Mean ± std Error 1 Error 2
Persist 342.15 ± 263.90 461.73 352.93
SAX 170.61 ± 193.19 877.05 405.35

EWD 307.22 ± 216.45 679.18 365.53

EFD 165.09 ± 193.41 1355.92 475.92

k-means 177.61 ± 194.21 725.58 370.24

3 Avg 232.54 ± 212.23 819.89 394.00

Persist 265.15 ± 239.11 455.99 334.36

SAX 141.89 ± 171.02 721.17 368.23
EWD 264.52 ± 215.28 472.58 306.24
EFD 120.76 ± 167.59 1132.04 440.34
k-means 136.26 ± 172.67 690.84 355.23

4 Avg 185.72 ± 193.13 694.53 360.88

Persist 184.28 ± 200.34 399.09 295.55

SAX 117.74 ± 156.74 657.75 347.18

EWD 233.75 ± 209.90 354.58 268.94

EFD 99.82 ± 152.48 980.91 413.92

k-means 115.08 ± 156.70 333.13 221.62
5 Avg 150.13 ± 175.23 545.09 309.44

We presented five discretization methods. Three are from 
the traditional static discretization methods, which were
not designed specifically for time series and two addi-
tional which were designed for time series. We applied 
the five methods on a dataset from a medical problem 
aiming in three levels of state abstraction: 3, 4 and 5. We 
assumed that the more states there will be longer time 
intervals, which was the desired objective, but also larger 
error. To measure the error we defined two measures, the 
first Error1 compares the original values to the middle of 
the state interval, and the second Error2 compares to the 
average of the values within the state values intervals. The 
dataset we used include two types of time series. High-
frequency time series which were measured in fixed gaps 
within each pair of time points, and low frequency in 
which there were few measurements taken manually in 
varying gaps. As expected, lower amount of states re-
sulted in longer time intervals and higher rate of error. 
While in the high frequency there was low correlation 
between the two error measures, in the low frequency 
there was a high correlation. This can be explained by the 
low amount of time points, which probably distribute like 
the entire state interval. However, we think that Error2 
might not be the best measure since it is data driven and 
thus subjective and influenced by the distribution of the 
time series. As was shown in the results the Error2 meas-
ure was not coherent, although as a state representative 
mean state value (of Error2) yields smaller distance from 
the original series.

6 Conclusions and future work
Generally, Persist brought the best outcome. These are 
very encouraging results indicating that discretization 
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methods for time series which consider the temporal order 
of the values are required. However, while Persist [Mör-
chen and Ultsch, 2005] presents a method that explicitly 
considers the order of the values, it was not designed for 
time series having varying gaps. We are currently in the 
process of performing a wider evaluation on additional 
datasets. In addition we are developing a temporal discre-
tization method which will take into consideration the 
varying gaps in any type of time series.
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Abstract 

Time oriented data presents a more detailed de-
scription of problems, while presenting chal-
lenges in the computational needs for a success-
ful analysis, in which the time is explicitly ana-
lyzed. Commonly temporal datasets are con-
verted into a static representation and being ana-
lyzed by common static data mining methods, 
such as decision trees. Abstracting time series 
into time intervals, using temporal abstraction, 
enables to analyze the data explicitly along time. 
We apply here a mining method, which discovers 
partially ordered coinciding time intervals, con-
sisting on the Time Series Knowledge Mining 
(TSKM) method, presented by Mörchen [2006] 
on temporal data of intensive care patients, using 
human defined and two types of data driven tem-
poral descretization methods as a preprocessing 
step. The Persist discretization method results 
with the best knowledge discovery outcome. 

1 Introduction 

The reduction in storage cost and the growth in logged 
temporal data present the opportunity to analyze data 
along time. Often the analysis of time stamped data is 
made using a time window, extracting features which de-
scribe the time series within the time window and enter 
them into a "static" data mining algorithms, such as deci-
sion trees or naïve bayes. However, determining the right 
time window size is commonly problematic and extracting 
features from the time series within a given time window, 
such as minimal value, or transformations such as wave-
lets or Fourier transform, do not allow an explicit tempo-
ral analysis. Alternatively, abstracting time series to 
meaningful time intervals enable to mine temporal data in 
a different approach, which not necessarily enforces to use 
windowing, which results in explicitly mining the data 
along the time axis [Moskovitch & Shahar, 2005]. 
: Representing time series through time intervals yields 
compact summary representation of the time series. For 
example, having values within the same range for a period 
of time can be represented in a time interval in which 
there is a period of stable values. Thus, a more compact 
representation is presented, preserving the time axis ex-
plicitly and enabling further mining of the time intervals. 
Time intervals can represent events having duration, or an 
abstracted time series, which we refer to in this study. 
Within the recent half decade a growing interest in mining 
time intervals was observed. Most of the methods cur-
rently use Allen's temporal relations [Allen, 1983] for the 

representation of temporal knowledge. While Allen's rela-
tions were used and applied widely in temporal reasoning 
it has some disadvantages in the task of mining time in-
tervals, as presented by Mörchen [2006b], on which we 
will elaborate later. These include mainly ambiguity and 
lack of robustness, to which he presents an alternative 
based on partially ordered coinciding time intervals [Mör-
chen 2006a,b]. In this study we applied Mörchen's method 
to a set of monitoring data from the intensive care unit 
(ICU) to examine its capabilities and advantages over 
Allen's temporal relations. This dataset was previously 
analyzed in comparative studies on temporal abstraction 
procedures for predicting the risk of prolonged mechani-
cal ventilation after cardiac surgery [Verduijn et al, 2005; 
Sacchi et al, 2006]. 
We start by surveying the background. In the methods 
section we describe the descretization methods we used, 
the ICU dataset, the evaluation measures and the experi-
mental plan. Finally, we report the results and discuss 
Mörchen's method as an alternative to Allen's. 

2 Background 

2.1 Time Intervals 

Time intervals are defined often as a triple ti=<ti.start, ti.end, 
ti.symbol>, having a start-time, end-time and a symbolic 
value. Time intervals can represent an event in real life 
which has duration or an abstraction of time series data. 
Real life events have duration, represented by time inter-
val, e.g., the duration in which the temperature of a patient 
increases. However, since the measurements are instanta-
neous resulting in time series, temporal abstraction is used 
to represent them as time intervals [Shahar, 1997]. 

2.2 Temporal Knowledge Representation 

Temporal knowledge representation is an essential tool in 
the task of temporal data mining, which influences the 
entire mining process. Often Allen's thirteen temporal 
relations before, meets, overlaps, starts, during, finishes, 
and their corresponding inverse [Allen, 1983] are used for 
the representation of the time interval temporal patterns, 
however, in the context of knowledge discovery Allen's 
relations have some disadvantages, which we discuss in 
the following sections. 

2.2.1  Mörchen's TSKM 

In a very recent paper Mörchen [2006a] criticizes Allen's 

temporal relations as a tool for temporal knowledge dis-

covery, specifying three main aspects: 
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(1) Robustness, claiming they are not robust since part of 

them requires the equality of two or more interval end-

points. For example the relations overlap, during and fin-

ishes can describe a very similar situation, as shown in 

examples 1.a,b,c in figure 1, which illustrate the relations 

among two time intervals A and B. 

(2) Ambiguous, since the same relation of Allen can visu-

ally and intuitively represent very different situations. 

Examples 2.a,b,c in figure 1 (modified from [Mörchen, 

2006b]) illustrates the different situations which are all 

defined as overlap, while the different overlap may have 

different meanings. 

 
Figure 1 Examples 1.a,b,c illustrating the lack of robustness 

in Allen's relations, in which overlap, during and finishes 

represent a very similar situation. 2.a,b,c presents examples 

justifying the ambiguity in Allen's temporal relations. 

(3) not easily comprehensible, representing a temporal 

pattern of time intervals using Allen's temporal relations 

requires the definition of all the pair-wise relations among 

each pair of time intervals [Höppner, 2001] which grows 

exponentially with the size of the pattern. 

 
Figure 2 First we have Tones, which are labeled time interval 

appearing ini' the raw data. Maximal coinciding chords be-

come Chords. A partial order of Chords constructs a Phrase. 

Instead of Allen's thirteen temporal relations, Mörchen 

introduced a new hierarchical language for the representa-

tion of temporal knowledge based on time intervals, called 

the Time Series Knowledge Representation (TSKR). The 

TSKR is a hierarchical interval language describing the 

temporal concepts of duration, coincidence, and partial 

order in interval time series. The TSKR consists on three 

components: Tones, Chords and Phrases. A Tone is the 

basic primitive component, which is a labeled interval 

representing duration. Simultaneously occurring Tones 

form a Chord, representing coincidence. According to 

[Mörchen, 2006a,b] a Chord is defined by the sum of 

maximal appearances, thus no explicit restriction on the 

length of a Chord is defined. Several Chords connected 

with a partial order form a Phrase. A Phrase is defined by 

the partial order of the Chords, but the durations of the 

gaps are not restricted. Figure 2 (modified from Mörchen 

[2006b]) illustrates the process of the knowledge repre-

sentation in the TSKR method. At the top there are the 

Tones, labeled time intervals (raw data), which based on 

their maximal coincidence Chords are constructed. Even-

tually a Phrase is constructed based on a partial order of 

Chords. The discovered Phrases are represented by a di-

rected graph of Chords, in which the edges are Chords and 

their partial order is presented by the curves connecting 

them, as shown in figure 4. 

