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Welcome 
Welcome to IDAMAP 2009, the fourteenth workshop on 
Intelligent Data Analysis in bioMedicine and Pharmacol-
ogy, held this year in conjunction with the 12th Confe-
rence on Artificial Intelligence in Medicine in Verona, 
Italy. 
 
IDAMAP is devoted to computational methods for data 
analysis in medicine, biology and pharmacology that 
somehow exploit knowledge of the problem domain at 
different stages of the data-analysis and model-building 
process and present results of analysis in the form com-
municable to domain experts. Typical methods include 
data visualization and exploration, machine learning, and 
data mining. 
 
Gathering in an informal setting, researchers and practi-
tioners have the opportunity to meet and discuss selected 
technical topics in an atmosphere which fosters an active 
exchange of ideas. The workshop is intended to be a ge-
nuinely interactive event, thus ample time is allotted for 
general discussion of papers, tools and problem descrip-
tions. Problem description is a new category of workshop 
contribution that we introduced with the hope to draw new 
research ideas and applications. 
 
Congratulations to Lan Umek, Minca Mramor and Blaz 
Zupan (supervisor) for winning the student challenge. 

Program 
This year’s selection of eight long papers, four short pa-
pers, three tool presentations and two problem descrip-
tions cover the following broad topics: 
 

- Biological Data Mining and Data Interfaces  
- Networks and Visualization 
- Classification 
- Machine Learning in Medical Applications 
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thank those who will be presenting at the workshop. 
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IDAMAP 2009 Program 
Sunday, July 19, 2009 

 
 

Morning Session 

9:00 Opening of IDAMAP workshop 

Lucia Sacchi, Tomaz Curk i 

9:15 Invited presentation 

Mining relational databases 
Hendrik Blockeel 1 

10:00 Paper session: Biological Data Mining and Data Interfaces (Chair: Riccardo Bellazzi) 

��� Does replication groups scoring reduce false positive rate in SNP interaction  
discovery? 

Marko Toplak, Tomaz Curk, Janez Demsar, Blaz Zupan 3 

��� Symbolic Representations for Reasoning about Temporal Gene Profiles 
Marco Falda 9 

� dictyExpress: An explorative web-based interface to Dictyostelium discoideum gene 
expression database 

Gregor Rot, Anup Parikh, Tomaz Curk, Adam Kuspa, Gad Shaulsky, Blaz Zupan 15 

11:00 Break  

11:30 Paper session: Networks and Visualization (Chair: Ameen Abu-Hanna) 

��� Visualization of fragmented networks 
Miha Stajdohar, Minca Mramor, Blaz Zupan, Janez Demsar 17 

��� CNET: an algorithm for the inference of gene regulatory interactions from gene  
expression time series 

Francesco Sambo, Barbara Di Camillo, Marco Falda, Gianna Toffolo,  
Silvana Badaloni 23 

� Data representation and mining using multi-layer networks 
Lan Zagar, Miha Stajdohar, Janez Demsar, Blaz Zupan 29 

� Bayesian Network Wizard: a user-friendly software to learn Bayesian networks 
Fulvia Ferrazzi, Antonio De Donno, Riccardo Bellazzi 31 

� SNP2Net: a tool for gene-based predictive modeling in genome-wide  
association studies 

Joao V. Duarte, Angelo Nuzzo, Alberto Malovini, Annibale A. Puca,  
Riccardo Bellazzi 33 

13:00 Lunch  



Afternoon Session 

14:15 Student challenge: Knowledge extraction from the National Ambulatory 
Medical Care Survey (NAMCS) data 69 

� Subgroup discovery in data sets with multi-dimensional responses:  
application to a medical domain  

Lan Umek, Minca Mramor, supervisor: Blaz Zupan 71 

14:30 Paper session: Classification (Chair: Allan Tucker) 

��� Classification of ICU patients via temporal abstraction and temporal 
patterns mining 

Robert Moskovitch, Niels Peek, Yuval Shahar 35 

��� Ontology-based semantic similarity in the biomedical domain  
Montserrat Batet, David Sanchez, Aida Valls, Karina Gibert 41 

��� Schizophrenia classification using regions of interest in brain MRI 
Dong Seon Cheng, Manuele Bicego, Umberto Castellani, Stefania Cerruti, Marcella 
Bellani, Gianluca Rambaldelli, Manfredo Atzori, Paolo Brambilla, Vittorio Murino 47 

� Decision nomograms  
Janez Demsar, Aleksander Sadikov, Tanja Cufer 53 

16:00 Break  

16:20 Paper session: Machine Learning in Medical Applications (Chair: Niels Peek) 

��� Clustering of electronic medical records of MSRA patients  
Anna L. Buczak, Brian Feighner, Linda J. Moniz, Joseph Lombardo 55 

� Using pseudo time-series trajectories to explore disease regions in glaucoma 
Yuanxi Li, David Garway-Heath, Allan Tucker 61 

� Determining useful sensors for automatic recognition of activities of daily  
living in health smart home 

Francois Portet, Anthony Fleury, Michel Vacher, Norbert Noury 63 

� Personalized feedback based on automatic activity recognition from  
mixed-source raw sensor data 

Harm op den Akker, Val Jones, Hermie Hermens 65 

� Analyzing episodes of care in hospital and outpatient settings 
Kirk T Phillips 67 

17:55  Closing 

20:00  Dinner 
 
Timing of presentations (presentation + discussion) 

Long presentation (���): 20 + 5 minutes 
Short presentation (�): 10 + 5 minutes 
Tool demonstration (�): 8 + 2 minutes 
Problem description (�): 10 + 10 minutes 



Standard methods for data mining and statistical analysis typically assume data to 
be in a relatively simple "attribute-value" format. In practice, data are often stored 
in relational databases with a relatively complex structure: relevant information for 
an individual may be spread over multiple tables in the database, may consist of 
complex objects such as time series, etc. It is an open question how such diverse 
kinds of data can be integrated in an optimal way in the data mining process. In this 
talk I will discuss some of the challenges and how they can be addressed. The con-
cepts will be illustrated through an application of data mining in intensive care. 
 

Mining relational databases 

Hendrik Blockeel 
 

Katholieke Universiteit Leuven, Department of Computer Science, Belgium 
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands 
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Does replication groups scoring reduce false positive rate in SNP interaction
discovery?

Marko Toplak1, Tomaž Curk1, Janez Demšar1, Blaž Zupan1,2

(1) Faculty of Computer and Information Science, (2) Dept. of Molecular and Human Genetics,
University of Ljubljana, Slovenia Baylor College of Medicine, Houston, TX, USA

Abstract
Inference of single nucleotide polymorphism
(SNP) interactions from experimental data can in
theory help us to reveal biological mechanisms to
non-Mendelian diseases. However, practical as-
pects of such analysis face many problems. SNP
arrays typically record data on hundreds of thou-
sands of SNPs, with only hundreds of samples
being recorded in a typical experimental study.
Computational interaction analysis would typi-
cally test over a billion hypotheses on a small
number of samples, possibly leading to very high
false positive rates. Recently, a group of authors
proposed that instead of scoring interactions on
entire data set, scoring them on subsets of data
samples (so-called replication groups) and then
considering the lowest obtained score would lead
to reduced false positive rate. In this paper, we
investigate if this is so. The results on synthetic
and false interactions-imputed experimental data
sets indicate that the use of replication groups
does not reduce false positive rate, and in this
respect behaves similar or worse to the standard
interaction scoring that uses the entire data set di-
rectly.

1 Introduction
The onset of many common chronic diseases is governed
by genetic factors that do not follow “Mendelian” or “sin-
gle gene” patterns [Smith et al., 2005]. Such diseases in-
clude hypertension, diabetes, various cancers, Alzheimer’s
disease, heart disease, and Parkinson’s disease. Genet-
ics governing the susceptibility of these diseases remains
largely unknown. The onset of complex diseases may be
triggered by polymorphisms across the genome whose ef-
fects do not simply (linearly) sum up but instead inter-
act in complex, non-linear way. The field that studies
such interplay of gene interactions is called epistasis anal-
ysis [Moore, 2005].

A number of computational and scoring methods that
can facilitate the detection of gene-gene interactions from
data on single nucleotide polymorphism (SNP) have re-
cently been proposed. These methods operate on a set of
typically several hundreds to several thousands of patients
(with their diagnosis) and controls, each characterized by

whole-genome SNP profile consisting of measurements of
several hundred thousands SNPs. The classification prob-
lem is often binary, studying the susceptibility of a par-
ticular disease or stage of the disease versus the control
group. Computational methods that can analyze such data
and report on SNP interactions include Multifactor Dimen-
sionality Reduction (MDR) [Hahn et al., 2003], estima-
tion of interactions by logistic regression modeling [Park
and Hastie, 2008], and methods that stem from informa-
tion theory and that measure the interaction gain [Jakulin
and Bratko, 2003], also known as synergy [Anastassiou,
2007].

Finding interacting combinations of SNPs requires an
evaluation of all candidate combinations, as – by definition
– each SNP from the interacting set may hold little or no
information about the outcome. This leads to a combinato-
rial explosion in hypothesis formation and testing. Search-
ing for interacting SNP pairs using the data from SNP chips
with a million probes means scoring and ranking of about
5 · 1011 hypotheses – one for each candidate pair. Because
of a limited number of samples in such genomic studies,
the number of spurious results can be overwhelming. As
consequent experimental validation of hypotheses is both
labor intensive and expensive, we would gladly exchange
some statistical power for a lower type I error.

We can approach the above problem with stricter sig-
nificance thresholds, perhaps by adopting false discovery
rate (FDR) controlling approaches [Reiner et al., 2003].
FDR offers a solution to multiple testing problem by con-
trolling the proportion of erroneous significant results. It is
more relaxed than family-wise type I error rate. A recently
proposed scoring method called Hypothesis Free Clinical
Cloning (HFCC) [Gayan et al., 2008] approaches the same
problem differently. It uses replication groups for feature
scoring. The core idea is to partition the available samples
into non-overlapping subsets and aggregating the results by
proposing only those interacting SNPs that have been con-
sistently found across the subsets. Gayan et al. hypothe-
size that this approach may allow identification of frequent
and consistent epistatic effects at the expense of lower test
power, and claim to improve the filtering of false positive
results at the expense of increasing false negative samples.
In the HFCC paper, the method is verified in a practical
study and while it shows promise in terms of predictions
found, it was not compared to any alternative method.

If HFCC indeed works as its authors proposed, it should
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have stirred up the community, and the core idea should
spread well beyond interaction analysis. Entire field of
whole-genome analysis, using SNP, transcriptome, pro-
teome or metabolome data suffers from the course of di-
mensionality and low samples to features ratio. Introduc-
tion and use of replication groups could change the way we
approach hypothesis formation and ranking for any feature
scoring method, regardless of it being a standard feature
selection or one involving feature synthesis by constructive
induction.

In the study reported here, we wanted to verify if the
utility of replication groups indeed has the intended effect,
that is, it improves the performance of constructed mod-
els by the reduction of false positive predictions. To in-
vestigate this, we have compared HFCC with more tradi-
tional, straightforward approaches to interaction analysis.
Our goal was to assess to what degree HFCC avoids the
discovery of false positive interactions, and how it com-
pares in this respect to other techniques. We performed our
study on a set of simulated data and on several SNP data
sets from Gene Expression Omnibus [Barrett et al., 2007].

With our experimental results we were not able to con-
firm the hypothesis that replication groups efficiently fil-
ter false positive results. A simpler technique not using
replication groups is performing at least as well as replica-
tion group-based analysis. Quite surprisingly, using repli-
cation groups we consistently obtained more false positives
regardless of the cutoff point.

2 Methods
2.1 Feature scoring based on replication groups
The utility of replication groups requires the partitioning of
available samples into non-overlapping subgroups. Ideally,
groups should be of equal size and have the same class dis-
tribution. Candidate features are scored for each subgroup
independently and only interactions whose score on all sub-
groups exceeds a certain threshold are considered as rele-
vant. There are virtually no limitations to types of features
and scoring functions used. A feature can be either a sin-
gle gene or any combination of them. The only assumption
about the scoring function is that better features are scored
higher. Formally, scoring a feature a using replication pro-
ceeds as follows (Figure 1):

1. A set of data samples S is split into p independent sets
Si, where 0 ≤ i < p and Si ∩ Sj = ∅.

2. Scores for feature a on each of the subsets Si are com-
puted, yielding fa

i .
3. Given a threshold T , feature a is relevant if fa

i > T
for all 0 ≤ i < p or equivalently, feature a is relevant
if min0≤i<p fa

i > T .

The term
min

0≤i<p
fa

i

defines a feature score for feature a using p replication
groups. We can regard the procedure above as a newly con-
structed feature scoring method and can therefore evaluate
it as such.

The basic idea of replication groups is reminiscent to sta-
tistical meta-analysis, as using p replication groups is the

Figure 1: Replication groups-based feature scoring in-
volves three steps: (1) data partitioning, (2) assessment of
score fa

i for given feature a on each of individual data parti-
tions Si, and (3) computation of the final score fa, which is
the minimal score obtained across different data partitions.

same as using Wilkinson’s method of case p [Birnbaum,
1954]. Combining multiple independent tests of signifi-
cance, the core idea of replication groups, is believed to
be sensible only as a last resort – if underlying statistics or
data are unavailable [Birnbaum, 1954]. Replication groups
oppose this principle, since they combine multiple signif-
icance tests on data subsets when the whole data could be
used for analysis. Authors of [Gayan et al., 2008] seem
to be aware of this, since they acknowledge the replication
groups’ loss of power.

2.2 Experimental methodology
The usefulness of the replication group scoring was as-
sessed by analyzing the differences in distributions of false
positives. SNP interaction discovery results obtained by
using the replication group scoring technique were com-
pared to those obtained by scoring that did not use repli-
cation groups and assessed the interactions score directly,
from the entire training data set. Two interaction scoring
techniques, HFCC and interaction gain, were used.

For replication group scoring, the data with 541 samples
was partitioned to three non-overlapping subgroups in the
showcase practical study [Gayan et al., 2008]. Since our
data sets are smaller, including from 200 to 500 samples,
we have also tested the partitioning to two subgroups. The
partitioning was class-stratified and the sizes of resulting
groups differed for at most one sample.

Let us assume for the moment true interactions are
known. The scoring technique assigns interaction scores
to the pairs of SNPs. The quality of discrimination
between interacting and non-interacting pairs through-
out a whole set of scores can be measured as the area
under ROC curve (AUC) [Provost and Fawcett, 2001].
AUC score can be interpreted as the probability that the
method correctly discriminates between interacting and
non-interacting pairs [Hanley and McNeil, 1982]. Al-
though AUC scores provide valuable insight into the scor-
ing function’s quality, they are in essence averaged across
scores for all gene pairs.

SNP interaction studies are supposed to report on a small
number of most promising interaction pairs. Either pairs of
SNPs with scores exceeding a certain threshold or a fixed
number of top scored pairs are reported. Since such pairs
are usually in minority, they may not affect AUC scores
significantly. To complement AUC-based evaluation, we
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also counted number of false positives in a list of n best
candidate interactions, where n ranged from 1 to the num-
ber of all interactions on the data set. We report the results
graphically, depicting the dependency of false positives on
the number of considered best-scored SNP interactions.

False positives are clearly identifiable in our synthetic
data sets. For real SNP experimental data sets, however,
the true interactions are not known, but due to selective
changes we have made in the data, some of the false in-
teractions are known. We have based our analysis on this
particular data set, and counted an algorithm-proposed in-
teraction as a false one only if it belong to this particular
set.

All reported evaluation scores are averages over 50 repe-
titions (bootstrap sampling) for experimental SNP data sets
and 100 repetitions (generation of the entire data set using
different random seeds) for synthesized data sets.

2.3 Interaction scoring
Hypothesis Free Clinical Cloning
Hypothesis Free Clinical Cloning (HFCC) [Gayan et al.,
2008] is a complex suite of epistasis detection methods.
It enables scoring of individual genes and gene combina-
tions according to the selected genetic disease models [Li
and Reich, 2000] specifying high and low-risk locus com-
binations. It also features the use of replication groups and
different post-hoc filters. Scoring given pairs is simple.
Samples are split to two genotypic classes according to the
selected disease models. The difference between frequen-
cies of cases and controls in each of two genotypic classes
is evaluated with a Wald test Z statistic or a chi-squared
statistic with one degree of freedom, obtaining a score for
a gene pair and a disease model.

We used the binary version of HFCC software provided
as a supplement to [Gayan et al., 2008] with the same con-
figuration as described in HFCC article, performing ex-
haustive two-locus searches with nine simple disease mod-
els of types M1, M2 and M16 [Li and Reich, 2000] – mod-
els with only one high-risk two-locus combination. The
score of a given pair of genes was the highest score across
all disease models for that pair. All post-hoc filters were
disabled since any further post-processing could obscure
the effects of replication group technique. The software is
limited to 299 samples in groups with the same phenotype,
therefore it was not possible to analyze data sets with more
than 598 samples. Also, the size of the file holding inter-
mediate results can not exceed 2 gigabytes, limiting us to
data sets with at most 2000 genes.

Interaction gain
Jakulin and Bratko [2003] proposed interaction gain, a
measure for strength of attribute interactions based on in-
formation theory principles. The same measure also de-
scribed as bivariate synergy [Anastassiou, 2007]. Two
genes and a class variable are in interaction (scored
highly), if those two genes used simultaneously provide
more evidence about the class variable as opposed to
when used separately. Formally, interaction gain of at-
tributes X and Y with respect to class C is defined as
IntGainC(X, Y ) = GainC(X × Y ) − GainC(X) −
GainC(Y ), where GainC(X) denotes information gain of

BB Bb bb
AA 0 .10 0
Aa .10 0 .10
aa 0 .10 0

BB Bb bb
AA 0 0 .10
Aa 0 .05 0
aa .10 0 0

Figure 2: Two disease penetrance models. First model
specifies that 10% of patients with gene combinations
AABb, AaBB, Aabb or aaBb and none of the patients with
remaining genotypes have the disease.

attribute X with respect to class C and X × Y a Cartesian
product of attributes X and Y .

We used Orange data mining suite [Demšar et al., 2004]
to compute interactions gains. Prior to computation of in-
teraction gain of a pair of genes, samples with either gene’s
value missing were removed.

3 Data sets
To measure the distribution of false positives, we needed
“gold standard” data sets where we know which are the
true interactions. Two kinds of data sets were used in our
analysis: synthetic data sets and SNP data from actual ex-
perimental studies. As synthetic data was generated using
known interaction models, the true and false interactions
were known. For the SNP data from experimental stud-
ies, neither true nor false interactions are known. To enable
their use, we here propose a technique which is based on
data permutation resulting in a set of SNP pairs for which
we know that there should not be any interactions.

3.1 Synthetic data sets
The synthetic data sets were generated according to six
two-SNP epistasis models and procedures to simulate four
types of noise (5% genotyping error, 5% missing data,
50% phenocopy, 50% genetic heterogeneity) as proposed
in [Ritchie et al., 2003]. The models specify disease pen-
etrances for all combinations of polymorphisms for a pair
of genes. Two of them are shown on Figure 2. We used
the same models to simulate SNP interactions. In contrast
to [Ritchie et al., 2003], where there was only one interac-
tions in each data set, out data sets included multiple inter-
actions.

Each interaction in synthetic data sets was defined by a
pair of SNPs. Each SNP was involved in at most one in-
teraction, thereby limiting the number of interactions in the
data set to half of the number of SNPs. In case of genetic
heterogeneity an interaction was defined by two pairs of
SNPs, as it comprises two weaker interactions, also limit-
ing the maximum number of interactions to a quarter of the
number of SNPs. Genes not involved in an interaction were
generated to follow Hardy-Weinberg equilibrium with ma-
jor allele frequencies randomly chosen between 0.5, 0.75
and 0.9.

We generated two types of data sets, each comprising
200 samples in each (case/control) class:

1. 100 genes with four times all six types of epistasis
models, resulting in 24 interactions (model1).

2. 500 genes with ten times all six types of epistatic mod-
els, resulting in 60 interactions (model2).
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A brief description of noise types follows. For missing
data noise (mN), simply 5% randomly chosen values for
each SNP were set to missing. Genotyping error (gN) was
simulated using directed-error model [Akey et al., 2001],
modeling genotyping errors as consistent overrepresenta-
tion of one allele. For phenocopies (pN), 50% of affected
individuals had a genotype consistent with low disease risk,
simulating disease occurrences caused by environmental
factors. Genetic heterogeneity (gN) was modeled with two
two-locus combinations, where half of the affected individ-
uals had one high risk combination, whereas the other half
had another high risk combination.

We have generated six data sets of each type (model1 or
model2), with different noise combinations: one without
noise (WN), four with each of four noise types (one of mN,
gN, pN or gN) and one including noise of all types (AN).
In total, twelve data sets were synthesized in this way. The
name of each data set name is composed out of the data set
type and noise used. For example, synthetic data set on 500
genes with 5% genotyping error is named model2gN.

In synthetic data sets we are always certain whether a
pair of genes interacts for data sets generated as described.
Since SNP interactions were created independently, these
are the only true interactions in the data sets. Still, due to
noise, high number of candidate pairs and relatively low
number of samples, interaction scoring methods can score
other non-interacting SNP pairs highly, leading to false
positive discoveries.

3.2 SNP data from Gene Expression Omnibus
We have downloaded a set of SNP data sets from Gene
Expression Omnibus [Barrett et al., 2007], for which we
requested to contain more than 200 samples, which could
be split into two similarly sized groups based on sample
subgroup annotations (class). We found five such data sets
with following accession numbers:
• GSE6754 [Consortium et al., 2007] describing fami-

lies with two individuals affected by autism spectrum
disorders. Sample’s status (affected / unaffected) was
used as a class. Due to the computational limitations
of HFCC software only first 2000 SNPs were consid-
ered and a (stratified) sample of 500 reading was used,
including 292 affected and 208 unaffected samples.
• GSE8054 [Tan et al., 2008] comprising 901 SNPs for

each of the 121 cancerous and 87 control samples.
• GSE8055 [Tan et al., 2008] comprising 1189 SNPs

for each of the 141 cancerous and 89 control samples.
• GSE7226 [Friedman et al., 2006] with platform desig-

nation GPL2004, comprising 102 samples from men-
tally retarded children and 213 samples from their un-
affected siblings or parents. Only the first 2000 SNPs
were considered.
• GSE7226 [Friedman et al., 2006] with platform desig-

nation GPL2005, comprising 103 samples from men-
tally retarded children and 210 samples from their un-
affected siblings or parents. Only the first 2000 SNPs
were considered.

True SNP interactions that could be inferred from these
data sets are now known. To enable their use in our study,

we deliberately destroyed some interactions by random
data permutations. For this, one half of the SNPs were ran-
domly chosen and their values were randomly permuted
between samples. SNP pairs including at least one SNP
with permuted values were afterwords regarded as interac-
tions that were not supposed to be inferred from the data,
and constituted the set of potential false positive discover-
ies.

4 Results and discussion
Our goal was to find out whether scoring by replication
groups reduces the discovery of false positive SNP interac-
tions as inferred from twelve synthetic and five experimen-
tal SNP data sets. We report AUC scores for each com-
bination of data set and scoring method, where interaction
scoring was done on entire data set (no replication groups
used) or was estimated using either two or three replication
groups (Table 1). With both interaction gain and HFCC
the AUC scores decreased with increasing number of repli-
cation groups. The sole exception is the gse8055 data set
scored with interaction gain, but the difference is slight.
Notice that AUC scores for non-synthetic data sets are very
low due to a low number of interactions among the non-
permuted genes.

Each graph on Figure 3 depicts a single base scoring
method used either on the entire data set directly or with
2 or 3 replication groups. The count of false positives with
respect to a number of selected best candidates is shown,
lower counts being better. The use of replication groups in-
creased the proportion of false positive results for all com-
binations of tested data sets and base scoring methods at
any given cutoff. Also, two replication groups consistently
performed better than three, hinting that increasing their
number would not lead to better results. We were not able
to find a single data set where replication groups improved
the filtering of false positive results. In fact, using replica-
tion groups seems to increase the false positive rate.

The use of replication groups affected results based on
interaction gain more than those based on HFCC scoring,
both in terms of AUC and counts of false positives. For syn-
thetic data, AUC scores using interaction gain on the whole
data set directly are consistently better than those of HFCC
scoring. Since replication groups decrease AUC scores of
interaction gain scoring more than those of HFCC, with
three replication groups the role is reversed – HFCC per-
formed better. This might indicate that interaction gain is
more sensitive to smaller numbers of samples. Interest-
ingly, the HFCC achieved better AUC scores on experi-
mental data regardless of the number of subgroups used.
The reasons for bad performance of interaction gain on data
from GEO are unclear.

5 Conclusion
Finding possible SNP interactions from data sets that in-
clude from several thousands to several hundred of thou-
sands SNPs and only several hundreds of cases seems elu-
sive. The approach which tests all pairs of SNPs is com-
putationally feasible, but generates vast number of features
and can, due to noise and vast number of hypothesis tested,
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Table 1: AUC scores on both synthetic and data sets from GEO for scoring from entire data set (EDS) or replication groups
scoring using two (2RG) or three groups (3RG).

interaction gain EDS 2RG 3RG
model1WN 1.000 0.993 0.967
model1gN 0.998 0.980 0.941
model1mN 1.000 0.990 0.955
model1pN 0.934 0.820 0.726
model1hN 0.938 0.845 0.775
model1AN 0.690 0.618 0.584
model2WN 1.000 0.993 0.965
model2gN 0.998 0.978 0.929
model2mN 0.999 0.988 0.951
model2pN 0.932 0.804 0.702
model2hN 0.933 0.818 0.725
model2AN 0.673 0.562 0.505
gse7226-gpl2004 0.558 0.517 0.502
gse7226-gpl2005 0.587 0.530 0.509
gse8054 0.495 0.493 0.493
gse8055 0.493 0.497 0.497
gse6754 0.679 0.593 0.553

HFCC EDS 2 RG 3 RG
model1WN 0.998 0.990 0.973
model1gN 0.993 0.972 0.942
model1mN 0.996 0.985 0.964
model1pN 0.904 0.812 0.749
model1hN 0.911 0.827 0.774
model1AN 0.661 0.611 0.581
model2WN 0.997 0.989 0.971
model2gN 0.992 0.970 0.935
model2mN 0.995 0.984 0.959
model2pN 0.899 0.801 0.735
model2hN 0.902 0.812 0.745
model2AN 0.637 0.571 0.538
gse7226-gpl2004 0.619 0.571 0.547
gse7226-gpl2005 0.637 0.584 0.556
gse8054 0.604 0.571 0.551
gse8055 0.584 0.557 0.541
gse6754 0.702 0.642 0.607

Legend: — 1 RG; - - 2 RG; · · · 3 RG
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Figure 3: Number of false positives in a given number of selected best candidates. Solid curves show results without the use
of replication groups (RG), dashed curves for 2 replication groups and dotted curves for 3 replication groups. Lower curves
represent better scoring. Both axes are in logarithmic scale to emphasize results for smaller numbers of best candidates.
The (theoretically) best and worst possible scorings are shown in light gray. The results for other data sets (not shown here)
were similar and exhibited similar rankings of scoring techniques.
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result in many false positive observations. A recently pro-
posed scoring technique used in the method called Hy-
pothesis Free Clinical Cloning that uses replication groups
raised hopes in scoring the interactions in attempt to de-
crease false positives. However, the experiments presented
in this paper indicate that the method does not improve
upon the standard scoring which does not use replication
groups. Estimating interactions scores directly from the en-
tire data set performed better.

At this point, it looks like computational approaches can-
not overcome lack of experimental data (samples) and very
low sample-to-feature ratio. The venue toward more robust
scoring of SNP interactions is therefore an increase of sam-
ple size or use of background knowledge, like information
on protein-to-protein interactions, knowledge on pathways
or functional gene labels [Pattin and Moore, 2008].
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Abstract
Understanding the mechanism of gene regulation
in a living cell is very important to predict the
behavior of cell in response to interacting fac-
tors. In fact such prediction capability can lead
to the development of improved diagnostic tests
and therapeutics. In this work, it is proposed to
represent symbolically gene expression time se-
ries and to adapt sub-string matching algorithms
(such as the Longest Common Subsequence) for
deciding the regulation direction. As a prelim-
inary validation test, the approach is applied to
four biological datasets composed of Yeast cell-
cycle regulated genes under different synchro-
nization methods.