2.3 Mining Time Intervals 

2.3.1  Allen's based Time Intervals Mining 

The problem of mining time intervals, a relatively young 
field, is attracting a growing attention recently. Generally, 
the task is, given a database of symbolic time intervals, to 
extract repeating temporal patterns. One of the earliest 
works was made by Villafane et al [1999], which searches 
for containments of intervals in a multivariate symbolic 
interval series. A containment model is constructed from 
the intervals, and rules are mined. Kam and Fu [2000] 
were the first to use all Allen's relations to compose inter-
val rules. In their search for patterns it is restricted to right 
concatenation of intervals to existing extended patterns, 
called A1 patterns. Additionally, they restrict the length of 
a pattern to a maximal length. Höppner [2001] introduced 
a method using Allen's relations to mine rules in symbolic 
interval sequences, in which the time series are restricted 
by a sliding window, and the patterns are mined using an 
Apriori algorithm. In contrast to Kam and Fu [2000] rules 
are generated and their interestingness is measured based 
on the intermediate confidence within the time intervals. 
Höppner uses a k

2
 sized matrix to represent the relations 

of a k intervals sized pattern. Additionally, Höppner pro-
poses how to abstract the patterns or make them more 
specific. In addition, Papapetrou et al [2005] rediscovered 
the method of mining time intervals using Allen's rela-
tions. However, their contribution was in presenting a new 
mining method consisting on the SPAM sequential mining 
algorithm, which results in an enumeration tree which 
spans all the discovered patterns. 

2.3.2  Mining Coincidence of Time Intervals 

Recently, an alternative method to Allen's relations based 
mining methods, was proposed by Mörchen's, which is the 
technique we focus on in this paper. As we explained ear-
lier, all the mining methods which we described in section 
2.3.1, consisting on Allen's temporal relations, suffer from 
the failures listed earlier. In addition to his TSKR temporal 
knowledge representation method, Mörchen proposed a 
mining algorithm, called TSKM, to mine Tones, Chords, 
and Phrases [2006a,b]. The input for mining coincidence 
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in the form of Chords is a set of Tones with the respective 
symbolic interval sequence. A Chord is observed if a set 
of coinciding intervals exceed a minimal length, and fre-
quent if they all exceed a minimal level of support thresh-
old. To mine Phrases, a partial order mining algorithm is 
required, which is similar to mining Episodes of instanta-
neous temporal data. However, unlike in Episodes in 
which they consist on time points, here is the input is time 
intervals. Mörchen extended the existing CHARM algo-
rithm for mining Episodes. The approach was evaluated 
on a dataset of roller bladders, and analyzed by a sport 
physician, arguing that this approach is better than Allen's 
temporal knowledge representation. 
In this study we applied Mörchen's mining method on a 

clinical dataset to examine the method in a new setup. 

While Morchen in his experiments tried it on a single 

dataset, which was split into time windows, in our study 

the dataset is constructed from independent patients in 

which we want to discover repeating Phrases. Addition-

ally, we wanted to examine Mörchen's method in the light 

of his criticisms on Allen’s representation based mining 

methods. 

3 Methods 

3.1 Abstracting Time Series 

To transform the time series into time interval (Tones) 
series we performed state temporal abstraction, in which 
the time series are discretized into several states based on 
categories given from an expert or from a data driven 
computational source, as a preprocessing stage. Each time 
series went through three types of state abstraction: dis-
cretization given by a human expert (physician) and data 
driven methods using SAX [Lin et al, 2003] and Persist 
[Mörchen, 2005]. We briefly describe these approaches. 

3.1.1  Symbolic Aggregate AproXimation 

Recently the Symbolic Aggregate aproXimation (SAX) 

has been presented [Lin et al, 2003], which is based on the 

Piecewise Aggregate Approximation (PAA) [Keogh et al, 

2001]. The PAA is a dimensionality
1
 reduction method 

proposed for the problem of similarity search in large time 

series databases, in which it is crucial to reduce the 

amount of time units which represents the time series for 

the purpose of efficient manipulations, while maintaining 

a proper approximation commonly made through satisfy-

ing the lower bounding criterion introduced by Faloutsos 

et al [1994]. In the dimensionality reduction process a 

time series of n dimensions is transformed into N dimen-

sions (N<<n). PAA enables the reduction of the dimen-

sion of a time series through splitting the time series into 

fixed length frames which are represented by the mean of 

the values within the frame. SAX first uses PAA to reduce 

the dimensional representation, then after normalizing the 

                                                 
1Dimensionality in the context of time series refers to the 

amount of time units a time series is represented by, unlike in 

statistics and machine learning, in which it refers to the amount 

of independent variables (features). 

resulted values to the mean of zero and variation one, 

achieves interval representation by discretizing the nor-

malized value range into equal sized areas ender the Gaus-

sian curve, similarly to EFD, resulting in alphabetical 

symbols for each state. The frame size and the alphabet 

size create a tradeoff between efficiency and approxima-

tion accuracy. SAX is the first symbolic representation of 

time series with an approximate distance function that 

lower bounds the Euclidean distance. While SAX is one 

the first discretization methods designed specifically for 

time series data, the temporal aspect (order of values) of 

the data are taking into account only in the preprocessing 

stage of the PAA, thus not being an explicitly temporal 

method. 

3.1.2  Persist 

In a recent study Mörchen and Ultsch [2005] proposed 

Persist, a new univariate discretization method designed 

specifically for the purpose of knowledge discovery in 

time series, which for the first time explicitly considers 

the order of the values in the time series. Given a set of 

possible (discrete) symbols S = {S1,…,Sk) of a time series 

of length n, Persist computes the marginal probability 

P(Sj) of a symbol Sj and the transition probabilities given 

in a k×k matrix A(j,m) = P(si=Sj|si-1=Sm), in which the self 

transitions are the values on the main diagonal of A. In 

this approach the assumption is that if there is no temporal 

structure in the time series, the symbols can be interpreted 

as independent observations of a random variable accord-

ing to the marginal distribution of symbols, thus, the 

probability of observing each symbol is independent from 

the previous state, i.e. P(si=Sj|si-1,…,si-m) = P(Sj|si-1). Based 

on this Markovian model if there is no temporal structure, 

the transition probabilities should be close to the marginal 

probabilities, otherwise if the states show persistence be-

havior, which is expected to result in long time intervals, 

the self transition probabilities will be higher than the 

marginal probabilities. The Persist algorithm is based on a 

measure based on the Kullback-Leibler Divergence, 

which indicates which cutoffs lead to long time intervals. 

The method is compared to common discretization meth-

ods, such as EQW, SAX, HMM and more simple ones, 

and results in higher accuracy [Mörchen, 2006]. 

However, Persist assumes that any time series come from 

uniform sampling, in which the duration between each 

time point is fixed, which is not always the situation, es-

pecially in "slow" domains (sampled infrequently and 

commonly manually), such as the medical domain or 

other in which the sampling is made manually in varying 

periods of time. Thus, a more generalized framework 

should be developed which considers the distance among 

the time points with the time series.  

3.2 Data Set 

An ICU dataset was used of patients who underwent car-
diac surgery at the Academic Medical Center in Amster-
dam, the Netherlands, in the period of April 2002-May 
2004. Two types of data were measured: static data in-
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cluding details on the patient, such as age, gender, sur-
gery type, whether the patient was mechanically ventilated 
more than 24 hours during her postoperative ICU stay, 
and temporal data, measured each minute along the first 
12 hours of the ICU hospitalization, including: mean arte-
rial blood pressure (ABPm), central venous pressure 
(CVP), heart rate (HR), body temperature (TMP), and two 
ventilator variables, namely fraction inspired oxygen 
(FiO2) and level of positive end-expiratory pressure 
(PEEP). The data contains 664 patients, among which 196 
patients were mechanically ventilated for more than 24hr 
(29.5%). The objective in this case study on the ICU data-
set was to discover common temporal patterns for patients 
who were mechanically ventilated for more than 24hr for 
patients who were detubated within 24hr. 

3.3 Evaluation Measures 

We used the unsupervised TSKM mining method (2.2.1) 

which results with a set of Phrases, having each a support 

value above a given threshold. Evaluating knowledge dis-

covered from a mining process is challenging since it is 

hard to estimate the quality of the discovered knowledge 

in quantitative terms, such as accuracy in classification. 

Since in our task the objective was to discover the com-

mon patterns of the two types of patients, we defined two 

measures to estimate the distance among two sets of 

Phrases. The first measures the pair-wise distances among 

each pair of Phrases in both sets, and the second is based 

on the minimal pair-wise distances. 
Real examples of Chords and Phrases discovered in this 
study are presented in figure 3 and 4 respectively. Chord 
C1 describes the duration, in which ABPm, CVP, and HR 
at level_2 and TMP level_3 coincide. C4 describes the 
duration, in which FiO2 at level 2 and PEEP and TMP at 
level 3. These Chords appear in the examples in Figure 4, 
which presents two examples of Phrases. We will use 
these examples for the explanation of the measures. 

 
Figure 3 Example of two chords, C1 and C4. The support of 

C1 is 0.8. The support of C4 is 0.16. 

Let P
+
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+
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+
2,.., P

+
n} and P

-
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-
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-
2,.., P

-
m} be the 

set of Phrases discovered from the patients, who were 

mechanically ventilated for more than 24 hours, and the 

ones who received ventilation less than 24 hours, respec-

tively. We define a distance measure d(Pi,Pj) among two 

(single) Phrases, inspired by measures which are com-

monly used to compare graphs. 
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Where I(E(Pi,)E(Pj)) is the amount of common directed 

edges in Pi and Pj, and |E(P)| is the total number of di-

rected edges in Phrase P. We double I(E(Pi,)E(Pj)) to have 

a measure in [0,1] range. 