1 Introduction
Microarrays have allowed the interrogation of gene expres-
sion data in a massive way, and have become the most pop-
ular platform in Systems Biology. Temporal gene profiles
coming from Microarrays experiments capture expression
of genes at discrete time points in a cellular process; nu-
merous time-series Microarray experiments have been per-
formed to study such biological processes, for example the
biological rhythms or circadian clock of Arabidopsis, or its
flowering time [Laule et al., 2003; Carpita et al., 2001]. A
significant challenge in dealing with genomic data comes
from the enormous number of genes involved in biologi-
cal systems (for example the human Genome has 30.000
genes); furthermore, the unavoidable presence of noise en-
hances the difficulty in distinguishing real from random
patterns and increases the potential of misleading analy-
ses. To overcome these problems, some studies proposed to
identify symbolic features of the series; examples include
temporal abstraction-based methods that define trends (i.e.,
increasing, decreasing and steady) over subintervals [Sac-
chi et al., 2005], or a difference-based method that uses
the first and second order differences in expression values
to detect the direction and rate of change of the temporal
expressions for clustering [Kim and Kim, 2007].

Symbolic methods have also the benefit to reduce the
noise in the original data to some degree when decreasing
the dimension of the time-series data, thus making the sub-
sequent analysis more robust to noise. This was demon-
strated by Sacchi et al. [Sacchi et al., 2005] with their

adaptation of the Temporal Abstractions (TA)-clustering
method from the field of Artificial Intelligence to gene ex-
pression analysis.

In this paper a recently started study about symbolic rep-
resentations for gene temporal profiles will be presented.
Tests performed on a simple fragment of a real biological
regulatory network seem to show that such qualitative rep-
resentations could be useful for finding the correct regula-
tion directions, since they have the further advantage to be
able to abstract delays among genes, and therefore be less
penalized by the diverse temporal scales typical of biologi-
cal systems.

2 Symbolic representations
Interactions among genes can be formalized as a directed
graph 〈G,A〉whereG represents the set of genes andA the
set of relations between genes; the graph can be weighted
by associating a number to each arc aij ∈ A, but in a sim-
pler scenario each arc aij will assume the value 1 or 0 de-
pending on the fact that gene i influences gene j or not. The
temporal evolution of a single gene in a regulatory network,
that is its time series, is usually represented as a sequence
of K samples V = {vk, k ∈ {1, . . . ,K}}, where k ∈ N+

is the index of the discrete sampling time and vk ∈ R its
value at index k.

2.1 Preprocessing of data
When one is measuring a variable that is both slowly vary-
ing and also corrupted by random noise, as in the case of
gene temporal profiles, it can sometimes be useful to re-
place each data point by some kind of local average of sur-
rounding data points. Since nearby points measure very
nearly the same underlying value, averaging can reduce the
level of noise without (much) biasing the value obtained.

A particular type of low-pass filter, well-adapted for data
smoothing is Savitzky-Golay filters family, initially devel-
oped to render visible the relative widths and heights of
spectral lines in noisy spectrometric data [Savitzky and Go-
lay, 1964]. The simplest type of digital filter replaces each
data value vk ∈ V by a linear combination of itself and
some number of nearby neighbors:

ṽk =
nR∑

n=−nL

cn · vk+n
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Here nL is the number of points used “to the left” of a
data point k, i.e., earlier than it, while nR is the number
used to the right, i.e., later.

The algorithm of Savitzky-Golay applies the least-
squares principle to determine an improved set of ker-
nel coefficients cn for use in a digital convolution; these
improved coefficients are determined using polynomials
rather than, as for the case of simple averaging, a constant
value determined from a sub-range of data. Indeed, the
Savitzky-Golay method could be seen as a generalization
of averaging data, since averaging a sub-range of data cor-
responds to a Savitzky-Golay polynomial of degree zero.
The idea of this kind of filtering is to find coefficients that
preserve higher moments.

2.2 Features
To reason about the temporal evolution of each gene, a
symbolic representation can be developed starting from
quantitative data and applying simple Discrete Calculus
definitions; in this way, it is possible to describe a time se-
ries V as sequence of symbols SV representing significant
features. The features that have been considered are: max-
ima, minima, inflection points and points where the series
becomes stationary, zero or saturates:
Definition 1 (Symbolic features). The significant fea-
tures of a time series are defined over the set F =
{M,m, f, s, z, S}.

Definition 2 (Symbolic representation). A time series V
can be represented as a sequence of symbols SV =
{σj , j ∈ {1, . . . , J}} where each symbol σj belongs to the
set of features F .

To maintain a link with the original series a mapping
function mS between SV and V is defined:
Definition 3 (Mapping function). Given a symbolic repre-
sentation SV and its original time series V , mS : N+ →
N+ is a function that maps the index j of a symbol σj ∈ SV
in the index k of the corresponding time series element
vk ∈ V .

2.3 Enriching the symbolic representation
In the symbolic sequence it is possible to add further infor-
mation, namely the intensity, both relative and absolute, of
the time series at a given point, and the width of the feature
itself. To do this, it is necessary to define how this kind
of information will be represented, and a natural way is to
express it in terms of time series parameters.
Definition 4 (Range of a time series). The range of a
time series V = {vk, k ∈ {1, . . . ,K}} is provided by
the function ext : RK −→ R+ defined as ext(V) =
|maxk(vk)−mink(vk)|.

Definition 5 (Range of a set of time series). The range of
a set of time seriesW = {Vh, h ∈ {1, . . . ,H}} is defined
as set ext : (RK)H −→ R+, set ext(W) = |max(vk)−
min(vk)|, vk ∈ W .

Definition 6 (Length of a time series). The length of a time
series is the cardinality of the set V and it will be written
as |V|.

Given these basic parameters which allow to have a ref-
erence w.r.t. a specific time series and w.r.t. the whole set
of time series, it is possible to describe more intuitively the
properties of the features identified.
Definition 7 (Absolute height of a feature). Given a set
of time series W = {Vh, h ∈ {1, . . . ,H}} and a sym-
bolic sequence SVh, the absolute height of the feature rep-
resented by the symbol σj ∈ SVh is defined by the function
haS : N+ −→ R+

haS(j) =
∣∣∣∣ vmS(j)

set ext(W)

∣∣∣∣
Definition 8 (Relative height of a feature). Given time se-
ries V = {vk} and its symbolic sequence SV , the relative
height of the feature represented by the symbol σj ∈ SV is
defined by the function hrS : N+ −→ R+

hrS(j) =
∣∣∣∣vmS(j) − vmS(j−1)

ext(V)

∣∣∣∣
Definition 9 (Width of a feature). Given time series V and
its symbolic sequence SV , the width of the feature repre-
sented by the symbol σj ∈ SV is defined by the function
wrS : N+ −→ R+

wrS(j) =
∣∣∣∣mS(j)−mS(j − 1)

|V |

∣∣∣∣
These functions can be associated to the symbols of a

sequence S by means of a function qS that describes the
properties of a feature.
Definition 10 (Properties of a symbol). Given a symbolic
sequence SV , the properties of a symbol σj ∈ SV are de-
fined by the function qS : N+ −→ 〈R+,R+,R+〉

qS(j) = 〈haS(j), hrS(j), wrS(j)〉

Example 1. The series V in Figure 1 can be represented
by the sequence SV = {m, f,M, f,m, . . .}, and the prop-
erties of its symbols are qS(1) = 〈0.63, 0, 0〉, qS(2) =
〈0.12, 0.51, 0.06〉, qS(3) = 〈0.33, 0.45, 0.09〉, qS(4) =
〈0.08, 0.25, 0.07〉, qS(5) = 〈0.17, 0.25, 0.09〉 et c. .

3 Reasoning about regulation directions
The symbolic representation of time series allows reason-
ing about strings in which each symbol representing a fea-
ture is linked to a point of the real series (through an index
given by the function mS ). In the following five methods
have been considered. In all cases the hypothesis that in a
causal process the cause always precedes its consequence
is assumed and exploited. By now just the basic symbolic
representations have been used.

Reverse Engineering of a gene regulatory network means
inferring relations among genes starting from experimen-
tal data, in this specific case from time series data. It
can be solved by providing a “similarity measure” func-
tion f : N|G| −→ R from a set of indices, which identify
the genes, to a real number; |G| represents the cardinality
of the set G. Since the focus of this work is the symbolic
processing of time series, the domain of the measures will
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Figure 1: Example of a numerical time series and its sym-
bolic representation.

be FJ × FJ , that is pairs of symbolic sequences whose
length is J . In this work these measures will be used just
to establish whether two genes are correlated or not, so the
resulting real number will be eventually compared with a
given threshold to obtain a Boolean value.

3.1 Shifted Correlation (sC)
The simplest metric that can be applied on the symbol se-
quences is a Pearson correlation. The aim is to identify
directions, so this measure has been made asymmetric by
shifting the series by one temporal sample (the cause pre-
cedes the effect); it will be called “Shifted Correlation”
(sC). The correlation is applied to the original time series
points identified by the mapping function mS .

3.2 Matching between maxima and minima with
temporal precedences (tMM )

A second easy idea is to find a one-to-one correspondence
between maxima and minima, direct or inverse, in the sym-
bolic representation taking into account the fact that the
regulator gene should always precede the regulated one,
and to evaluate the relative length of the matching features
with respect to the shorter sequence:

tMM(S1,S2) =
max(|M1,2|, |M−1,2|)

min(|M1|, |M2|)
M1 andM2 are sub-sequences containing only maxima

and minima of the sequences S1 and S2,M1,2 = {σj1 ∈
S1 : ∃σj2 ∈ S2 ∧ σj1 = σj2 ∧ mS1(j1) < mS1(j2)}
and M−1,2 is defined as M1,2 but matching in an inverse
fashion (e.g.: maxima with minima and vice versa).

3.3 Temporal Longest Common Substring
(tLCStr)

A further step is to notice that noise could alter the series,
therefore it could be the case that just some segments of
the temporal expressions match, therefore looking for the
longest segment should help. The longest segment shared
between two symbolic sequences can be found using the

Longest Common Substring algorithm, which exploits Dy-
namic Programming techniques and has a O(J2) asymp-
totic complexity in the worst case [Cormen et al., 2005].
As for the precedence criterion, the algorithm matches only
the features of the regulator gene which precede the corre-
sponding features of the regulated one (the “t” in the name
tLCStr). The formula is:

tLCStr(S1,S2) =
max(|tLCStr1,2|, |tLCStr−1,2|)

min(|S1|, |S2|)
where tLCStr−1,2 is the Longest Common Substring

matching in an inverse fashion.

3.4 Temporal Longest Common Subsequence
(tLCS)

It is possible to hypothesize that the effects of a gene
could be hidden by saturation effects, and therefore trying
to identify the longest non-contiguous subsequence shared
between two symbolic sequences could be useful. Also in
this case there exists a O(J2) algorithm based on Dynamic
Programming techniques [Cormen et al., 2005]; the for-
mula is analogous to the previous one and so it has not been
reported here.

The precedence criterion has been added as in the previ-
ous case:

tLCS(S1,S2) =
max(|tLCS1,2|, |tLCS−1,2|)

min(|S1|, |S2|)
where tLCS−1,2 is the Longest Common Subsequence

matching in an inverse fashion.

3.5 Directional Dynamic Time Warping
(dDTW )

The last algorithm, adapted to take into account the asym-
metry of the time arrow, is the Dynamic Time Warping,
a procedure coming from the Speech Recognition field
[Sakoe and Chiba, 1978]; it is a “elastic” alignment that
allows similar shapes to match even if they are out of phase
in the time axis; the algorithm complexity is again O(J2).
The precedence criterion has been added by matching fea-
tures of regulated genes with preceding features of the reg-
ulator ones (Figure 2). The computations are performed
on the original time series points identified by the mapping
function mS .

3.6 Adding qualitative properties
In the symbolic sequence it is possible to add further infor-
mation, namely the intensity, both relative and absolute, of
the time series at a given point, and the relative width of
the feature itself; the definitions are not reported in this pa-
per, we will simply postulate the existence of the functions
hrS(j), haS(j) and wrS(j) respectively.

These functions can be associated to the symbols of a
sequence S by means of a function qS that describes the
properties of a feature.
Definition 11 (Qualitative properties). Given a symbolic
sequence SV , the properties of a symbol sj ∈ SV are given
by the function qS : N+ −→ 〈R+,R+,R+〉

qS(j) = 〈haS(j), hrS(j), wrS(j)〉
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(a) original DTW;

(b) dDTW directed towards the past;

(c) dDTW directed towards the future;

Figure 2: original vs. directional DTW.

Functions haS(j), hrS(j) and wrS(j) has been quan-
tized in a fixed number n of levels:

Definition 12 (Quantized functions). Given a number n ∈
N, the quantized version of a function f : N+ −→ R+ is a
function ϕn : (λ : N+ −→ R+) −→ N+

ϕn[f ] =
⌈

f

|max[f ]|
· n
⌉

In this way the properties can be fuzzified in n levels and
compared in an approximated way using a function ẽqS1,S2
defined as follows.

Definition 13 (Approximately equal). Given two symbol
sequences S1 and S2 the function ẽqS1,S2 : N+ × N+ →
{0, 1} is defined as

ẽqS1,S2(j1, j2) = g((ϕn[haS1](j1)) = ϕn[haS2](j2)),

(ϕn[hrS1](j1)) = ϕn[hrS2](j2)),
(ϕn[wrS1](j1)) = ϕn[wrS2](j2)))

where g : {0, 1}3 → {0, 1} is a function that weights the
relevance of each qualitative property and can be defined
using heuristics.

4 Results
To test the five measures discussed above, time series com-
ing from the Yeast cell cycle under four different synchro-
nization conditions [Spellman et al., 1998] have been con-
sidered; each series has 26 time samples. To validate the
results the simplified Yeast network topology from [Li et
al., 2004], which represents interactions among 29 genes,
has been chosen (Figure 3).

Figure 3: Simplified cell-cycle network with only one
checkpoint [Li et al., 2004].

Also the algorithms which exploit the qualitative proper-
ties of the features have been implemented but, by now, no
extensive tests have yet been done.

As a performance criterion, the precision of the above al-
gorithms in recognizing the regulation directions has been
taken into account in the hypothesis that another algorithm
gave the correct undirected pairs (for example the state-
of-the-art ARACNe algorithm [Margolin et al., 2006] has
good performances but it does not compute directions). Let
aij be the arc between two genes i and j in the graphG and
f(i, j) be a function that estimates how much they are cor-
related, then the definitions for true positives (TP), false
positives (FP) and false negatives (FN) become:

TP ⇐ (aij = 1) ∧ f(i, j) > ϑ

FP ⇐ (aij = 0 ∧ aji = 1) ∧ f(i, j) > ϑ

FN ⇐ (aij = 1) ∧ f(i, j) ≤ ϑ
where ϑ is a threshold, in this work set to zero.
In particular, two common indices have been calcu-

lated1: the positive predictive value (PPV), called also pre-
cision, which refers to the fraction of returned true positives
that are really positives:

PPV =
TP

TP + FP

and the sensitivity (also known as recall), which gives
the proportion of real positives which are correctly identi-
fied:

Sensitivity =
TP

TP + FN

In order to have an idea of the performances obtained,
a software based on Dynamic Bayesian Networks (Banjo
[Yu et al., 2004]) has been applied with default parameters

1the performances of ARACNe algorithm on the consid-
ered dataset for the problem of identifying undirected pairs are:
PPV = 65.2 % and Sensitivity = 13.9 %.
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Figure 4: Positive Predictive Value and Sensitivity of the four algorithms proposed in the paper compared with those of
Dynamic Bayesian Networks.

and 7 quantization levels to the same datasets: it seems to
be precise but not very sensitive; the upper bound time for
computation has been set to 10 minutes, a reasonable time,
considering that the other four algorithms take seconds.

The mean performances of the five measures over the
four different synchronization experiments have been re-
ported in Table 1; for sC and dDTW there are also numer-
ical versions, computed on the original time series (their
scores have been reported in parentheses). In Figure 4 the
results of the algorithms operating on symbolic data have
been plotted with their standard deviation as error bar.

Table 1: Mean PPV and sensitivity values for the measures
discussed in the paper over different synchronization exper-
iments (in parentheses the performances on the numerical
series).

PPV Sensitivity
sC 67.5 % (64.6 %) 40.0 % (38.5 %)
tMM 61.1 % 32.8 %
lcstr 63.4 % 42.0 %
lcs 64.0 % 32.1 %
dDTW 52.2 % (51.3 %) 2.6 % (2.2 %)
Banjo (DBN) 59.3 % 3.6 %

5 Discussion and conclusions
It is possible to notice that the symbolic versions of sC and
dDTW both improve with respect to their numerical coun-
terparts. Besides, all the measures provide a PPV above the
50% threshold; this means that they could be useful for de-
ciding regulation directions.

The next step will be to perform extended tests, possi-
bly on larger datasets, with series enriched by qualitative
properties of the features estimated using fuzzy quantiza-
tion levels; hopefully, this should enhance the recall index,
that are still under the threshold of a random choice, in
particular the recall of dDTW , the most recently studied
among the five measures proposed.

Real gene networks present more complex patterns than
simple direct pairwise regulations, for example the so-
called “network motifs” [Alon, 2007]; another research di-
rection concerns the combination of more causes to identify
relations among several genes and, hopefully, improve the
overall performances when considering more general prob-
lems, and not just the regulation directions.
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Abstract 

We present dictyExpress, an Internet application 
offering explorative analysis over a collection of 
gene expression data on social amoeba D. dis-
coideum. With using the newest engineering 
techniques resulting in visualization and interac-
tion-rich interface, it could be considered as a 
precursor for the next generation systems biology 
software applications. 

1 Introduction and motivation 

Public databases of results from high-throughput experi-
ments are abundant and important but most biologists lack 
the training and the computer power to interact with the 
data. A solution to this problem is afforded by recent de-
velopments in information technology, which facilitate the 
development of web-based systems that support interac-
tion and explorative data analysis. These systems require 
only basic web-surfing skills and modest computer power, 
but deliver powerful data analysis capabilities to the biol-
ogist’s fingertips. 

Gene expression data from microarray experiments in 
the social amoeba Dictyostelium discoideum are deposited 
in several databases and some expression profiles were 
available as static graphs on dictyBase 
(http://www.dictybase.org). Curious biologists could view 
the data but cannot interact with them in any way. dic-
tyExpress provides the community with a comprehensive 
database of all the expression data published by the func-
tional genomics project at Baylor College of Medicine, as 
well as a web-based interface that can query the database 
and perform rather sophisticated data mining tasks. The 
interface can be easily expanded to include additional 
tools and adapted to the analysis of other public databases. 

2 Results 

dictyExpress (http://www.ailab.si/dictyexpress) includes 
over 3,600 expression array experiments from the BCM 
functional genomics group. It includes expression data 
collected from wild type and 14 mutant strains during 
normal growth and development and from cells subjected 
to various treatments. The web interface includes compo-
nents for data retrieval, selection of individual genes or 
groups of genes, graphical display of gene expression time 
courses, gene ontology term enrichment, co-expression 

network construction and hierarchical clustering. The user 
can interact with the data in several ways. For example, 
entering the names of several genes of interest and the 
application returns their expression trajectories, Gene On-
tology annotations and a clustering dendrogram with heat 
map. Alternatively, the user can select a gene ontology 
term and query the database for genes that match it. One 
can even hand-draw an approximate gene expression pro-
file requesting dictyExpress to find genes that match it. 

3 Conclusion 

dictyExpress provides a public database of gene expres-
sion data for a popular model organism and original, yet 
simple means of data exploration. The system has been 
launched in June 2008 and a tight linkage with dictyBase 
has been implemented in April 2009. dictyExpress has an 
enormous value to the entire community. Currently, it 
allows researchers to explore a large database of expres-
sion arrays without having knowledge in data mining or 
access to powerful computers and expensive software. 
Eventually, we anticipate that other research communities 
will adopt this approach so that public databases of gene 
expression arrays would become readily available through 
easy to use, explorative interfaces. 

Figure 1: A screenshot of dictyExpress (experiment and gene 

selection, gene co-expression network, and clustering) 
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Abstract
Biomedical data analysis often resorts to visu-
alizations of observed items (genes, SNPs, pro-
teins, . . . ) and their similarities. Two pop-
ular techniques include networks and multi-
dimensional scaling (MDS). Networks require a
threshold on similarity score and its optimization
often fail in global placement of disconnected
subnetworks. MDS can consider entire similar-
ity matrices, does not require a similarity thresh-
old, but its optimization is computationally ex-
pensive. We here propose a hybrid method, rely-
ing on network optimization for network compo-
nents, which are then globally arranged by MDS.
The proposed method is fast and can be used in
optimization of very large networks.

1 Introduction
In modern biology we often deal with huge numbers of ob-
jects, such as genes, SNPs, data sets, genesets and proteins.
To organize them into a structure with some discernible
meaning, we often proceed by defining a measure of sim-
ilarity between these objects. For instance, the similarity
between genes can be defined by correlations in their ex-
pressions over various conditions, and the similarity be-
tween genesets can be based on the number of common
genes they include.

Various methods can help us to organize such objects
according to the measured similarities. From the onset of
high-throughput genomics, clustering was a technique of
choice for this task. But some clustering approaches, most
notably k-means [Hartigan and Wong, 1979], are difficult
to visualize and may offer no other information than merely
lists of objects belonging to each of the inferred groups.
Another deficiency of most clustering techniques is that
two objects from different clusters can be more similar to
each other than to most of those from their corresponding
clusters.

Another popular approach for exploration of relations
between large number of objects is based on visualization
of networks. The objects of interest are shown as vertices,
and similar objects are connected by edges. The “intelli-
gent” part of the data exploration is left to the human expert
who makes hypotheses from the layout of the network’s
vertices and through interactive analysis of its components.

For this purpose, a number of graph layout optimization
techniques are available within specialized tools and gen-
eral data mining environments [Pavlopoulos et al., 2008].

Networks may suffer from a similar problem as cluster-
ing: in most cases two objects are connected to each other
if they are sufficiently similar with respect to the defined
measure of similarity. The shape of the network depends
on the chosen threshold, which is undesirable. Moreover,
even if a pair of objects is just below the threshold of being
sufficiently similar, it is treated as if it was completely dis-
similar. Finally, unconnected components of the network
are arranged randomly, disregarding any similarities which
fell short of the threshold.

There are techniques which can elegantly avoid having
to define appropriate thresholds. Multidimensional scaling
(MDS) [Cox and Cox, 1994], for one, is a visualization
method whose optimization algorithm is quite similar to
that of typical graph drawing algorithms. MDS finds a pro-
jection of objects into a two dimensional space such that the
distances between them correspond to the given similarities
as closely as possible. The advantage of MDS over network
visualization is that it does not require setting any thresh-
olds: all pairwise distances are taken into account. At the
same time, this is its disadvantage: since the time needed
to compute the projection increases quadratically with the
number of objects being plotted, the MDS becomes pro-
hibitively slow when the number of objects goes into tens
of thousands.

In this work we propose a new data analysis and visual-
ization approach which combines networks and MDS. The
proposed procedure breaks a possibly large network into a
set of smaller components by increasing the required sim-
ilarity threshold in the network construction. We call such
networks fragmented networks. The layout of vertices in
each network component is optimized separately using the
Fruchterman-Rheingold [1991] algorithm, and the network
components are then globally positioned using the MDS al-
gorithm. To help the expert recognize the individual com-
ponents, we use a simple text mining algorithm to find suit-
able labels for naming the individual components.

We start with a brief description of Fruchterman-
Reingold’s algorithm for the graph layout of optimization,
and continue with description of the MDS algorithm. We
then describe the proposed method, and conclude the paper
with a case study on the leukemia gene expression data set.
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Figure 1: The network of the most differentially expressed genes from the leukemia data set. The similarity matrix of
the chosen genes was taken from the recently published work of Huttenhower et al. The genes represented with solid
circles were significantly over-expressed in acute lymphoblastic leukemia and the genes shown as empty circles had higher
expression in acute myeloid leukemia.

2 Related work
2.1 Fruchterman-Reingold algorithm
Fruchterman-Reingold algorithm can find the optimal
placements of vertices of a possibly large undirected graph.
Each edge can also be assigned a weight. The algorithm
can be described with a metaphor from physics: each ver-
tex is a particle which repels other particles. The particles
which correspond to connected vertices are, however, con-
nected with a (non-linear) spring whose length is propor-
tional to the weight of the edge. The algorithm simulates
a physical process in which the particles are initially posi-
tioned randomly and then moved around to the configura-
tion with the minimal potential energy.

In order to avoid ending up in a local minimum, the
optimization uses simulated annealing [Kirkpatrick et al.,
1983] in which the particle can sometimes move into a
“wrong direction”, which increases the tension. As the
system gradually cools down, the particles reach the stable
configuration and the graph is typically well laid out.

The time complexity of the FR algorithm is linear with
the number of edges, the number of vertices and the number
of steps made.

2.2 Multidimensional scaling
The input for the MDS algorithm is a matrix of distances
between pairs of objects. The algorithm finds the con-
figuration of objects in a two-dimensional plot, such that

the distances between them match the given distances as
closely as possible.

The function which is usually optimized in the MDS is
the so called “stress” of the system, expressed as

W =
∑

i<j≤n

wij(dij − δij)2 (1)

where dij is the actual distance and δij is the desired dis-
tance between points vi and vj , and wij is the weight of the
pair. For the sake of simplicity we usually assume equiva-
lent weights for all pairs, i.e. 2wij = 1.

Again, we can use concepts from classical physics to de-
rive the MDS optimization procedure. Consider a single
pair of points, vi and vj . The derivative of the correspond-
ing term Wij = wij(dij − δij)2 in the above sum,

Fij =
∂Wij

∂dij
= 2wij(dij − δij), (2)

is the force of the spring with a spring constant k = 2wij

displaced by dij − δij .
A simple steepest descent optimization procedure for

MDS would mimic the physical system in which each ver-
tex vi would move by

∑
j 6=i Fij at each step (assuming that

the system has infinite friction so that the acceleration can-
not accumulate). There exist, however, better approaches
to MDS, such as the SMACOF algorithm [de Leeuw and
Mair, 2008].
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The time complexity of the MDS algorithm is quadratic
with the number of vertices. To plot a layout for 10.000
genes, each step of optimization would require computing
100 million distances and corresponding forces.

In comparison with the FR algorithm, the distances be-
tween objects in MDS more closely represent the actual
distances. In both methods, a pair of similar points can be
incidentally drawn far from each other if the system gets
stuck in a local minimum or if the data cannot be accurately
presented in two dimensions.

3 Methods
The input for the proposed method is a set of objects and
a matrix of their mutual (dis)similarities. We would like to
plot the objects in a two-dimensional space such that sim-
ilar objects would be positioned close to each other. The
outline of the procedure we propose is:

1. Construct a fragmented graph based on the matrix
of similarities. Individual fragments – components –
should (ideally) share some concepts in problem do-
main, that is, their composition should be meaningful
to the domain expert.

2. Use the Fruchterman-Reingold or another similar al-
gorithm to optimize the layout of the objects within
each individual component.

3. Use multidimensional scaling to globally arrange (po-
sition, orientation) the components according to the
provided matrix of similarities.

The first step is rather trivial and the second step is based
on standard graph drawing algorithms. We therefore con-
centrate on the third one. The third step treats the compo-
nents as rigid objects and its task is to move them around
and rotate them so that the distances between vertices be-
longing to different components match the given distances
as closely as possible. For a physical metaphor, imagine
each component as a board with vertices as pegs. Pegs
from different components are connected to each other with
springs of different lengths. The nature (or, in our case, a
computer simulation) finds the lowest energy configuration
of the boards (components).

Formally, we assume that we are given a graph
G = (V,E) constituted of p disjunct components V =⋃p

k=1 Vk. The task is to find the placement and the ori-
entation of components, that is, their mass centers ck, and
the orientation of their coordinate systems φk.