As an example for the calculation of d(Pi,Pj) we will use 

the two Phrases presented in figure 4. The number of mu-

tual directed edges is 2: The edges 1→8 and the edges 

8→9. The total number of edges in P4 is 6 and in P5 is 4. 

Thus, d(P4,P5) equals 2*2/(6+4) = 0.4. 

 
Figure 4 Example of two phrases, P4 and P5. The nodes (di-

rected edges) are the chords, having an id, and connected 

according to their partial order. 

3.3.1  Cross Product Distance 

To measure the distance among the two sets of Phrases we 

measure the pair-wise distances of all the n×m pairs of 

Phrases. We started by computing the mean of all of the 

nxm pair-wise distances, as the distance between P
+
 and 

P
– 

which resulted in CPD1(P
+
,P

-
) presented in equation 2. 
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The obvious drawback of D1 is the lack of consideration 

of the support of each Phrase. The intuition guided us in 

the extension of CPD1 was that the support value of a 

Phrase should be considered as a weight representing its 

significance among the others. Thus, each pair of Phrases 

CPD1 measure is multiplied by their average of supports 

values, which represents their weight in the final distance 

measure among the two sets of Phrases presented in CPD2 

measure, as shown in equation 3. 
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3.3.2  Minimal Distance 

In addition to the cross product distance we defined a 
more compact and extreme measure, called minimal dis-
tance, in which we measure the distance for each Phrase 
with the closest Phrase from the other set, as shown in 
equation 4. 

∑
=

−+−+ ≤≤=
k

i

ji mjPPdPPMD
1

1 1,)],(min[),(  (4) 

Note that in this measure, several Phrases from P
+

i can be 

coupled to the same P
-
j. Similar to CPD2 we extended 

MD1 to MD2, in which the support values are used again 

to represent the importance of both Phrases. 
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3.4 Experimental Plan 

To compare between the knowledge discovered from the 
positive and the negative patients we used Mörchen's 
[2006a] TSKM method in a slightly different approach. 
While typically the method computes the Tones, Chords, 
and Phrases from the entire dataset, since here the dataset 
was split into two classes and in order to be able to com-
pare the discovered Phrases, we discretized the time series 
into Tones and discovered Chords based on the entire 
dataset. Then the Phrases were discovered separately for 
each group of the positive and negative patients, which 
yielded eventually in two sets of Phrases, P

+ 
and P

-
, which 

were constructed from the same set of Chords (and 
Tones). 
This discovery process was applied to the datasets after 
applying three types of preprocessing, in which the high 
frequency variables abstracted into Tones, including hu-
man expert (EdJ, the intensive care physician involved in 
the study), SAX, and Persist. The human expert discreti-
zation is provided in Table 1. The temporal data was ab-
stracted according to the cut points presented in the table. 
Finally, each type of a discretization yielded in two sets of 
Phrases, which we wanted to measure the distance among 
them to estimate the expected detection accuracy. The 
discretization which would result with the highest level of 
distance was expected to be the results in the best separa-
tion of the knowledge discovered from both groups. 

Table 1: Cut-points determined by human expert. 

Variable Human expert cut-points 

hf-ABPm 60,90 

hf-CVP 5,17 

hf-FiO2 41,60 

hf-HR 60,110 

hf-PEEP 7.333 

hf-TMP 35.5,38.5 

4 Results 

We first refer to the preprocessing stage, in which the time 
series were abstracted to Tones. We measured the results 
of the application of each abstraction method to the time 
series by the mean and standard deviation of the resulted 
time intervals (tones), as shown in table 2. 

Table 2: The mean length of the intervals for each 

variable and each discretization method 

Variable Human SAX Persist 

hf-ABPm 17.03±78.17 8.78±39.98 21.98±92.55 

Hf-CVP 15.6±92.85 8.54±38.34 25.1±186.25 

Hf-FiO2 48.44±244.85 49.58±225.32 126.97±348.93 

hf-HR 30.91±205.98 12.45±83.37 31.04±199.47 

hf-PEEP 117.33±346.6 35.89±191.49 76.07±282.06 

Hf-TMP 174±498.9 73.03±241.37 179.72±509.43 

In most cases the Persist method achieved the longest 
intervals. However, note that for the PEEP measure the 
human expert discretization achieved much longer inter-
vals than other discretization techniques. 

Table 3 presents the average number of intervals and 

number of Chords for each discretization method. As ex-

pected the methods having low number of time intervals 

have also the longest length in the results presented in 

table 2. 

While, a relatively significant difference in the average 
number of intervals was observed, where Persist has the 
minimal amount, then the human expert and finally SAX 
with the largest amount of intervals, the amount of the 
discovered Chords was quite similar. 

Table 3: Average number of intervals and number of 

chords for each discretization method. 

Discretization Avg. # of intervals # of Chords 

Human Expert 13,171.16 12 

SAX 25,853.50 11 

Persist 9,988.83 10 

Table 4 presents the amount of Phrases discovered based 
on each discretization method. The Phrases where discov-
ered separately from positive and negative patients, thus 
their number is different for each group. 

Table 4: Number of Chords and Phrases for each dis-

cretization technique. 

Discretization # of P
+
 # of P

- 
Human expert 23 32 

SAX 17 33 

Persist 21 16 

Although we defined two types of measures D1 and D2, in 
which the support value is considered to represent the 
relative importance of a Phrase, we present only the D2 
types. This is as a result of the lack of room and the mag-
nitude of the results was the same. Table 5 presents the D2 
values computed for each discretization method. Persist 
results with the highest distance among the positive and 
negative patients, according to the D1 measure. SAX re-
sulted with the lowest distance, and the human expert 
based abstraction yielded in a relatively high separation 
level. 

Table 5: Distance values MD2(P
+
,P

-
) and CPD2(P

+
,P

-
) 

for each discretization method. 

Discretization MD2 CPD2 

Human expert 111.37 0.21 

SAX 38.46 0.08 

Persist 172.87 0.30 

5. Discussion 

We presented the problem of mining time series repre-
sented by time intervals through temporal abstraction. We 
presented Mörchen’s TSKM and applied it to the problem 
presented in the ICU dataset, in which there is a dataset of 
patients classified into two classes. The temporal abstrac-
tion of the data was made based on three inputs: a domain 
expert, and two data driven discretization methods: SAX 
and Persist. The TSKM mining method was applied on 
the resulted time interval series. First, Chords were dis-
covered from the entire dataset to enable comparison of 
the further discovered Phrases, which were discovered 
separately from each class of patients. according to their 
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duration being mechanically ventilated. Knowledge was 
discovered in the form of a set of Phrases from each class 
of patients. To evaluate the differences in the discovered 
knowledge we defined a distance measure among two 
Phrases and two sets of Phrases. 
In this study, the cutoffs in the three discretization meth-
ods were fixed along the entire time series. This is a limi-
tation of the study, as during the postoperative ICU stay of 
cardiac surgical patients, the definitions of ‘normality’ 
and ‘abnormality’ change during the twelve-hour period 
for variables such as PEEP and TMP [Verduijn et al, 
2005] (creating a context [Shahar, 1997]). In this study, 
we used the mean value of these cut-points for these vari-
ables in the human discretization method. Discretization 
with dynamic cut points is an important topic of our future 
work. However, note that while these contexts are rele-
vant for physicians' for diagnosis and prognosis purposes, 
it might not be always (and for any variable) relevant in 
the task of temporal knowledge discovery or classification 
tasks. 
The results of the study indicate that the data which was 
discretized by the Persist method resulted with the highest 
level of separation, followed by the human expert and 
SAX. While the human expert descretization was ex-
pected to be more meaningful, it is not necessarily ex-
pected to lead to better knowledge discovery since it was 
defined for diagnosis purposes and not knowledge discov-
ery. SAX while aiming to be a discretization method for 
time series does not explicitly considers the temporal or-
der of the time series, which might result in the pure re-
sults. 
Referring to Mörchen's method in the light of his criti-
cisms [Mörchen, 2006a,b] on Allen's relations, our obser-
vation is that the TSKM suffers from part of the aspects 
indicated by Mörchen on Allen's relations. While it does 
not suffer from robustness, having only two operators 
representing coincidence and synchronity (partial order of 
chords), similar to Allen's equal and before respectively, it 
is not expressive enough to show the actual relations 
among the time intervals. Additionally, it is ambiguous as 
well as Allen's relations since Chords discovered can have 
different durations which may reflect different meanings, 
as well as in Phrases, in which the gap duration among 
Chords in a Phrase may vary, similar to the Allen's before. 

8. Conclusions and Future Work 

In this study we showed the ability to analyze time series 
using temporal abstraction. We applied the TSKM on a 
dataset including two classes of patients. Phrases were 
discovered from each class and the distance among the 
discovered sets were measured. As future work, we would 
like to measure the accuracy of the classification using the 
discovered Phrases. In addition we develop an Allen 
based time interval mining method which is expected to 
overcome the criticisms presented by Mörchen. 
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Abstract 
Considerations for selecting empirical antibiotic 
therapy rely on prior knowledge of the in vitro 
susceptibilities of potential pathogens to antibiot-
ics. In this paper the limitations of these a priori 
antibiotic susceptibilities are outlined and a 
method that can reduce some of the problems is 
proposed. Deriving the probabilities for antibi-
otic susceptibility from a bacteraemia database 
by the classical maximum likelihood method 
provides unreliable results when the number of 
cases is small. Representing a Bayesian ap-
proach, we propose hierarchical Dirichlet learn-
ing for learning susceptibilities of a pathogen, us-
ing data from a group of similar pathogens in the 
database. A three-fold crossvalidation of the re-
sults was performed for eight pathogens belong-
ing to one specific pathogen group (Proteus) and 
36 antibiotics.  The reduced distances between 
the estimated susceptibilities in the learning set 
and the observed susceptibilities in the test set 
show the improvement in quality of the estimates 
provided by the Dirichlet estimator relative to the 
maximum likelihood estimator. 

1 Introduction 
At the onset of infection, the identity of the infecting 
pathogen(s) is usually not known, and the clinician must 
therefore consider the probabilities of the presence of a 
range of pathogens and weight these with the probability 
of the pathogen(s) being susceptible to the antibiotics con-
sidered for treatment.  
     Susceptibilities of bacteria to antibiotics differ be-
tween hospitals and estimation of susceptibilities from 
databases of in vitro susceptibilities must therefore be 
based on local data. The size of local databases is limited 
as susceptibilities change over time. This is aggravated by 
the observation that community acquired and hospital 
acquired infections are different enough in their suscepti-
bilities to stratify the databases into these two categories. 
It is difficult to set a threshold for how large the sample 
should be to make the classical maximum likelihood esti-
mate useful. If we consider a pathogen that has an esti-
mated susceptibility of 70% to an antibiotic, then the 

standard deviation (SD), calculated based on the binomial 
distribution, of that estimate is 9% for a sample size N=25 
and 5% for N = 100. So it is probably safe to conclude, 
that the lower limit for useful estimates is somewhere 
between N = 25 and N = 100. 
      This paper will explore a method for partially alleviat-
ing the problem associated with limitations of knowledge 
about antimicrobial susceptibilities. Technically, the 
method will be based on hierarchical Dirichlet learning 
[Andreassen et al., 2003; Heckerman et al., 1999; Filho 
and Wainer,, 2007; Cestnik, 1990], that allows a system-
atic approach to strengthening sparse data with educated 
guesses. The idea of using groups of pathogens will be 
explored. For example, it might be impossible to obtain 
enough isolates of Proteus spp., which is one of 8 mem-
bers of the “Proteus group” of pathogens (see Table 1), to 
derive a reliable estimate for its susceptibility to a certain 
antibiotic. An educated guess, in the absence of enough 
data would be to assume that it resembles other members 
of the Proteus group in terms of susceptibility. The 
Dirichlet learning then provides a mechanism, that allows 
the susceptibility estimates for Proteus spp. to deviate 
from the susceptibilities of other bacteria belonging to the 
Proteus group, if and when data on the actual susceptibil-
ity of Proteus spp. to this antibiotic becomes available. 
      The potential benefit of this idea will be evaluated by 
applying the proposed method to a bacteraemia database. 
Preliminary results assessing whether our method im-
proves the estimates, relative to the maximum likelihood 
estimates, will be shown. 

2 Materials and methods 

2.1 Database structure and maximum likelihood 
estimates  

Prior probabilities used in the model were based on a bac-
teraemia database collected at Rabin Medical Center, 
Beilinson Campus, in Israel during 2002-2004. The bacte-
raemia database included 3350 patient and episode unique 
isolates among adult inpatients and contains only the 
clinically significant pathogens. The list of pathogens in-
cludes 156 entries. The list of antibiotics has 36 entries. 
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     The bacteraemia database provides the counts of sus-
ceptibilities belonging to each pathogen for a range of 
antibiotics. For example, Table 1 shows the counts of sus-
ceptibility (Mij) and the number of isolates tested (Nij) for 
the antibiotics tobramycin and augmentin and eight hospi-
tal-acquired pathogens belonging to the Proteus group. 
The index i identifies the antibiotic (in this case tobramy-
cin) and j identifies the pathogen (in this case one out of 
the 8 pathogens in the “Proteus group”. Using these 
counts, maximum likelihood estimates (MLij) of suscepti-
bility were calculated. For example, the ML estimate for 
the susceptibility of hospital acquired Proteus spp. to to-
bramycin and its SD were obtained as MLij = Mij / Nij = 
2/3 = 0.67 and SD=

ij ij ijML (1-ML )/N = 0.27 

 
 tobramycin augmentin 
Pathogen Mij Nij  Mij Nij  
Proteus spp.  2 3 1 3 
Proteus mirabilis  39 49 29 50 
Proteus vulgaris 1 1 1 1 
Proteus penneri 2 2 1 2 
Morganella spp. 0 0 0 0 
Morganella morganii 19 20 9 19 
Providencia spp. 4 10 0 10 
Providencia stuartii 5 14 0 14 
Sum of Proteus group 72 99 41 99 

 
Table 1: The counts of susceptibility to tobramycin and aug-
mentin for eight hospital acquired pathogens belonging to the 
Proteus group. 

2.2 Hierarchical Dirichlet learning over groups 
of pathogens 

Dirichlet learning is a Bayesian approach for estimation of 
the parameters in binomial (or polynomial) distributions. 
In this paper it will be assumed that a priori estimates of 
the parameters of the binomial distribution for susceptibil-
ity can be guessed from the susceptibilities averaged over 
pathogens that are assumed to be similar.  
      In the Treat project a decision support system for ad-
vice on antibiotic treatment has been constructed [Andre-
assen et al., 2005].  As part of this construction 40 such 
groups of pathogens with similar susceptibility properties 
have been identified, and these groups will be used as a 
starting point for this paper. 
      Assume that a group of n similar pathogens has been 
identified, the pathogens being indexed by j ∈ {1, ,…, n}. 
On a number of occasions the susceptibility of these 
pathogens  to a certain antibiotic (indexed by i) has been 
tested, Ni1,… Nin times respectively, with the counts of 
susceptibility being Mi1,…,Min, respectively. The average 
susceptibility Pi of this group is: 

n n

i ij i i
j=1 j=1

P = M / N , where N N .=∑ ∑ ij

 

   
       (1) 

The maximum likelihood estimator of susceptibility of a 
pathogen MLij = Mij / Nij is now replaced by the Dirichlet 
estimator: 

Pij = (βi + Mij) / (αi + Nij) , (2)

where βi and αi are imaginary counts, βi = αi * Pi repre-
senting positive outcomes in the binomial distribution and 
αi representing the imaginary sample size, inherited from 
the pathogen group. Thus, αi indicates how strong the con-
fidence is in the a priori distribution of the parameters, 
and βi / αi can be used as the a priori estimate of the pa-
rameter of the binomial distribution, i.e. as an estimate of 
the susceptibility averaged over the pathogen group. We 
let all αi assume the value A, except that we impose an 
upper limit on each αi: 

αi =min (A, Ni) ,  (3) 

since it is not reasonable to let the imaginary sample size 
αi exceed the number of counts Ni actually available for  
the group. If A=0, then the Dirichlet estimate becomes 
equal to the maximum likelihood estimate. 
       In the next section it will be shown, that a “suitable” 
value for A can be determined empirically.  

2.3 Evaluation of the quality of the estimates 
To evaluate the quality of the estimates a three-fold cross-
validation procedure is applied. The 3 years of data are 
divided into 3 periods, each containing data from one 
year. In turn, one of the 3 periods is designated as the test 
set and the other 2 periods are designated as the learning 
set and used for calculation of the estimators. 
     We wish to evaluate how well the Dirichlet estimator 
Pij, calculated from the learning set, predicts Fij, the ob-
served frequency of susceptibility, calculated from the test 
set.  Fij  is calculated as Fij = Mij / Nij. For this purpose we 
define the distance measure: 

 
2

ij ij ij
ij

Dist = (P - F ) N / N,∑
 

   (4)

where ij
ij

N= N∑ . 

This distance measure calculates the square distance be-
tween Pij, and Fij, weighted by the relative frequency of 
the pathogen.  
     The procedure followed in the 3-fold cross-validation 
described above is graphically illustrated in Figure 1. 
Dist measures the averaged distance between the Dirichlet 
estimator from the learning set and the observed fre-
quency in the test set. Since Pij is a function of A (see eqs. 
(2)-(4)), Dist is also a function of A. The value of A, 
which minimizes Dist is the optimal size of the imaginary 
sample to be inherited from a pathogen groups to individ-
ual pathogens. 
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Figure 1:  The procedure followed in the 3-fold cross-validation. 

3 Preliminary results  

3.1 Maximum likelihood estimates 
Out of the 156 pathogens in the database, only 10 (6%) of 
these have been isolated more than 50 times. When com-
munity acquired and hospital acquired isolates are consid-
ered separately, 5% of pathogens in both cases have 
counts bigger than 50. The counts available for estimation 
of susceptibility are even smaller, because susceptibility is 
only tested for a selection of antibiotics. This indicates, 
that the maximum likelihood estimates of susceptibility 
for most combinations of pathogens and antibiotics in this 
database are too uncertain to be useful. 