We will describe two algorithms. The first is based on
the exact simulation of the physical system, and the second
sacrifices exactness for a substantial speed improvement.
To simplify the notation, we shall use indices i and j to
denote quantities related to vertices (e.g. Fi) and k and l to
denote quantities related to entire components (e.g. Fk).

3.1 Exact simulation
We start the simulation with random arrangement of the
components, described by the position of their mass cen-
ters, ck and orientations of coordinate systems, φk. At
each step, the algorithm computes the forces acting on each
vertex. It then computes the sum of forces and torques for
each component and moves and rotates it accordingly.

The mass of each component and its moment of inertia
do not change during the simulation, so we can compute
them in advance. Assuming that all points have equivalent
mass m, we have

mk = |Vk|m (3)
and

Ik = m
∑

vi∈Vk

||vi − ck||2, (4)

where vi is the position of vertex vi and ck is the position
of the component’s mass center.

Instead of computing the force by definition (2), we ex-
ecute a single step of the more efficient SMACOF-based
MDS optimization, which gives us a set of new positions
of vertices, v′i. For each point we then compute the force
which would move it by the same distance and direction,
v′i − vi, as SMACOF had.1

Fi =
2m(v′i − vi)

t2
(5)

The component (that is, its mass center) moves accord-
ing to the sum of the forces acting on its vertices

∆ck =
Fkt

2

2mk
=
t2

∑
vi∈Vk

Fi

2|Vk|m
=

∑
vi∈Vk

(v′i − vi)
|Vk|

(6)
To compute the rotation of the component, we need to

compute the sum of torques. The torque for each vertex
vi equals τi = Fi × vi, so the total torque acting on the
component is τk =

∑
vi∈Vk

Fi × vi. The rotation of the
component Vk equals2

∆φk =
τkt

2

2Ik
=
t2

∑
vi∈Vk

Fi × vi

2m
∑

vi∈Vk
||vi||2

=

∑
vi∈Vk

v′i × vi∑
vi∈Vk

||vi||2
(7)

The exact simulation algorithm repeatedly computes the
translation (∆ck) and rotation (∆φk) of all components,
and moves and rotates them accordingly, until reaching the
(local) minimum (∆ck

.= 0 and ∆φk
.= 0 for all k).

The time complexity of each step of the algorithm is
dominated by that of the MDS, that is, O(|V |2).

3.2 Fast approximation
For a more efficient algorithm, we break the optimization
into two phases: we first find the optimal positions of com-
ponents in their initial orientations and in the second phase
we optimize their orientations in these positions.

To speed-up the first phase we compute the MDS for po-
sitions of components, not of vertices as in the exact simu-
lation. The desired distances between the components are
the average distances between the corresponding vertices.

δkl =
1

|Vk||Vl|
∑

vi ∈ Vk

vj ∈ Vl

δij (8)

1The derivation is based on elementary physics, F = ma and
s = at2/2, hence F = 2ms/t2 or s = Ft2/2m. The chosen
mass m and time t are inconsequential since they get canceled
out. The model digresses from the actual physics in that objects
stop when the force applied to them ceases, so the system stops at
the local minimum instead of oscillating around it.

2From rotational dynamics, τ = Iα and ∆φ = αt2/2, so
∆φ = τ t2/2I . Note also that (v′

i − vi)× vi = v′
i × vi
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This way of computing distances between components is
inspired by the average linkage in hierarchical clustering
analysis [Sokal and Michener, 1958].

In the second phase we apply the same procedure as in
the exact simulation, except that we only compute the rota-
tion without the translation. We noted that the optimization
algorithm is quite likely to end up in local minima, so we
use simulated annealing where the component can also ro-
tate in the “wrong direction”, with the probability of doing
so decreasing with time.

This algorithm’s time complexity is formally again
quadratic in the number of vertices. The first step with
such complexity is computation of average distances be-
tween components, and the second is the rotation phase
of the optimization. In practice, these two operations are
rather fast, so the algorithm is essentially quadratic only in
the number of components, O(p2), due to the MDS-based
optimization of their position in the first phase.

4 Case study
We have tested our hybrid algorithm for the visualization of
fragmented networks on a leukemia gene expression data
set [Golub et al., 1999]. Our goal was to obtain clear vi-
sual representations of the most important genes and their
biological functions for two major types of acute leukemia,
yielding insight and valuable clues about the disrupted bi-
ological processes and pathways in leukemic cells.

4.1 Data
The leukemia gene expression data set [Golub et al., 1999]
includes the information on 7074 genes whose expression
was measured using DNA microarrays in 72 tissue sam-
ples belonging to two distinct classes of acute leukemia (48
acute lymphoblastic leukemia (ALL) samples and 25 acute
myeloid leukemia (AML) samples).

We built different networks from the most differentially
expressed genes between the two classes of leukemia. Ap-
proximately 1000 genes were used that had the Student t-
statistic significantly smaller or larger (p-value < 0.01)
with respect to the null distribution of the t-statistic. The
null distribution was obtained by randomly permuting the
class labels and calculating the t-statistic for all the genes.
In all the figures, the genes represented with solid circles
were significantly over-expressed in the ALL samples and
the genes shown as empty circles had higher expression in
the AML samples.

4.2 Similarity scores
Two in principle different views were used to assess the
similarity between the genes. In the first one, the similarity
of the genes relates to their biological functions. It is cal-
culated based on their membership in canonical biological
pathways using the Jaccard index. The canonical pathways
part of the C2 collection of the MsigDB [Subramanian et
al., 2005] was used where genes with roles in the same
biological pathways are grouped into gene sets. Figure 2
represents a network of leukemia specific genes where the
threshold of “biological function similarity” was set to 0.3
and only the vertices with at least one edge are shown.

The similarity between the genes can also be assessed
based on their expression across different tissues, physio-
logical states and diseases. The recently published work
of Huttenhower et al. [2009] exploits this information to
calculate the similarity matrix of all human genes. In
their work, the similarity scores are calculated using the
information on all publicly available gene expression and
protein interaction data, combined with prior knowledge
from the Gene Ontology, KEGG, HPRD and other biolog-
ical data bases. We used their “gene expression similarity
score” to build the network of the selected genes shown in
Figure 1 and Figure 3.

4.3 Labels of network components
The graph components are named based on gene ontol-
ogy terms [Ashburner et al., 2000]. Each component of
the graph is analyzed with respect to the biological process
and molecular function of gene ontology. The ontologi-
cal terms are scored in such a way that the coverage of the
genes in the component, the p-value of the term enrichment
and the number of all the genes in the ontology term are
considered. The name of the component, presented in the
graph, is chosen as the term with the highest score.

For example, in Figure 1 we can observe that the com-
ponent marked with an arrow is comprised of genes CCT3,
CCT4, CCT5, and CCT7. These genes are the gamma,
delta, epsilon, and eta subunits of the chaperonin contain-
ing TCP1 complex (CCT), also known as the TCP1 ring
complex (TRiC). Chaperonins are key components of the
cellular chaperone machinery that is essential for the fold-
ing of the vast majority of cellular proteins. The TCP-1
ring complex is indispensable for cell survival because the
folding of an essential subset of cytosolic proteins requires
TRiC [Spiess et al., 2004]. The component on the graph,
comprised of these 4 genes is named “unfolded protein
binding”. Since all four genes from the component bind to
unfolded proteins, out of all together 106 genes that have
this molecular function, the p-value for the enrichment of
this ontological term is very small. This ontological term
covers all the genes from the component (4), has a small
number of genes assigned to it (106), and a very small cor-
responding p-value of enrichment. Therefore our algorithm
for naming components scores it with the highest score and
the component is named after it.

4.4 Results and discussion
Figure 1 and Figure 2 represent two networks of the most
differentially expressed genes from the leukemia data set,
where different similarity scores of the genes (described in
4.2) are used to construct them. Both networks are frag-
mented into smaller components that are named according
to the function of the genes comprising them. One can ob-
serve that most of the graph components connect genes that
are over-expressed in one of the two investigated kinds of
leukemia (all genes in the component are the same color),
demonstrating the well known phenomenon that not only
individual genes, but whole processes and pathways are
disrupted in cancer cells [Hanahan and Weinberg, 2000].

To allow for the exploration of the biological pro-
cesses connected to acute myeloid and acute lymhoblastic
leukemia on different levels, from specific to more general,
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Figure 2: The network of the significantly
differentially expressed genes form the
leukemia data set, where the distance be-
tween the chosen genes was calculated
based on their membership in biologi-
cal pathways. Only the genes connected
into components with a similarity score
greater than 0.7 are shown. The genes
represented with solid circles were signif-
icantly over-expressed in the ALL sam-
ples and the genes shown as empty cir-
cles had higher expression in the AML
samples. The individual graph compo-
nents and clusters of graph components
are named with gene ontology terms as
described in the text.

additional gene ontology terms describing larger parts of
the graph are shown in Figure 2. These ontological terms
apply to all the genes in the marked areas and are signif-
icantly enriched with a p-value < 0.01. One can observe
how the components of the graph that are near each other
have similar biological and/or molecular functions accord-
ing to gene ontology.

Interestingly, the “guanylate cyclase activity”, “nu-
cleotide metabolic process”, “RNA polymerase activity”,
and “DNA replication” components all connect genes sig-
nificantly over-expressed in acute lympoblastic leukemia.
All of these genes have a function in nucleotide metabolism
and DNA biosynthesis. It is well known that lymphoblas-
tic cells typically have severalfold higher activity of en-
zymes responsible for nucleotide metabolism enabling ex-
cessive proliferation of transformed cells [Scholar and Cal-
abresi, 1973]. Moreover, some of the pathways active in
nucleotide metabolism, for example de novo purine syn-
thesis (DNPS), have been recognized as important targets
of antileukemic agents (eg. methotrexate, mercaptopurine).
In combination with other therapeutical agents, these drugs
have improved survival of children with ALL to an over-
all cure rate of approximately 80 percent [Pui and Evans,
2006]. The network shown in Figure 2 clearly demon-
strates this characteristic of acute lymphoblastic leukemia.

Figure 3 shows the same network as Figure 1, where also
the unconnected vertices (genes not connected into graph
components) are added, to observe the similarity of all the
1000 selected genes. It demonstrates the ability of our al-
gorithm to combine network and MDS characteristics to
visualize connected components and single genes simul-
taneously. One can observe that the genes significantly
differentially expressed in the two investigated leukemias

cluster together. The empty circles (AML) are clustered
in the right part of the graph and the solid ones (ALL) in
the left part, again demonstrating that expression changes
in cancer tissues are disrupted on the level of pathways and
processes.

5 Conclusion

Recently, we have witnessed the emergence of large repos-
itories of biomedical research and clinical data. Methods
to sip through these data sets that would allow domain ex-
perts to gather information, reason on the hidden patterns
and form plausible hypothesis to be tested in specialized
studies are needed. Here, visualization combined with vi-
sual data analytics plays a major role, as it can nicely reveal
the data patterns and allow the experts to explore the data.

Visualizations require algorithms that craft the proper
placement of the object under consideration, and explo-
rative data analysis requests these to be fast to be able
to construct responsive interfaces. We have developed
a hybrid network layout optimization technique that ad-
dresses these requirements, and show its utility in the
analysis of the microarray data set. Initial exploration of
the methods were positive and encouraged us to embed
it within the network optimization and visualization com-
ponents of Orange [Demsar et al., 2004], an open-source
data mining and visual analytics framework available at
http://www.ailab.si/orange.
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Figure 3: The same network as in Figure 1 where also the
unconnected vertices (genes) are shown.
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Abstract

The process of inferring regulatory interac-
tions among genes from DNA microarray ex-
periments is known as Reverse Engineering.
We present a novel reverse engineering algo-
rithm, CNET, which exploits the principles
of Shannon Entropy and Mutual Information
through a heuristic scoring function.
This function is designed to discover causal
relations even if gene temporal profiles ex-
hibit non ideal behaviours, such as noise,
quantization errors and variable regulatory
delays.
Experimental results, both on simulated and
on real datasets, show that CNET achieves
performance comparable to the state of the
art methods in reverse engineering and dou-
bles its performance when inferring on reg-
ulatory effects directly dependent on a per-
turbed target.

Introduction
One of the most important discoveries of the last cen-
tury in biology is that all the information necessary for
an organism to live is coded in the genes of its DNA.
On the other hand, the certainty emerged that almost
every biological function is carried over by proteins.
DNA molecules are transcribed into mRNA molecules,
which, in turn, direct chemical machinery which trans-
lates the nucleic acid message into a protein [Hunter,
2004].

Some proteins, called transcription factors, have the
role, possibly in combination with each other, to acti-
vate or inhibit the transcription of genes and to control
the translation of mRNA into new proteins; the pro-
cess by which genes, through the proteins they code,
control the expression (i. e. the mRNA transcription
rate) of other genes is known as genetic regulation.

In the past few years, the study of genetic regula-
tion was drastically improved by the discovery of the
new technology of DNA microarray [Molla et al., 2004],
which allows researchers to monitor the expression of
the whole genome under various genetic, chemical and

∗Corresponding author: francesco.sambo@dei.unipd.it

environmental perturbations. One of the goals of mi-
croarray experiments is to understand the mechanism
of genetic regulation, which can be modelled as a gene
regulatory network, a graph in which nodes represent
genes or proteins and two or more nodes are connected
if a regulatory relation exists between them.

Different approaches have been adopted in the lit-
erature to model and infer Gene Regulatory Networks
from DNA microarray experiments (for a survey see
[de Jong, 2002]) and some assessment papers have re-
cently appeared, to compare the performance of vari-
ous algorithms under different experimental conditions
[Bansal et al., 2007] [Corradin et al., 2008] [Soranzo et
al., 2007].

A widely used approach to infer regulatory relations
is the analysis of the Shannon Entropy and Mutual
information of gene expression signals, proposed by
Liang et al. in the reveal algorithm [Liang et al.,
1998]. In this work, we propose an extension of the
reveal approach, introducing a regulatory network
model, Causal Networks, and a scoring function for
regulatory relations. The scoring function allows our
approach to account for inconsistencies in gene ex-
pression time series caused by variable regulatory de-
lays, measurement noise and quantization errors. We
compare our algorithm, CNET, with the original re-
veal algorithm and with Dynamic Bayesian Networks
(DBNs) [Ferrazzi et al., 2007], an approach which was
identified as promising in the three assessment papers
[Bansal et al., 2007], [Corradin et al., 2008] and [So-
ranzo et al., 2007].