3.2 Hierarchical Dirichlet learning over groups 
of pathogens 

To illustrate the method we shall focus on one of the 
groups of pathogens inherited from the Treat project. We 
chose the Proteus group mentioned above, which has 8 
members (see Table 1).  
      To illustrate Dirichelt learning for a single pathogen, 
let us consider learning susceptibility of hospital-acquired 
Proteus spp. to tobramycin using susceptibility data avail-
able for other members of the Proteus group. (The proce-
dure can be applied to any of eight pathogens in the Pro-
teus group). First we assume a value for A, e.g. A = 4. 
This gives αi = 4, because for the Proteus group Ni  = 99 
(see Table 1). The average susceptibility of the group is Pi 
= 72 / 99 = 0.728. Next we calculate βi = αi * Pi = 4 * 
0.728 = 2.91. Finally we can calculate the Dirichlet esti-
mator as Pij = (βi + Mij) / (αi + Nij) = (2.91 + 2) / (4 + 3) = 
0.70. 
    This result along with the the maximum likelihood es-
timator and the Dirichlet estimator for the remaining 
members of the Proteus group are shown in Table 2, as-
suming that A =4. 
 
 

Pathogen MLij Pij  
Proteus spp.  0.67 0.7 
Proteus mirabilis  0.80 0.79 
Proteus vulgaris 1 0.78 
Proteus penneri 1 0.82 
Morganella spp. NA 0.73 
Morganella morganii 0.95 0.91 
Providencia spp. 0.4 0.49 
Providencia stuartii 0.36 0.44 
Sum of Proteus group 0.73 0.73 

 
Table 2: The maximum likelihood estimates and the Dirichlet 
estimators of susceptibility to tobramycin for eight hospital ac-
quired pathogens belonging to the Proteus group. (NA=not ap-
plicable) 
 
An optimal value for A can be determined empirically by 
minimizing the distance in (4). We have applied the dis-
tance measure for tobramycin across the Proteus group 
(the summation in (4) was performed across one antibiotic 
and the eight pathogens in the Proteus group). It was 
found that the distance reaches its minimum (Distmin = 
20.2%) at A = 4 (Figure 2a), which is therefore the opti-
mal imaginary sample size to be used for calculation of 
the Dirichlet estimator. Note, that the maximum value of 
Dist (Distmax = 25.8%) is observed at A = 0 and corre-
sponds to the Distance achieved by the maximum likeli-
hood estimator. The improvement in quality provided by 
the Dirichlet estimator relative to the maximum likelihood 
estimator is ∆Dist = (Distmax -Distmin) / Distmin = 28%.  
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susceptibility to tobramycin for the Proteus group, but it 
does not guarantee that this applies to all members of the 
group and for other antibiotics. 
It is apparent from Table 2, that the susceptibility to to-
bramycin for Providencia spp. and for Providencia stuar-
tii is smaller for these two species than for the average of 
the group (p<0.0001). This implies that it may be advan-
tageous to place Providencia spp. and Providencia stuartii 
in a group of their own.  
     If we allow Providencia spp. and Providencia stuartii 
to form their own group, labelled Providencia, then Dist 
for the remaining 6 members of the Proteus group be-
comes smaller, and it becomes possible to use a higher 
value of A, indicating that the group has become more 
homogeneous and the Dirichlet learning therefore more 
robust. (Figure 2b).  
     The formation of a separate Providencia group also 
improves Dist calculated for Providencia spp. and Provi-
dencia stuartii (Figure 3). This also applies when Dist is 
calculated across all the 8 pathogens in the original Pro-
teus group (Figure 4). The Dirichlet estimators in Figure 4 
were derived using a 6 member Proteus group and a 2 
member Providencia group. 
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Figure 3: The distance measure Dist in procent for tobramycin 
and the Providencia group as a function of A for hospital-
acquired infections.  
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Figure 4: The distance measure Dist in procent for tobramycin 
and the Providencia group as a function of A for hospital-
acquired infections. The Dirichlet estimators were derived using 
a 6 member Proteus group and a 2 member Providencia group. 

 

Finally we turn our attention to the question of whether 
the pathogen groups are valid across all antibiotics or if 
they just apply to a single antibiotic. Augmentin is another 
antibiotic for which susceptibility is frequently tested in 
the Proteus group. Figure 5 shows Dist for augmentin and 
the 8 pathogens in the original Proteus group. The smooth 
curve in Figure 5 expresses the Dirichlet estimators de-
rived using the original 8 member Proteus group, and the 
broken curve in the Figure 5 was used for the Dirichlet 
estimators derived using a 6 member Proteus group and a 
2 member Providencia group. The results show that even 
with the original 8 member Proteus group, there is a small 
advantage to the Dirichlet learning with the value A = 1. 
When the Proteus group is split into two, then Dist be-
comes smaller and the optimal value of A becomes larger. 
This is qualitatively the same findings as for tobramycin. 
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Figure 5: The distance measure Dist in procent for augmentin 
and the Proteus group as a function of A for hospital-acquired 
infections.  

If we extend the analysis to all antibiotics for which sus-
ceptibility testing has been done, then this qualitative find-
ing is confirmed, as illustrated by Figure 6. 
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Figure 6: The distance measure Dist in procent for the Proteus 
group across all antibiotics as a function of A for hospital-
acquired infections.  

3 Discussion 
The preliminary results show, that Hierarchical Dirichlet 
learning of susceptibility for a pathogen from the data 
available from a group of similar pathogens can provide 
estimates of susceptibility with improved quality, i.e. with 
smaller distance to the frequencies observed in the test set. 
For the Proteus group of pathogens the original grouping 
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of 8 pathogens, inherited from the Treat project, turned 
out to be robust in the sense that on average Dirichlet 
learning improved estimates across all antibiotics, show-
ing that the formation of a Proteus group seems well 
founded. The results also showed that as might be ex-
pected, the Dirichlet learning works best when the patho-
gens within the group has a high degree of similarity. 
Splitting the Proteus group in two, a new smaller Proteus 
group and a Providencia group actually improved the 
Dirichlet estimates, not only for a single antibiotic, but 
averaged over all antibiotics. This again underlines that 
the concept of groups of pathogens seems to be well 
founded.  
     The results also showed that with better matching of 
the pathogens within a group, the Dirichlet learning could 
be strengthened, as reflected in the larger values of the 
size A of the imaginary sample, inherited from the group 
to the individual pathogens. 
     The evaluation of the Dirichlet learning is based on 
calculating the estimators from a two year learning pe-
riode and comparing them to a one year test period. Since 
our dataset only contained data from a three year period, 
the evaluation became a 3-fold cross validation. Often in 
cross validation studies a higher fold is preferred to pro-
vide higher statistical stability, but in this particular case 
the 3-fold validation may be an appropriate choice. This is 
due to the difficulties involved in the collection of a data-
base of susceptibilities. Due to the steady decline of bacte-
rial susceptibility to antibiotics over time, it is not realistic 
to use databases that cover much more than three year. 
Likewise it is not realistic to expect a much larger number 
of bacterial isolates per year, since this database comes 
from a large university hospital with a large throughput in 
the department of microbiology. Thus, databases of bacte-
rial susceptibility are unlikely to be substantially larger 
than what has been used here. On this background it 
seems realistic to use a database of susceptibility to update 
the susceptibility estimates every year or every other year. 
Our choice in this study with a learning set covering a two 
year period corresponds to an updating of susceptibility 
estimates every other year. 
     In this paper we have only explored the properties of 
the Dirichlet estimators for a single group of pathogens. 
To produce useful results for clinical practice, the method 
must be repeated for all pathogen groups in the database.  
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Abstract 
 
Software applications supporting clinical trial 
planning and monitoring have significant re-
quirements for knowledge management. Model-
ing the timing of various clinical trial activities is 
central to these requirements. Often, the encoded 
temporal patterns found in clinical trial applica-
tions may be imprecise and partial reflections of 
the intentions of the trial designers.  To address 
this problem, we have developed an end-to-end 
knowledge-based system that permits formal de-
sign-time specification of temporal patterns and 
their automated verification when the system is 
deployed at clinical trial sites. In this paper, we 
discuss the use of the Semantic Web Rule Lan-
guage (SWRL) as a general, reusable mechanism 
for encoding and executing these temporal pat-
terns on relational databases. We present a set of 
ontologies and tools that we have developed for 
these efforts. We show how our approach sup-
ports participant and specimen tracking applica-
tions for clinical trials undertaken by the Immune 
Tolerance Network. 

1 Introduction 
Clinical trials encompass a vast array of formalized, con-
trolled studies to advance and validate new approaches in 
the prevention and treatment of medical conditions. They 
require significant knowledge and information manage-
ment at all stages, from initial planning through data 
analysis.  To assist this process, we are building an ontol-
ogy based framework to manage clinical trials. This work 
is driven by our collaboration with the Immune Tolerance 
Network (ITN), whose goal is to accelerate the develop-
ment of new therapies for immune disorders [Rotrosen et 
al., 2002]. In collaboration with ITN, we have created a 
clinical trial ontology called Epoch [Shankar et al., 2006] 
to support the management of multi-site clinical trial pro-
tocols and the discovery of common tolerance mecha-
nisms across multiple trials. 

Reasoning with time-stamped data is central in these 
clinical trial systems. Trial design and compliance moni-
toring tasks, for example, typically revolve around speci-
fying temporal patterns and evaluating them. Example 

patterns include: “Visit 3 for a participant must occur with 
3 weeks of visit 2.” “Clinical assessments are required 
twice a week until day 28 or discharge from hospital.” 
“Test is scheduled on weeks 4, 6, and 8 during treatment.” 