Comparisons are carried over on a realistically sim-
ulated data set, obtained with the simulator described
in [Di Camillo et al., 2009]: simulated data are useful
when comparing different algorithms, because of the
lack of information on real regulatory networks, which
prevents one from obtaining both reliable test beds
from real biological experiments and multiple cases to
evaluate average performance [Soranzo et al., 2007].
We also run our algorithm on a real dataset [Whitfield
et al., 2002], consisting on the observation during cell
cycle of 9 human genes.

The rest of this paper is organized as follows: Sec-
tion 1 presents reveal algorithm and related works,
Section 2 describes the Causal Network model and
CNET algorithm, Section 3 shows experimental results
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and Section 4 presents conclusions.

1 REVEAL and related works

In the Boolean model, adopted by the reveal al-
gorithm [Liang et al., 1998], regulatory relations are
organized in a directed graph, in which nodes rep-
resent genes and edges represent boolean relations
among genes. Nodes can be in two possible discrete
states {0, 1} and gene interactions are synchronous:
the whole state of the genome at time t is completely
determined by its state at time t − ∆ , where ∆ is a
constant time step.

A boolean relation between a set of regulators
(x1, . . . , xK) and a regulated gene x0 is inferred if the
Mutual Information between the regulators and x0 is
equal to the Shannon Entropy of x0 or, equivalently, if
the joint Shannon Entropies of the sets (x1, . . . , xK)
and (x1, . . . , xK , x0) are the same. This condition,
however, tends to be impractical when applied to real
data sets, in which behaviours of gene profiles are usu-
ally far from ideal: data contains noise, genes have
variable regulatory delays and quantization introduces
errors.

Two approaches to extend Mutual Information to
continuous gene expression values, thus avoiding the
loss of information related to quantization, have been
proposed by Margolin et al. [Margolin et al., 2006]
and Daub et al. [Daub et al., 2004]. Both, however,
are defined as pairwise measures between gene profiles
and then lose the ability of inferring complex N to 1
relations. Moreover, they are usually adopted as mea-
sures between synchronous observations, rather than
time series of gene expression, because they do not
specifically consider the ordering of the samples.

2 The Causal Network model and
CNET algorithm

2.1 Model

The Causal Network model is a generalization of
the Boolean model: nodes represent genes and
edges represent causal regulatory interactions among
genes. Nodes can be in three possible discrete states
{1, 0,−1}, corresponding to high, medium and low (or
increasing, steady and decreasing) expression level.

To adapt our algorithm to the behaviour of real
gene profiles, which comprehends noise and variable
regulatory delays, and to limit the effect of the er-
ror introduced by the quantization, we decided to
map the reveal condition on Shannon Entropies to
the domain of consistent pairs: for signals with a fi-
nite set of possible values (quantized signals), the pair
〈regulators, regulated signal〉 is said to be consistent
if and only if each combination of values for the regula-
tors univocally correponds to a particular value for the
regulated signal after ∆ time steps. In Appendix A,
we prove mathematically that the reveal condition
is verified if and only if 〈regulators, regulated signal〉
is a consistent pair.

Figure 1: Example of a causal relation (x1, x2) ⇒ x0.
Profiles are already aligned properly.

This switch of domains allowed us to design a novel
heuristic function for regulatory pairs: each term of
the function is ment to capture a particular aspect
of gene expression profiles and the ensemble of terms
gives an indication of how far the regulatory pair
is from being consistent, thus inducing an ordering
among regulatory pairs. For a given regulated sig-
nal, then, the particular combination of regulators that
maximizes the scoring function can be searched.

2.2 Scoring function
For every gene x0, the algorithm searches extensively
for the best set of k regulators (x1 . . . xk) that maxi-
mizes a scoring function f :

f = we
1

1 + e
+wss+wc

c

3k
with we+ws+wc = 1 .

(1)
f ranges in (0,1] and combines the contribution of an

error term e, a shape term s and a completeness term
c, by weighting them with parameters we, ws and wc.
Each term is explained in what follows.

Error Term
To illustrate the meaning of 1/(1+e), we refer, without
loss of generality, to the case with two regulators x1

and x2 for a regulated gene x0: (x1, x2) ⇒ x0 . The
error term e is defined as:

e =
1∑

i=−1

1∑
j=−1

eij =
1∑

i=−1

1∑
j=−1

Lpij −Mpij

Lpij
, (2)

where Lpij is the number of occurrences of the input
pattern 〈i, j〉 (e.g. 〈1,−1〉 in Figure 1 occurs 9 times,
then Lp1,−1 = 9), and Mpij is the value of gene x0

that is most frequent as output in correspondence to
the input 〈i, j〉 (e.g. in Figure 1, for the input pattern
〈1,−1〉, the value x0 = 0, occurring 7 times, is more
frequent than −1, occuring twice, thus Mp1,−1 = 7).

If there is a univocal correspondence between input
and output profiles (and then the pair 〈(x1, x2); x0〉
is consistent), eij are equal to zero, thus 1/(1 + e) =
1, otherwise 1/(1 + e) < 1. This allows to relax the
consistency condition and tolerate a certain amount of
noise and quantization errors in the data.

Shape term
The shape term is calculated based on data organiza-
tion into blocks of equal input combinations, such as
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the three blocks identified by vertical bars in Figure 1.
The shape term s is computed as

s =
1

#blocks

#blocks∑
i=1

si =
1

#blocks

#blocks∑
i=1

SSLi

BLi
(3)

where BLi is the length of the i-th block and SSLi

is the length of the rightmost substring of identical
characters in the i-th block of x0.

For example, in Figure 1, the shape terms for the
three blocks are 1 (3/3), 0.6 (3/5) and 0.67 (4/6), thus
leading to an average shape term of 0.76.

The shape term s is similar to e, i.e. it relaxes
the consistency condition, but it assigns lighter penal-
ties to output inconsistencies occurring right after a
change of state in regulators; it then rewards situations
in which the output signal, after a change in the in-
put, shows a transient state followed by a steady state.
This terms helps the algorithm to capture regulatory
relations even in the presence of regulatory delays vari-
able from gene to gene and longer than the fixed value
∆.

Completeness term
The completeness term c/3k is the normalized num-
ber of different combinations of values for regulators
present in data (1 ≤ c ≤ 3k, if k is the size of the set of
regulators). For example, in Figure 1 two combination
of values, 〈1,−1〉 and 〈0, 1〉, are present in input, then
c/3k = 2/9. This term induces the algorithm to prefer
simpler solutions, i.e. solutions with less regulators,
the other two terms being equal.

2.3 Algorithm
Pseudocode for CNET algorithm is as follows:

CNET(data, max causes)
1 for i← 0 to n genes
2 do max fitness[i ]← 0
3 C [i ]← ∅
4 for k ← 1 to max causes
5 do for causes in combinations(k, n genes)
6 do f ← fitness(i, causes)
7 if f = max fitness[i ]
8 then
9 C [i ]← C [i ]∪ causes

10 if f > max fitness[i ]
11 then
12 C [i ]← causes
13 max fitness[i ]← f
14 if C [i ] > 1
15 then weight each cause proportionally to

the number of times it appears in C [i ]
16 return C
For each gene, CNET algorithm searches extensively
for all the possible combinations of regulators, from
one to a maximum user defined number (max causes),
and keeps track of the best scoring combinations. If
more than one set of regulators for the same gene
achieve the best score, the weight of each regulator
is set proportional to the number of times it appears
among the best scoring sets.

3 Experimental Results

We tested CNET first on a simulated dataset, to com-
pare its performance with the reveal algorithm and
with Dynamic Bayesian Networks (DBNs), one of the
best approaches for reverse engineering gene regula-
tory networks from time series data. DBNs are in-
ferred with the greedy search K2 algorithm as de-
scribed in [Ferrazzi et al., 2007], to which we refer the
reader for futher information on the particular imple-
mentation. We then validate performance on a real
microarray dataset of 9 human genes. Datasets and
performance measures are explained in what follows.

3.1 Experimental data set
Simulated data consist of 60 networks of 10 genes and
60 networks of 20 genes, generated with the simulator
recently presented in [Di Camillo et al., 2009]: net-
work topology is generated according to the current
knowledge of biological network organization, includ-
ing scale-free distribution of the connectivity and clus-
tering coefficient independent of the number of nodes
in the network.

The simulator explicitly represents interactions
among the regulators of each gene and, by using dif-
ferential equations, accounts for saturation in the re-
sponse to regulation, transcription activation thresh-
olds and shows robustness to perturbations. It imple-
ments the possibility to observe gene dynamics by ei-
ther letting the system free to evolve from opportunely
chosen initial conditions (free evolution) or exciting it
by external stimuli acting on chosen nodes.

For each network, 4 different time series of 50 sam-
ples were generated: the first time series is obtained
observing free evolution from random initial condi-
tions, the other three time series are obtained stim-
ulating the network with a sinusoid, a ramp and a
step signal respectively. Networks are stimulated at
their hub, i.e. the node with the highest out degree,
to excite the highest number of nodes in the network.

The real dataset, on the other hand, consists of 9
genes involved in human cell cycle, for which samples
were taken every hour for 47 hours (approximately
three complete cell cycles). To measure the perfor-
mance of CNET, we compared the output of the al-
gorithm with the interactions documented in the Bi-
oGRID database (www.thebiogrid.org). The dataset
has already been used by Sacchi et al. [Sacchi et al.,
2007] to test the accuracy of a method for extracting
temporal relationships between genes.

3.2 Performance Measures
To quantify the overall performance of the algorithms,
we adopted two widely used measures, Precision (P)
and Recall (R), defined as: P = tp/(tp + fp) and
R = tp/(tp + fn), where tp is the number of true
positives, i.e. the number of causal relations correctly
identified by the algorithms, fp is the number of false
positives, i.e. the number of relations identified by the
algorithms which are not correct, and fn is the number
of false negatives, i.e. the number of relations present

IDAMAP 2009 25



Algorithm Measure Sin Step Ramp No stimulus

P 0.25± 0.08 0.20± 0.07 0.20± 0.08 0.17± 0.07
CNET

R 0.38± 0.11 0.33± 0.13 0.34± 0.15 0.26± 0.11

P 0.20± 0.16 0.15± 0.23 0.19± 0.24 0.17± 0.22
REVEAL

R 0.07± 0.06 0.04± 0.05 0.05± 0.05 0.05± 0.06

P 0.19± 0.07 0.20± 0.07 0.19± 0.07 0.17± 0.08
DBNs

R 0.34± 0.13 0.36± 0.13 0.35± 0.14 0.31± 0.14

Algorithm Measure Sin Step Ramp No stimulus

P 0.14± 0.05 0.10± 0.05 0.10± 0.04 0.09± 0.05
CNET

R 0.21± 0.07 0.14± 0.08 0.14± 0.07 0.12± 0.07

P 0.10± 0.10 0.08± 0.11 0.09± 0.13 0.06± 0.08
REVEAL

R 0.03± 0.03 0.02± 0.03 0.03± 0.03 0.02± 0.02

P 0.13± 0.04 0.13± 0.04 0.12± 0.05 0.11± 0.04
DBNs

R 0.28± 0.10 0.28± 0.10 0.28± 0.10 0.24± 0.09

Table 1: Average Precision and Recall for reveal,
CNET and DBNs on 60 networks of 10 genes (upper
table) and 60 networks of 20 genes (lower table). Val-
ues are reported for each of the three external stimuli
and for the case without stimulus, as mean ± standard
deviation.

in the simulated networks but not identified. Both
measures range in the interval [0, 1].

Scores were compared using exact Wilcoxon two-
sample tests: we considered as significant differences
corresponding to a p-value < 0.05.

3.3 Results
Results of the comparison between reveal, CNET
and DBNs are shown in Table 1. CNET significantly
outperforms reveal both in terms of Precision an
Recall, and its performance is comparable to DBNs:
on networks of 10 genes, there is no significant differ-
ence between the two algorithms, whereas on 20 genes
networks DBNs exhibit a significantly higher Recall.
Precision and Recall are in line with the literature,
being in the same range of values reported by [Cor-
radin et al., 2008] and [Soranzo et al., 2007] for similar
experiments. CNET seems to be more sensitive than
DBNs to the kind of input signal, showing significantly
higher performance when the network is stimulated
with the sinusoidal signal. Both algorithms, however,
show equal or higher performance when an external
stimulus is present.

In microarray experiments, when a particular gene
is externally stimulated, the interest usually focuses
mostly on genes directly dependent from the target:
for this reason, we analysed also the performance of
CNET and DBNs on the inference of regulatory re-
lations directly outgoing from the externally stimu-
lated gene. Results are shown in Table 2. Perfor-
mance on this subset of relations is more than doubled,
and scales best when network size increases, both for
CNET and DBNs. The sensitivity of CNET to a par-
ticular external stimulus is even more evident here: in
the presence of a sinusoidal signal, CNET exhibits an
average Recall of 0.80 on networks of 10 genes and of
0.65 on network of 20 genes.

Results of the CNET algorithm on the real dataset
are shown in Figure 2. On the left side of the fig-
ure known relations between genes are plotted, while

Algorithm Measure Sin Step Ramp

P 0.50± 0.16 0.48± 0.29 0.52± 0.32
CNET

R 0.80± 0.20 0.46± 0.29 0.48± 0.33

P 0.60± 0.19 0.53± 0.25 0.55± 0.20
DBNs

R 0.52± 0.27 0.46± 0.27 0.49± 0.26

Algorithm Measure Sin Step Ramp

P 0.42± 0.18 0.33± 0.27 0.36± 0.33
CNET

R 0.65± 0.23 0.29± 0.25 0.32± 0.29

P 0.61± 0.22 0.47± 0.23 0.48± 0.26
DBNs

R 0.46± 0.25 0.38± 0.24 0.37± 0.25

Table 2: Precision and Recall for CNET and DBNs,
on edges directly outgoing from the stimulated gene,
for networks of 10 genes (upper table) and 20 genes
(lower table).

on the right side the reconstructed network is rep-
resented: four of the original edges, depicted in
bold, were correctly identified, and two other edges,
CCNE1 → CDC2 and PCNA → CDC2, were iden-
tified reversed, thus leading to Precision and Recall of
(0.36,0.44) on the oriented network and (0.54,0.67) on
the unoriented network, which are in line with the re-
sults on simulated data. Precision and Recall of DBNs
on the same dataset are (0.19,0.33) on the oriented
network and (0.31,0.56) on the unoriented network.

Figure 2: Network of known interactions (left) and
reconstructed network (right) for the real dataset of 9
human genes related to cell cycle.

4 Conclusions

In this paper we presented a novel algorithm, CNET,
for Reverse Engineering of Gene Regulatory Networks
from time series data of DNA microarray experiments.
Tests on simulated data showed that CNET outper-
forms the reveal algorithm, of which it can be consid-
ered an improvement, and exhibits performance com-
parable to a state-of-art approach, Dynamic Bayesian
Networks, in reconstructing both entire networks and
subsets of them close to external stimulation. Similar
performance was exhibited on a real dataset.
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Appendix A

In this appendix we prove mathematically the equiv-
alence between the reveal condition for causal
relations, based on Shannon Entropy, and our condi-
tion, on which the scoring function is based.

Definition 1 - The pair 〈(X1 . . . XK); X0〉 is
consistent if, every time a given combination of values
(x1 . . . xK) appears for (X1 . . . XK), the value of X0

after ∆ time steps is always the same.

Definition 2 - The Shannon Entropy for a sequence
X of symbols xi from an alphabet of size b is

H(X) = −
b∑

i=1

p(xi) logb p(xi)

where p(xi) is the probability of observing the partic-
ular symbol xi.

Definition 3 - The Joint Shannon Entropy for the
sequences (X1 . . . XK) of symbols from an alphabet of
size b, is

H(X1, ..., XK) =

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p(x1i, . . . , xKi) logb p(x1i, . . . , xKi)

where p(x1i, . . . , xKi) is the probability of observing
simultaneously the particular combination of symbols
x1i, . . . , xKi in sequences X1, . . . , XK .

Proposition 1 - The causal relation

X1 . . . XK ⇒ X0 (4)

holds if and only if

H(X1 . . . XK) = H(X0, X1 . . . XK)

after a proper shift of sequence X0, to account for the
fixed delay ∆ in the causal relation.

Proof - Proven in [Liang et al., 1998].

Theorem 1 - The causal relation (4) holds if and
only if the pair 〈(X1 . . . XK); X0〉 is consistent.

Proof - From Proposition 1, equation (4) holds if
and only if

H(X1 . . . XK) = H(X0, X1 . . . XK) (5)

but then, from Definition 3

H(X1, ..., XK) =

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p(x1i, . . . , xKi) logb p(x1i, . . . , xKi)

and, supposing w. l. o. g. that Xi ∈ {i, s, d}1

H(X0, X1 . . . XK) = (6)

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K+1 times

p(x0i, xi) logb p(x0i, xi) =

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p((x0 = i) ∧ xi) log p((x0 = i) ∧ xi)

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p((x0 = s) ∧ xi) log p((x0 = s) ∧ xi)

−
b∑

i=1

. . .
b∑

i=1︸ ︷︷ ︸
K times

p((x0 = d) ∧ xi) log p((x0 = d) ∧ xi)

where xi = (x1i, . . . , xKi)

If the pair 〈(X1 . . . XK); X0〉 is consistent, every time
a given combination (x1i . . . xKi) appears for
(X1 . . . XK), x0 after ∆ time steps has always the
same value x, being it increasing, steady or
decreasing. Then,

p(x0i, x1i, . . . , xKi) =
{

p(x1i, . . . , xKi) if x0i = x;
0 otherwise.

And then, in equation (6), for every combination of
values (x1i . . . xKi) there is exactly one term in one of
the three summations which is different from zero.
And then equation (5) holds.
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Abstract
Standard network visualization techniques, often
used in biomedical data analysis, usually display
objects of a single type. Many biomedical appli-
cations consider objects of various types, and re-
lations between them are often semantically dif-
ferent. To accommodate for such a diversity, we
propose a data presentation using a multi-layer
network, each layer including objects of the same
type. We propose an algorithm to optimize the
layout of such networks. We have used this ap-
proach to visualize the relations between genes
and their publication-based MeSH term annota-
tions. The resulting visualizations were found to
be informative and could convey insights about
the data that would not be easily extracted from
standard, single-layer networks.

1 Introduction
A popular technique for organizing and presenting a set of
objects and their relations are networks. Often, however,
studying more than a single type of objects is desired. We
here propose a data exploration and visualization approach
based on construction, optimization and visualization of a
multi-layer network. Each layer of such a network includes
objects of one type. Objects are related to those from the
same layer, and to objects at adjacent layers. An example of
such a hypothetical two-layer network is shown on Fig. 1.
In the paper, we propose a layout optimization algorithm
for multi-layer networks, and present a case study, where
the proposed method was used to relate genes and MeSH
terms of their corresponding publications.

Figure 1: 3D visualization of a two-layer network.

2 Methods
We have developed a method for multi-layer network lay-
out optimization based on an extension of a state-of-the-art
network layout algorithm. Finding an appropriate network
layout is critical for effective visualizations, since it helps
to reveal inherent network structure. If vertices were to
be positioned randomly, the resulting visualization would
be incomprehensible for all but the simplest networks. We
also wish to identify vertices, which are in the particular
layout of the network well associated to their neighbors,
and provide means to emphasize them in the visualization.

For optimization of multi-layer networks, we have
adapted the Fruchterman-Reingold algorithm [Fruchter-
man and Reingold, 1991], one of the best known represen-
tatives from the force-directed family of methods for graph
drawing [Tollis et al., 1998]. In this algorithm, the con-
nected vertices attract each other, and all vertices — con-
nected or unconnected — repel each other. The algorithm
starts with an arbitrary placement of vertices and iteratively
moves them based on the sum of forces acting on them. The
degree of relative movements of the vertices is decreased
with time, using the simulated annealing approach [David-
son and Harel, 1996].

Our modification (Eq 1–3) for multi-layer networks re-
tains the general structure of the Fruchterman-Reingold al-
gorithm, but alters the definitions of attractive (fa) and re-
pulsive (fr) forces as well as of the coefficient k, that con-
trols the equilibrium distance between vertices. A new
parameter λ is introduced in the definition of the latter,
through which the influence of forces between layers can
be adjusted with respect to forces within layers. In the
equations d(v, u) refers to the Euclidean distance between
drawn vertices v and u, while area refers to the area of the
whole drawing surface.

ki,j =

{√
area
|Vi| if i = j

λ ∗ ki,i+kj,j

2 if i 6= j
(1)

fa(v, u) =
d(v, u)2

ki,j
v ∈ Vi, u ∈ Vj (2)

fr(v, u) =

{
− k2

i,i

d(v,u) if v, u ∈ Vi

0 if v ∈ Vi, u ∈ Vj , i 6= j
(3)

In a multi-layer network visualization, we are interested
how concepts from one layer associate to concepts in the
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adjacent layer. To identify objects where such association
is strong, we score the placement of vertex v ∈ Vi from
layer iwith respect to its neighbors in layer j. We assess the
proximity of the latter by computing the median Euclidean
distance to them. This distance is then normalized with the
median distance between vertices from layers i and j. In
our network visualizations, the score of vertices is denoted
through the size of the points.

3 Experimental study
We here present a simple demonstration of utility of the
proposed procedure. In an experimental study, we have
considered genes from a social amoeba Dictyostelium dis-
coideum. The network consisted of two layers, one hold-
ing the genes and the other their associated Medical Sub-
ject Headings (MeSH) descriptors annotated to the papers,
where these genes have been cited.

Data sets and network structure
A central web site dedicated to D. discoideum is called
dictyBase 1 and among other maintains a data file with a
list of references (PubMed identifiers) associated to each
of the genes of this model organism. For each publica-
tion included in this set we have queried PubMed 2 for
a list of associated MeSH annotations. MeSH is a con-
trolled vocabulary used in indexing of biomedical docu-
ments and provides us with a way to summarize articles
with a small number of informative descriptors. We next
associated each gene in our set to its respective MeSH pro-
file, which consisted of MeSH terms and a corresponding
number of papers citing the gene and including a particular
MeSH term. This profile is equivalent to a bag (i.e. a multi-
set) of descriptors, a data representation format frequently
used in text mining. Using standard text mining methods
on MeSH profiles we computed: weights measuring the
importance of individual MeSH terms for each gene, and
the similarities between gene pairs. These were then used
to define edges between gene–MeSH term and gene–gene
pairs, respectively. For the MeSH network layer, we asso-
ciated each MeSH term with its publication profile, a set
containing all D. discoideum publications that are anno-
tated with this particular term. Again, a similarity function
was computed and used to define the MeSH term network.

Results
We used the methods from section 2 to optimize the con-
structed multi-layer network. Visualizations were rendered
in a network visualization and explorative analysis com-
ponent in the Orange data mining framework [Demsar et
al., 2004]. In these visualizations the two layers have been
overlaid resulting in a 2D image.

The obtained gene–annotation network contained sev-
eral interesting substructures and enabled many insights to
be extracted from the visualization. It could be noticed
for example that several MeSH terms are highly related to
some clusters of genes. Placed close together they help elu-
cidate these groups.

Another effect can be observed in Fig. 2 showing a sec-
tion of the network. What would be one homogeneous

1http://dictybase.org
2www.ncbi.nlm.nih.gov/pubmed

cluster of genes is divided into two distinct groups by
MeSH terms. Two of the terms are common to genes
from both groups (Phylogeny and Receptors, Cyclic AMP),
while Green Fluorescent Proteins and GTP-Binding Pro-
teins are associated with two disjoint groups inside the clus-
ter, thereby distinguishing two subsets of the whole compo-
nent. We can also see that Phylogeny, Green Fluorescent
Proteins and Receptors, Cyclic AMP have been placed very
close together, although they are not actually connected in
the MeSH term network. This is because they share com-
mon neighbors on the gene layer.

Figure 2: Two MeSH terms are pulling apart distinct groups
of an otherwise highly connected cluster of genes.

Many more interesting properties and insights can be
obtained by observing various substructures that emerge
from this multi-layer network visualization. The meaning
of some was clear even to a non-expert, while others have
yet to be inspected by researchers studying this interesting
model organism.
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Abstract

We present Bayesian Network Wizard, a soft-
ware to learn static and dynamic Bayesian net-
works, both for discrete and continuous nodes.
The user is guided through all steps of network
learning by a user-friendly wizard. The soft-
ware is freely available to nonprofit users upon
request.

1 Introduction
Bayesian networks (BNs) are probabilistic graphical mod-
els for the representation and analysis of models involving
uncertainty. They are widely used in various fields, such
as data mining, diagnostic systems, decision support sys-
tems, and bioinformatics. In bioinformatics BNs are be-
coming increasingly used to learn cellular networks from
gene expression data [Friedman, 2004]. Their probabilistic
framework makes them able to represent the intrinsic vari-
ability of biological systems and naturally take into account
the unavoidable noise in the data. Furthermore, BNs have
proven to be effective tools for genetic association stud-
ies, where they allow learning complex multivariate mod-
els involving SNPs and phenotypic traits [Sebastiani et al.,
2005].

Different Bayesian network learning algorithms
have been proposed in the literature and software
tools developed, among which the Bayes Net Tool-
box (http://www.cs.ubc.ca/˜murphyk/
Software/BNT/bnt.html), Bayesware Dis-
coverer (http://bayesware.com/), Hugin
(http://www.hugin.com/), and Banjo (http://
www.cs.duke.edu/˜amink/software/banjo/).
However, there are only a few freely available software
tools that implement algorithms for both static and dy-
namic networks. Moreover their use generally requires
learning at least the basic syntax of the programming
language used by the authors.

We have developed Bayesian Network Wizard (BNW),
a software to learn different types of Bayesian networks
(static/dynamic) with continuous or discrete variables. The
software has a user-friendly interface that guides the user
through all phases of network learning, from data loading
to the choice of the network type and the parameters re-
quired by the algorithm, to graphical visualization of the

learned network. BNW is freely available to nonprofit users
upon request to the authors.

2 Implementation
Bayesian Network Wizard provides learning algorithms
both for static and dynamic BNs with variables that are ei-
ther all discrete or all continuous.

For discrete variables, BNW employs Matlab functions
contained in the Bayes Net Toolbox by K. Murphy. In the
case of static networks the learning algorithm proposed by
Cooper and Herskovits [Cooper and Herskovits, 1992] is
implemented; in the case of dynamic networks the algo-
rithm proposed by Friedman et al. is used [Friedman et al.,
1998].

For continuous variables BNW relies on a learning al-
gorithm proposed by us, which assumes that variables are
conditionally Gaussian with respect to the parents [Ferrazzi
et al., 2007].

BNW has been written in Matlab (version R2007a)
and the graphical user interface has been developed us-
ing the Matlab GUIDE tool. The program has been com-
piled with the Matlab Compiler (v. 4.6) for Windows
(98/NT/2000/XP) platforms. The stand-alone executable
file is distributed together with the runtime Matlab libraries
and does not require any license.

The graphical interface appears as a wizard that guides
the user during all steps of the network learning process.
At the beginning data are loaded and the user has to choose
which type of network he wants to learn (static/dynamic)
and the variables type (continuous/discrete). Then another
window appears, which allows the user to set the values
for the parameters required by the learning algorithm. The
appearance of this window varies according to the network
type selected at the first step.

After the user has chosen the parameters learning starts
and, as soon as it is concluded, a window containing
the learned graph opens. The graphical visualization ex-
ploits the open source Java libraries Jung 1.7.6 (http:
//jung.sourceforge.net). A Menu bar allows the
user to choose between different graph layouts, personalize
node and arc color, zoom in/out, and save the graph in dif-
ferent file formats. Furthermore, the graph is saved also as
a GML file, a text-based graph file format that can be visu-
alized using yEd, a powerful graph editor (http://www.
yworks.com/en/products_yed_about.html).
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Figure 1 presents a screenshot of the program windows
in the case in which a static network is learned from dis-
crete data, while Figure 2 shows a graphical representation
of the learned network.

(a)

(b)

Figure 1: Screenshot of the program windows. (a) The
first window allows the user to load the data and choose the
network type; (b) The second window allows the selection
of the necessary parameters for the chosen network type.