These patterns are usually written as free text and are 
distributed throughout protocol design documents. Their 
interpretation is heavily dependent on the context of the 
protocol being encoded. This unstructured specification 
process can make it difficult to produce a precise defini-
tion for a pattern and can also result in significant gaps in 
the final specifications. As a result, implemented protocol 
temporal patterns may be an imprecise and partial reflec-
tion of the intentions of the designers and the quality of 
the trial data may become compromised. These shortcom-
ings are often not noticed until the stage of final data 
analysis, when many may not be correctible. The conse-
quences are frequently serious: lengthy and expensive 
data cleanup processes may be required, and some data 
may have to be discarded because of poor compliance. 

2 Semantic Web Methods 
To address this problem, we have developed an end-to-
end system using the Semantic Web ontology and rules 
languages (OWL [OWL, 2004] and SWRL [SWRL, 
2004], respectively) for design-time encoding of temporal 
patterns and their execution in a deployed clinical trial. As 
a first step, we developed a temporal ontology to provide 
a uniform representation of all temporal information in the 
Epoch clinical trial model. Using a SWRL development 
environment [O’Connor et al., 2005]1, we created a set of 
SWRL rules to encode temporal patterns in terms of the 
model. As a final step, we developed a mapping from on-
tology-level concepts to data stored in relational data-
bases. 

2.1 Temporal Ontology 
We have adopted the valid-time temporal model as com-
monly used in temporal database research [Snodgrass 
1995]. The valid-time model adds a time dimension to a 
piece of information, which is often referred to as a fact.  
Facts model one or more associated pieces of information 
and are analogous to tuples in relational databases. Each 
fact is considered to be atomic and is held to be true—or 
valid—for one or more times.  These times, which can be 

                                                 
1 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab 
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instants or intervals, are referred to as the valid-times of 
the fact and denote the time or times during which it is 
believed to be true. Using this temporal model, we have 
developed an OWL-based valid-time ontology, which is 
the basis for representing temporal knowledge in our sys-
tem. Following the valid-time model, our temporal ontol-
ogy allows temporal information to be associated with 
information that extends over time. 

2.2 Temporal Rules 
Once temporal information for a set of OWL classes has 
been consistently represented with the temporal ontology, 
we can write SWRL rules to temporally reason with in-
formation represented using that ontology. For example, 
the following SWRL rule determines the start dates of a 
series of treatments with the drug DDI: 
 
Participant(?p) ^ hasTreatment(?p, ?t) ^  
hasRegimen(?t, ?regimen) ^  
swrlb:equals(?regimen, "DDI") ^ 
temporal:hasValidTime(?t, ?tVT) ^  
temporal:hasStart(?tVT,?startTreatment) ->  
hasDDIRegimenStart(?p, ?startTreatment) 

2.3 Temporal Library 
Most non trivial rules will require temporal operators.  
SWRL provides a very powerful extension mechanism 
that allows user-defined functions to be used in rules. 
These methods are called built-ins and are predicates that 
accept one or more arguments.  A number of core built-ins 
are defined in the SWRL specification. This core set in-
cludes basic mathematical operators and built-ins for 
string and date manipulations. A few temporal built-ins 
are included in the current SWRL specification, but they 
have limited expressive power. To augment this limited 
set, we have defined an extensive set of temporal built-
ins2. These built-ins allow the writing of rules that express 
complex temporal patterns. 

2.4 Relational Database Mapping 
The temporal model can be used to ensure that temporal 
information is represented consistently in a system, and 
SWRL rules can support knowledge level reasoning with 
this information. However, most data—particularly medi-
cal data—will continue to reside in relational databases. 
To reason with such data using knowledge-based tools, 
one could map all such relational data to equivalent OWL 
concepts. While this approach may be appropriate when 
working with small data sets, it does not scale to signifi-
cant amounts of data, and for these data sets, an alternate 
solution is needed.   

To support knowledge-driven querying of relational da-
tabases, we have developed tools to map data dynamically 
from relational databases to concepts described in an 
OWL ontology [O’Connor et al, 2007]. Our tools make 
extensive use of SWRL to specify the OWL to relational 
mapping and to provide a knowledge level query interface 
to the system.  We have devised an array of optimization 
strategies to improve the performance of the underlying 
relational-to-ontology mapping process. Our primary goal 

                                                 
2 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalBuiltIns 

is to offload as much work as possible to the underlying 
RDBMS by exploiting knowledge of SWRL rules as well 
as additional information provided by a rule base author. 
A secondary goal is to reduce the amount of data retrieved 
from databases during rule processing. These strategies in 
conjunction with the temporal ontology and associated 
reasoning mechanism provide an approach to integrate 
low-level relational data with knowledge-level domain 
concepts and allows knowledge-level reasoning with 
clinical trial data. 

3 Discussion 
The gap between temporal pattern specification and exe-
cution is often significant in clinical trial systems. To help 
close this gap, we developed a system for formally speci-
fying temporal patterns and executing them in terms of 
this specification.  Our system takes temporal patterns that 
are encoded at the domain level at design time and trans-
lates them into an executable form. At run time these pat-
terns operate directly on trial data held in relational data-
bases. The system uses OWL to provide a uniform knowl-
edge model that integrates the temporal representations of 
relational data with the domain-specific semantics of the 
temporal patterns used to reason with it. We used SWRL 
rules written in terms of concepts in this model to express 
patterns within the tracking application.  We are using this 
system in the development of a visit and specimen track-
ing application for the Immune Tolerance Network. 
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Abstract 
This paper presents the more recent version of 
Tempo, a framework for the definition, genera-
tion and execution of data processing compo-
nents combining one ore more pipelines of de-
fault/custom modules assembled according to a 
specific meta-model. Although it has been ini-
tially tested in the medical field, Tempo is con-
ceived as a general purpose framework.  

1 Introduction 
Nowadays, many application domains (financial, scien-
tific, medical and so on) require the collection and proc-
essing of huge quantities of temporal data for different 
purposes. In past literature several tools for temporal data 
processing have been described [Augusto, 2005], [Boaz 
and Shahar, 2005], [Hunter, 2006]. The difficulty in iden-
tifying universal procedures for analyzing temporal data is 
due to their very different characteristics requiring the 
adoption of specific techniques, customized on the basis 
of the context and on the goals of the analysis. Moreover, 
very frequently, in order to make the inspection and the 
processing of temporal information easier and more effi-
cient, it is useful to transform raw temporal data into se-
ries of patterns that summarize their evolution. In the fol-
lowing we will present Tempo, a general purpose frame-
work for the definition of components in which different 
kind of reusable blocks can be assembled into pipelines or 
combination of pipelines. Each block wraps data filtering 
or other data processing/visualization algorithms. Tempo 
already includes a set of reusable blocks for data filtering 
and temporal patterns extraction based on the artificial 
intelligence technique named Temporal Abstractions 
(TAs) [Shahar, 1997], but new algorithms embedded into 
custom modules can be added to the provided library as 
plug-ins. The paper describes the latest Tempo release 
which includes new kind of blocks to be combined into 
components as will be better explained through an exam-
ple of application of Tempo to a medical context. 

2 The Tempo Model 
Our effort within Tempo project has been to propose a 
data processing model sufficiently flexible and extendible 
to be applied to different kind of data and contexts.  

Tempo components are build around the pipeline concept 
as already described in [Ciccarese and Larizza. 2006]. The 
pipeline can be composed by different kind of blocks: 
- Filters: which give an output defined within the same 
metric space of the input. Example can be given by blocks 
embedding a filtering of the outliers in a time series as 
well as noise reduction algorithm for images; 
- Transformers: in which the output metric space is dif-
ferent from the input one. Examples can be a mechanism 
for qualitative abstraction, defined as quantitative data 
mapping into symbolic values, as well as the transforma-
tion at a different colour depth of an image. 
- Boxes: blocks embedding a sub-pipeline, thus, a series 
of blocks. This is particularly useful for fostering reuse 
not only of blocks, but also of already defined sequences 
of blocks or pipelines. 
A descriptor belonging to each block explains which data 
the block can accept as input and which data can provide 
as output, as well as the set of accepted/needed parame-
ters. A new feature of Tempo is the capability of process-
ing multiple data streams by means of another kind of 
blocks: 
- Aggregtors (see Figure 1) that accept as input the data 
coming from two different pipelines and give as output a 
single data stream derived from the application of an op-
erator tuned, as usual,  through a set of parameters. 
 
 
 

 
 
Figure 1. The Aggregator block which implements an opera-
tor through a parameterization in P. 

 
When pipelines or pipelines aggregations have been de-
fined, they can be transformed into Tempo Components 
that represent complete data processing elements. A Com-
ponent, when loaded by the Tempo engine, is able to fetch 
data to feed and run the pipeline and store its results. This 
is possible by adding to the pipeline two further blocks: 
- Generators: that provide the input to the pipeline out 
of binary data (xml, images, text, html, zip) or other kind 
of sources such as specific tables in a relational database; 
- Serializers: that represent the end of the pipeline and 
transform the pipeline output stream into data in different 
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binary formats (xml, images, text, html, zip, pdf) or into 
tables of a relational database. 
Moreover, in order to be able to inspect data flowing from 
one block to another of the component, it has been defined 
the concept of  
- Inspectors: that provide numeric or graphical views 
of the data flowing in the pipeline and of the performed 
abstractions. These blocks don’t perform any filtering nor 
transformation of data, but simply generate a view of the 
pipeline content.  

3 The Core Modules and Applications 

Tempo includes a library of reusable blocks that can be 
assembled to define processing components customized 
according to the needs. They provide some standard filter-
ing algorithms and a set of mechanisms for the temporal 
patterns detection (as transformers or aggregators) per-
formed through TAs. When executing a component, its 
input contains all the parameters needed for the computa-
tion (including the configuration setup of Generators and 
Serializers).  
The components generated through the Tempo framework 
have been already integrated into different applications 
both under the form of java libraries and web services. 
Libraries have been already integrated in a case-based 
retrieval system to support the treatment of end stage renal 
failure patients [Montani et al., 2006] and in a general 
purpose web application. Web services have been adopted 
in the Guideline Management System belonging to the 
Guide project [Ciccarese et al. 2005]. 
 

 
Figure 2. A Tempo component example. 

 
In order to explain the structure of the components let’s 
consider as example the detection of the following pat-
tern: “heart rate increase for at least 4 minutes immedi-
ately followed by stationary heart rate lasting at least 3 
minutes”. To detect such pattern it is necessary to define 
two pipelines and an Aggregator which will be managed 
by the purposely deployed Tempo component depicted in 
Figure 2. According to such figure, both pipelines A (de-
tection of stationary heart rate lasting at least 3 minutes) 
and B (detection of heart rate increase for at least 4 min-
utes) accept a time series and combine a Transformer 
(Stationary and Trend Abstractors respectively) and a 

Filter for short episodes removal. Aggregator C, imple-
menting a Complex TA [Ciccarese and Larizza. 2006], 
accepts two interval series (the output of pipelines A and 
B) and provides the tuples of intervals related through the 
chosen Allen temporal operator (in this case the MEETS 
operator to detect the output patterns of pipeline A imme-
diately after the output patterns of pipeline B). The final 
structure of the component is depicted in the bottom of 
Figure 2. By changing the configuration of the FileReader 
and the FileWriter, it is possible to run the same compo-
nent on different data sets and obtain different kinds of 
output. 

4 Conclusions 
The paper describes the new release of the Tempo frame-
work for temporal data processing and abstractions. The 
added value of its architecture are the possibility of com-
posing the data analysis procedures as sequences or com-
binations of building blocks and the possibility of enrich-
ing the available library embedding custom algorithms in 
new modules developed by third parties through the pro-
vided Tempo API. Current version is going to include a 
graphical tool for a fast definition, validation and deploy-
ment of own components.  
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Abstract 
Mining large clinical databases often includes 
exploration of temporal data. For example, in 
liver transplantation, where parameters are ob-
tained from continuously monitored patients, a 
researcher might be interested in patients that ex-
hibit an unusual pattern of potential complica-
tions of the transplanted organ, each following a 
typical pattern in time. Standard query languages 
like SQL are not well suited for this kind of re-
search because of an insufficient time model. A 
very flexible approach is Knowledge-based 
Temporal Abstraction, which has been imple-
mented in a number of proprietary systems. Here 
time-stamped data points are transformed into an 
interval-based representation that can utilize, 
e.g., Allen’s temporal relationships. For in-
creased availability in clinical research, we ex-
tended the knowledge-based temporal abstraction 
framework by creating an open-source platform, 
SPOT. It supports the R statistical packages and 
knowledge representation standards (OWL, 
SWRL) using the open source Semantic Web 
tool Protégé-OWL.  

1 Introduction 
Modern researchers in medicine have access to large 
clinical databases that have become more readily available 
recently. One important aspect of data mining those re-
sources is the exploration of temporal data. For example, 
in liver transplantation, where a wealth of parameters is 
obtained from continuously monitored patients, a re-
searcher might be interested to select patients or patient 
episodes that exhibit an unusual pattern of potential com-
plications of the transplanted organ, each following a 
typical pattern in time. Standard query languages like 
SQL are not well suited for this kind of research because 
of an insufficient time model. A very flexible approach is 
Knowledge-based Temporal Abstraction (KBTA), which 
has been implemented in a number of proprietary systems. 
Here time-stamped data points are transformed into an 
interval-based representation that can utilize, e.g., Allen’s 
approach of temporal relationships [Augusto, 2005]. To 
make KBTA more readily available for clinical research, 
we developed SPOT, an implementation using open 

source and standardized tools: the Web Ontology Lan-
guage (OWL; http://www.w3.org/TR/owl-
features), the Semantic Web Rule Language (SWRL; 
http://www.daml.org/2003/11/swrl), Protégé 
plug-ins; http://protege.stanford.edu/, and 
open source statistical software (R; http://www.r-
project.org/). 

1.1 Medical Example 
Liver transplantation is a complex and challenging surgi-
cal procedure that is followed by a complex intensive care 
and clinical monitoring schedule. Potential hepatic com-
plications can be acute or chronic, each following a typi-
cal pattern in time. For instance, “acute rejection” can be 
characterized by increasing AST and ALT (liver enzymes) 
values, which decrease as soon as the rejection therapy is 
started. If there is no response to the therapy, it is not con-
sidered rejection. The phase with increasing enzymes may 
vary in length and range of values, or even only one en-
zyme may be elevated, same for the phase of decreasing 
values, but still the time pattern holds. In this example a 
few typical issues are addressed. First, clinical data come 
with different time granularities, hourly, daily, monthly or 
yearly. Second, clinical concepts can be expressed in 
terms of phases or intervals, e.g. increasing or decreasing 
enzymes, rejection therapy over 3 days, which can be con-
secutive or overlapping, and establish a typical pattern in 
time. Third, it is not so much single parameter values but 
the relationship of intervals that establishes the clinical 
concept. These aspects are captured in the valid time 
model as used in temporal database research and in tem-
poral abstraction.  

2 Knowledge Based Temporal Abstraction 
KBTA is a comprehensive approach to deal with time-
oriented data in medicine. A functional approach is used 
that maps raw data into higher-level concepts like “states” 
(e.g. peak, rejection therapy) or “trends” (e.g. increasing, 
decreasing). The goal is to represent complex medical 
concepts by these primitives using time relationships. 
[Shahar and Musen, 1996] introduce the KBTA method as 
a formal model of input and output entities, their relations, 
and the domain-specific properties that are associated with 
these entities - called the KBTA ontology. Shahar and 
Musen describe four different output types: state, gradient, 
rate, and pattern abstraction. States could be low or high 
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bilirubin levels of the transplanted liver, gradients increas-
ing or decreasing enzymes, rates could be slow or fast, 
and a pattern periodic.  

There are different implementations of the KBTA 
method all over the world. Almost all of them focus on 
describing individual patient courses for clinical therapeu-
tic purposes. An overview on current implementations is 
found in [Augusto, 2005].  

3 SPOT – Architecture and Implementation 

 
Fig. 1. The SPOT (S – Protégé – OWL/SWRL – Temporal Ab-
straction) architecture.  

An overview over the SPOT architecture is depicted in 
figure 1. The researcher (user) can define clinical con-
cepts, e.g., rejection, and then search for patients or epi-
sodes with that concept in the clinical database. Two steps 
are necessary to accomplish this: Training the system to 
learn concepts from a subset of the clinical database, and 
searching for the learned concepts in the entire database. 
The user has to perform the following tasks in order to 
train the system: Estimation of intervals from a learning 
sample, e.g., learning thresholds for a running average of 
the ALT parameter values to model an “increasing ALT” 
interval, (implemented in S), building of high level con-
cepts (Temporal Abstraction) (implemented in Pro-
tégé/OWL/SWRL), and validation of the generated inter-
vals (implemented in S). The user might go through that 
process several times until the classification error for the 
clinical concepts he/she models is sufficiently small. Ad-
justments can be made by changing thresholds or adding 
additional constraints to the SWRL concepts. Finally, the 
learned abstractions are submitted to the original database. 

Besides using the time stamped data from the clinical 
database, the user needs to identify intervals, only one 
parameter at a time (e.g., AST). Several different non-
overlapping intervals are allowed, i.e. mark as “increas-
ing”, “decreasing”, “high”, etc. for AST. The interval 
value is attached to the time-stamped parameter value.  

SPOT supports the statistical package R and knowledge 
representation standards using the open source Semantic 
Web tool Protégé-OWL. Ontologies are used in OWL to 
formally specify meaning of annotations by providing a 
vocabulary of terms. New terms can be formed by com-
bining existing ones. SWRL allows users to write rules 
that can be expressed in terms of OWL concepts and that 
can reason about OWL individuals. In the liver transplan-

tation application, we use a temporal ontology implement-
ing the valid time model, and a hierarchical patient ontol-
ogy with classes: Patient (has) Procedure (has) Inter-
val/Event (has) Valid Time (see figure 2 for an example).  

S is an interactive environment for data analysis and at 
the same time a statistical programming language. R is an 
open source implementation of S. The Protégé OWL plug-
in allows to building ontologies backed by OWL code. 

Patient(?p) 
�

hasProcedure(?p, ?proc)  
�
 

   hasTest(?proc, ?test)  
�
 

   hasTestName(?test, ?testName)  
�
 

   swrlb:equal(?testName, "BILIRUBIN") 
�
 

   HasOutputType(?test, ?testType)  
�
 

   swrlb:equal(?testType, "INCREASE")  
�
 

   temporal:hasValidTime(?test, ?tVT)  
�
 

hasTest(?proc, ?test2) 
�
 

hasTestName(?test2, ?testName2)  
�
 

swrlb:equal(?testName2, "BILIRUBIN") 
�
 

HasOutputType(?test2, ?testType2)  
�
 

swrlb:equal(?testType2, "HIGH")  
�
 

temporal:hasValidTime(?test2, ?tVT2) 
�
 

   temporal:overlaps(?tVT, ?tVT2, "days")
�
 

temporal:hasStartTime(?tVT, ?stTime)  
�
 

temporal:hasFinishTime(?tVT, ?fiTime)
�
  

swrlx:createOWLThing(?hbVT, ?proc) 
->temporal:ValidPeriod(?hbVT) 

�
 

temporal:hasStartTime(?hbVT,?stTime)
�
  

temporal:hasFinishTime(?hbVT,?fiTime)
�
 

   hasHighBiliIncrease(?proc, ?hbVT) 

Figure 2. SWRL Code for the concept of “High and Increasing 
Bilirubin” (?tVT, ?tVT2, and ?hbVT are interval instances) 

4 Discussion and Future Aspects 
The reported research shows that SPOT is a feasible ap-
proach to use open source and standards based software. 
One challenge is the “translation” of logically represented 
concepts back into the statistical environment (R). Cur-
rently, concept intervals are passed from OWL/SWRL 
through the Java interface and “relearned” through a clas-
sification tool in R, e.g., discriminant analysis. The next 
step is the development of a GUI using the R and Protégé 
APIs for easy access and manipulation by the user.   
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Abstract 
Lupus nephritis is one of the most severe com-
plications of Systemic Lupus Erythematosus 
(SLE), and it is characterized by acute episodes 
known as flares. Within the available tests for the 
assessment of disease activity, the evaluation of 
antiC1q antibodies was recently found to be the 
most powerful to confirm flare diagnosis. In this 
paper we evaluate whether it is possible to ex-
tract temporal rules to relate four clinical pa-
rameters, used to monitor the disease activity, to 
the occurrence of renal flares. Such rules could 
be very useful in clinical practice in order to pre-
vent acute episodes. To this aim, we applied an 
algorithm for temporal association rules extrac-
tion on a data set of 228 patients affected by Lu-
pus nephritis and periodically monitored at our 
two hospitals in Milan, Italy. From the extracted 
rules antiC1q results to be the most important pa-
rameter to indicate the risk of renal flare. 

1 Introduction 
Lupus nephritis is one of the most frequent and severe 
complications of Systemic Lupus Erythematosus (SLE). 
SLE is a chronic autoimmune disease, most common in 
women of childbearing age, which involves several parts 
of the body, including a number of organs and systems. 
Lupus nephritis course is characterized by acute episodes 
of illness (known as flares) and remissions, which are 
usually induced by the immunosuppressive therapy. In 
[Moroni et al.,1996], flares were shown to be predictive 
of negative prognosis of the disease, since they are corre-
lated with the development of chronic renal failure, which 
can ultimately lead the patient to death.  
In clinical practice, flare diagnosis is typically based on 
some specific criteria, which usually include: 30% in-
crease of plasmatic creatinine, proteinuria manifestation 
or worsening  and/or hematuria manifestation or worsen-
ing. Moreover, a number of biohumoral tests are available 
to assess disease activity, among which we recall: C3 and 
C4 complement fractions, anti-DNA antibodies and an-
tiC1q antibodies. Despite the fact that C3, C4 and anti-
DNA are the most used tests to determine disease activity, 
several studies demonstrated they are not always reliable 
[Moroni et al., 2001]; some patients were in fact found to 

show flares even in the presence of normal test values, 
and vice versa. Rather interesting, in [Moroni et al., 2001] 
we showed that antiC1q turns out to be the most reliable 
test to confirm the presence of a flare when compared to 
C3, C4 and anti-DNA. 
Besides flare diagnosis, also flare prediction is of crucial 
importance in clinical practice, in order to prevent acute 
renal episodes in SLE patients. In this paper we will 
evaluate whether it is possible to extract temporal rules to 
relate four parameters used for disease activity monitoring 
to the occurrence of renal flares. In particular, we will 
evaluate whether variations in C3, C4, anti-DNA and an-
tiC1q values during periodical clinical evaluations are 
frequently temporally related to the occurrence of flares. 

2 Material and Methods 

2.1 Data  
In this work we consider data coming from a group of 228 
patients, all affected by Lupus nephritis at different stages 
and undergoing periodical, albeit not regular, clinical 
monitoring. For each patient, a set of five time series had 
been collected, four of them recording the parameters 
values (C3, C4, anti-DNA, antiC1q), and the other one 
describing renal disease status (complete remission, par-
tial remission, acute flare, post-flare activity) at each 
clinical evaluation. The length of time series may vary 
among patients, depending on the number of clinical 
checkups each one underwent. Patients with only one 
measurement were eliminated from the data set, giving 
origin to a final set of 172 patients, with an average num-
ber of 9 measurements per patient. 

2.2 Temporal Rules for Renal Flare Prediction 
In order to establish whether a variation in one (or more) 
of the four considered parameters could help clinicians in 
the prediction of an acute renal episode, it is interesting to 
evaluate if specific variations into the variables time 
course are frequently temporally related to the occurrence 
of flares; to this aim, we chose to resort to an algorithm 
for temporal rules extraction, which is able to deal with 
the search for relationships between complex qualitative 
patterns detected in time series data [Sacchi et al., 2007].  
The proposed method enables the user to define patterns 
of interest, e.g. an increase in a variable lasting for at least 

Allan Tucker and Carlo Combi (chairs) IDAMAP 2007 workshop 97



three measurements, thus synthesizing the domain knowl-
edge about a specific process; it is therefore well-suited to 
deal with the kind of clinical problem at hand. Interesting 
patterns can be conveniently extracted from the rough 
quantitative data through the formalism of knowledge-
based Temporal Abstractions (TAs) [Shahar, 1997], a 
technique which allows the description of temporal data in 
terms of a qualitative and interval-based representation. 
From a clinical viewpoint, it was in our case interesting to 
look for temporal relationships between renal disease ac-
tivity and an increase or a shift from normal to pathologi-
cal values in one of the monitored parameters.  
To represent shifts from normal to pathological values all 
the variables were described in terms of state TAs, while 
to detect an increase in the parameters we resorted to a 
trend temporal abstraction representation of the four 
monitored variables. Starting from this TA representation, 
we then run on our data an algorithm for the extraction of 
temporal rules expressing precedence relationships be-
tween the detected temporal patterns. Denoting for in-
stance normal values with N and pathological values with 
P, an example of such a rule could be “A shift from N to P 
in antiC1q PRECEDES a renal flare”, where PRECEDES 
indicates the temporal operator which relates the antece-
dent to the consequent of the rule. The exploited algo-
rithm implements a search strategy based on an Apriori-
like technique, where the quality of a rule is assessed in 
terms of confidence and support, whose definition had 
been properly adapted to deal with the temporal domain 
[Bellazzi et al., 2005].  

3 Results and Discussion 
Table 1 shows the results obtained by running the rules 
extraction algorithm on our data set, fixing a threshold for 
the confidence min_conf = 0.4 and for the support 
min_sup = 0.05. In the rules, which are detailed in the 
following, pi indicates any of the four monitored parame-
ters: 
− “A shift from N to P in pi PRECEDES a renal flare” 
− “An increase in pi PRECEDES a renal flare” 
− “A remission PRECEDES a shift from P to N in pi” 
As it can be observed, in the first two rules we want to 
investigate if a variation in one of the parameters is found 
to frequently precede a renal flare, while in the third one 
we evaluate whether a shift from pathological to normal 
values in a variable frequently occurs after a renal remis-
sion.  
As it can be noticed from the results obtained, for any of 
the considered rules, the parameter that shows the best 
performance is antiC1q. Namely, when the value of an-
tiC1q shifts from normal to pathological ranges in two 
consecutive evaluations, in the 55% of the cases a renal 
flare is diagnosed in one of the following controls. More-
over, an increase in the value for antiC1q predicts the oc-
currence of a renal flare in the 51% of the cases. Eventu-
ally, in the 50% of the cases, antiC1q was found to go 
back to normal values at the achievement of renal remis-
sion. No such a behavior was observed for the other pa-
rameters, since no rules were extracted by the algorithm in 
the other cases. 

These results suggest that antiC1q, besides being an im-
portant parameter to confirm flare diagnosis, results also 
an indicator for flare prediction. Even if confidence and 
support assume relatively small values, they are consid-
ered significant by the medical experts. In clinical prac-
tice, patients verifying the obtained rules will thus un-
dergo more frequent monitoring of the biochemical pa-
rameters related to flares. 

Rule: A shift from N to P in pi PRECEDES a renal flare 
Antecedent Consequent Conf (95%CI) Support 
C4 Renal Flare 0.42   (0.35-0.49) 0.2 
anti-DNA Renal Flare 0.44   (0.36-0.52) 0.24 
antiC1q Renal Flare 0.55   (0.46-0.64) 0.17 
Rule: An increase in pi PRECEDES a renal flare 
Antecedent Consequent Conf (95%CI) Support 
anti-DNA Renal Flare 0.48   (0.38-0.58) 0.16 
antiC1q Renal Flare 0.51   (0.41-0.61) 0.2 
Rule: A remission PRECEDES a shift from P to N in pi
Antecedent Consequent Conf (95%CI) Support 
Remission antiC1q 0.5   (0.37-0.63) 0.08 

Table 1. Rules extracted on the Lupus nephritis data set.  

4 Conclusions  
In this paper we presented an analysis on the extraction of 
temporal rules to determine whether it is possible to pre-
dict acute renal episodes in Lupus nephritis patients, on 
the basis of four clinical monitoring parameters. We ob-
tained promising results especially on one of the variables, 
the antiC1q. Future work will be directed to the inference 
of the expected time of the next acute event given varia-
tions in the monitoring parameters. 
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