3 Conclusions

We have presented BNW, a software to learn Bayesian net-
works. BNW provides learning algorithms for different
network types and guides the user by means of a wizard.
BNW can be applied in a variety of application settings,
including data mining, bioinformatics, and biomedical sys-
tems modeling.

Its flexibility and easiness of use allow also inexperi-
enced users to quickly obtain results on different types of
data, thus making it a useful instrument for research and
especially suitable in teaching settings.

Figure 2: Graphical representation of the learned net-
work. Once learning is completed, a window containing a
graphical representation of the network opens.
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Abstract 

In this paper we present an integrated tool to de-
fine gene-based predictive models from genome-
wide SNPs datasets. Compared to the standard 
SNP-based models, our approach leads to more 
parsimonious models without losing predictive 
ability. We developed an integrated framework 
to automate the overall complex analysis strat-
egy, in order to perform a robust validation of 
our approach and to make it applicable to differ-
ent datasets for further analysis. We tested the 
tool on a dataset coming from a real genome-
wide association study, comparing SNP and 
gene-based models performances. Results show 
that our proposed method is more parsimonious 
and therefore less prone to over fitting than stan-
dard SNP-based approaches, while preserving 
prediction performances.  

1 Introduction 

Genome-wide association studies (GWAS) represent a 
powerful approach to identify disease susceptibility genes, 
offering the promise of discovering novel targets for 
therapeutic treatments. However, these studies are af-
fected by the non-trivial problem multi-hypotheses testing 
significance [Balding, 2006]. To overcome this problem, 
non parametric approaches may offer a suitable methodo-
logical solution. Bayesian networks (BNs) represent an 
appropriate approach to perform multivariate analyses, as 
they are able to represent complex associations between 
phenotype, genetic and environmental factors using a 
small number of parameters [Sebastiani et al., 2005].  
However, learning a BN from a SNP-based GWAS data-
set is often non-trivial due to the high number of variables 
to be taken into account in the model (hundreds of thou-
sands), with respect to the instances of the dataset (dozens 
to few thousands). Therefore, it becomes very interesting 
to use an abstraction of the variable space that suitably 
reduces its dimensionality without losing information. As 
the final aim of genetic association studies is to identify 
how genes influence the phenotype, we showed how rep-
resenting the information of the set of SNPs mapping to 
the same gene as a new meta-attribute may be a good 
choice to build a more parsimonious model [Malovini et 
al., 2009]. However, the complexity of that analysis re-

quired the use of different software tools for each step, 
making it hard to be done automatically and affecting its 
reproducibility. In this paper we describe how we over-
come this problem with the development of a tool per-
forming an overall automation of the strategy, so that: i) a 
more robust evaluation of the performance of the pro-
posed approach is provided, and ii) an integrated frame-
work  is available to be used for further analysis on differ-
ent datasets. 

2 Methods 

We developed SNP2Net, a MATLAB tool that aims at 
automatically perform the analysis strategy, which is 
made of two main steps: i) generation of meta-attributes 
(each one representing a gene), by applying a classifica-
tion tree based method, ii) learning of a BN in which the 
nodes represent the meta-attributes and the phenotypic 
trait of interest. Moreover, the tool allows an easy setting 
of the many parameters required by using a graphical user 
interface (GUI). 
The meta-attribute definition is made by grouping SNPs 
according to their gene annotation mapping. After map-
ping the 40 top-associated SNPs (i.e. with a p-value < 10

-4
 

coming from standard GW allelic association tests), the 
tools selects genes represented by at least two SNPs (24 
genes). Then each meta-attribute is given a value (“state”) 
by learning a classification tree (as described in [Malovini 
et al., 2009]). There are several parameter affecting both 
the classification tree generation and the logic of states 
assignment, which may be setup by the user in the GUI 
(see result section). Finally, a dataset containing meta-
attributes states is generated applying the rules learned by 
the classification tree on the original SNPs dataset. 
Once the meta-attributes are defined, both SNPs and 
meta-attributes datasets are used to build a BN for pheno-
type prediction. BN structure and probability distribution 
learning are performed including the BN toolbox [Mur-
phy, 2002], which implements the K2 search algorithm 
for the structure learning phase [Cooper and Herskovits, 
1992]. The algorithm requires the specification of the 
variables searching order, which can be chosen from the 
GUI between gain ratio and information gain. Once the 
BN is learned, it can be used to infer the posterior prob-
ability of a node status given the evidence of the other 
nodes: this allows to predict the phenotype status given 
the other variables values. 
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In order to assess the network prediction performance and 
how it will generalize when applied to a new independent 
dataset, we made: i) an internal validation, using a K-fold 
cross-validation (CV) strategy (properly generating folds 
with respect to the class values distribution), and ii) an 
external validation, consisting in performing the K-fold 
cross-validation thousands times, which gives a measure 
of the stability of the performance with respect to the fold 
sampling.  

3 Results and Discussion 

We tested our method using data coming from a genome-
wide scan involving 570 35-55 years old patients affected 
by arterial hypertension (AH) and a control population of 
664 individuals without an AH historical. We removed 
examples with missing values (17,4% of the sample), as a 
suitable method to deal with missing data is now under 
development. The classification tree algorithm has been 
setup with the following parameters: m-estimate = 8 for 
the Minimal Error Pruning; number of different states for 
each meta-attributes = 5; minimum number of instances in 
one leave of the tree to be considered as a state = 13 (1% 
of total instances); K2 ordering criteria = gain ratio.  
Performing a 10-fold CV, we obtained a classification 
accuracy of 58,18% for the SNP-based network and  
62,80% for the gene-based net. Finally, performing a 150-
times replication of the 10-fold CV, we obtained two dif-
ferent accuracy values distribution summarized in the 
box-plots shown in Figure.1. 
 

 

 

Figure 1. Box plot of the classification accuracy distribution 

obtained from a 150-times replication of 10-fold CV, on both 

SNPs and genes (meta-attributes) nets. Each box has lines at the 

lower quartile, median, and upper quartile values. SNP-based 

model has a distribution around the median accuracy of 60,03%, 

while the gene-based model has a distribution around a higher 

median value, 62,54%. 

 

Thanks to the availability of SNP2Net (a demo version is 
available at http://bioinfo.unipv.it) it was possible to per-
form a thorough evaluation of the performances of the 
gene-based prediction method herein presented. In par-
ticular it was possible to show that: 
• Our proposed method is more parsimonious than stan-

dard SNP-based approaches, while preserving predic-
tion performances; moreover, since our proposed 
method has less variables than the SNP-based one, it is 
also less prone to over fitting. 

• It is rather interesting to note that our proposed 
method seem to have less variance than the SNP-based 
one, as shown by the box plot diagram. 

• The proposed model is a suitable alternative to haplo-
types, which are on the contrary frequently used also 
as prediction factors. 

It is needless to say that the implemented tool may easily 
allow further generalization. For example, it will be pos-
sible for the user to define lists which contains SNPs that 
may be related, even if they do not belong to specific 
gene. In this case, it will be possible to implement a cus-
tomized two step prediction strategies that may allow us-
ing different kinds of knowledge and user-provided in-
formation. 
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Abstract 

The use of unsupervised mining, such as associa-
tion rules and sequential mining was used in the 
past as a preprocessing step to the classification 
task. The recent growth in the use of temporal 
abstraction for temporal knowledge discovery 
from multivariate temporal data, through time in-
tervals mining, is proposed to be employed for 
the classification of multivariate temporal data. 
We present KarmaLego, an efficient time inter-
vals mining which discovers non-ambiguous pat-
terns based on a flexible version of Allen's rela-
tions. Later the discovered patterns are used as 
features which represent the relations of the mul-
tiple variables. Several settings for the suggested 
approach are examined through a rigorous evalu-
ation. 

1 Introduction 

With the increase in patient data logged overtime and the 

reduction of storage costs, classification of multivariate 

temporal data is very useful in many tasks. Temporal data 

provides more detailed description of the patient situation 

which is expected to lead to better diagnosis and deci-

sions, however, analyzing multivariate temporal data, 

especially for classification is challenging, often made 

without consideration of the relations among the multiva-

riate time series. Commonly the representation of time 

stamped data is made using time windowing, in which 

features such as the mean, minimal or maximal value is 

extracted. More sophisticated approaches represent the 

time window with discrete values, such as qualitative 

mean (e.g., low, medium, high) ‎[20]. Other approaches 

transform the time series to the frequency domain by Fur-

rier transform ‎[2] for example.  

However, determining the right time window size is 

commonly problematic. Then extracting features from the 

time series within a given time window, such as minimal 

value, or transformations such as wavelets or Fourier 

transform, do not allow an explicit temporal analysis. Ad-

ditionally, these approaches do not allow expressing the 

relations among the multi variables along time. 

In this paper we present an approach, in which the time 

series are abstracted into time intervals series ‎[18] and 

frequent temporal patterns of the multivariate time inter-

val series are discovered. Then the discovered patterns are 

used as features to represent the classified entities. We 

demonstrate our approach in the domain of Intensive Care 

Unit. We start by surveying the background. In the me-

thods section we describe the descretization methods we 

used for the temporal state abstraction and KarmaLego – 

the time intervals mining method. Finally, we describe the 

entire procedure through the rigorous evaluation and re-

sults on the ICU dataset. 

2 Background 

In our approach we first abstract the time series to states, 

then mine them to discover frequent patterns, which are 

later used as features in the classification task. Thus, in 

this section we refer to the domain of Temporal Abstrac-

tion ‎[18], we survey the recent development in time inter-

vals mining and refer to the concept of classification 

based on temporal patterns. 

2.1 Temporal Abstraction 

Temporal abstraction is the aggregation of time series to a 

summarized and a more comprehensive representation for 

a human or productive for further data mining tasks. The 

task of temporal abstraction corresponds to the task of 

segmenting the time series, having a meaningful symbol 

for each segment. Segmenting time series ‎[7] is a repre-

sentation of time series in a piecewise linear representa-

tion, which is the approximation of a time series length n 

with k straight lines, usually k<<n. 

Knowledge-based temporal abstraction (KBTA), as pre-

sented by Shahar ‎[18], infers domain-specific interval-

based abstractions from point-based raw data, based on a 

formal domain-specific abstraction and interpolation. 

However, although the KBTA method applies the tempor-

al-abstraction knowledge to create abstractions that are 

meaningful to the domain expert, such knowledge is not 

always available. Moreover, the knowledge provided by 

the domain expert is not always pertinent to the data-
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mining task, such as classification, but rather to the clini-

cal expert's routine activities, such as diagnosis or therapy 

‎[20]. Thus, several automated data-driven methods, which 

provide abstractions are less semantically meaningful, but 

can be potentially useful for data mining and finally clas-

sification, which we will present here. This can be 

achieved for state abstraction, by simply applying unsu-

pervised discretization methods, such as equal width dis-

cretization and equal frequency discretization. Other me-

thods are k-means clustering ‎[8], in which the time series 

values are grouped into k clusters from which the states 

can be deduced. More sophisticated methods refer to the 

temporal order of the time points in the time series, in-

clude: Symbolic Aggregate approXimation (SAX) ‎[7] is a 

method for symbolic representation of time series and 

Persist ‎[8].  

2.2   Mining Time Intervals 

Mining time intervals is a relatively young research field. 

One of the earliest studies in the area is that of Villafane 

et al. ‎[20], which searches for containments of intervals in 

a multivariate symbolic interval series. Kam and Fu ‎[6] 

were the first to use all of Allen's temporal relations ‎[1]. 

Höppner ‎[2] was the first to define a non-ambiguous re-

presentation of Allen's-based time intervals patterns by a 

k
2
 matrix to represent all of the pairwise relations within a 

k-intervals pattern. Unlike Höppner's naïve mining me-

thod, Papapetrou et al. ‎[15] presented a mining method, 

which results in an enumeration tree that enumerates all 

the symbols and their possible relations combinations, 

presenting a BFS, DFS and Hybrid approaches, using only 

five temporal relations. . Additionally, they relaxed the 

temporal relations with the notion of an epsilon, which we 

extended to all Allen's relations (fig 1).  

 
Figure 1 - A flexible extension of Allen's seven relations using 

the same Epsilon value for all relations. The [eighth] starts rela-

tion is required when epsilon > 0. 

ARMADA presented recently by Winarko and Roddick 

‎[23], uses a candidate generation and mining iterations 

approach. Mörchen ‎[11] proposed an alternative to Allen's 

relations-based methods, in which time intervals are 

mined to discover coinciding symbolic time intervals, 

called Chords, while repeating partially ordered chords 

are called Phrases. Sacchi et al ‎[18] use abstracted time 

series to find temporal association rules by generalizing 

Allen's rules into a relation called PRECEDES. In ‎[14] we 

present KarmaLego in more detail and evaluate its per-

formance in comparison to Papapetrou's ‎[15] and AR-

MADA's ‎[23] methods. 

2.3 Classification Using Temporal Patterns 

Using unsupervised methods for knowledge discovery as 

a preprocessing step for classification was suggested first 

by Liu et al ‎[8]. The authors used association rules mining 

to discover frequent association rules of each class, called 

Class Association Rules which later used as features in the 

classification task. Since then several approaches were 

proposed to employ association rules for classification, 

and later sequential mining was employed as well. Further 

to the recent growth of interest in the use of temporal ab-

straction as a preprocessing stage and time intervals min-

ing for multivariate temporal knowledge discovery ‎[12] , 

the idea of employing time intervals related patterns for 

multivariate temporal data classification was suggested 

very recently in ‎[2]. The authors used domain expert for 

state abstraction and gradient abstraction ‎[19] (e.g., in-

crease, decrease) and further mined the intervals for com-

plex patterns consisting on the before and overlap Allen's 

relations to overcome the lack of robustness in Allen's 

relations. Finally a Boolean representation of the temporal 

patterns is used, according to their existence in the classi-

fied entity. 

3 Methods 

3.1   State Abstraction 

To abstract the temporal data into states we used a Know-

ledge Based approach, in which the data was abstracted 

according to the domain expert definitions, coming from 

his domain of diagnosis and treatment as described in 

‎[20]. As alternative to the knowledge based approach we 

used four discretization methods which are the focus of 

this section and this study. 

Equal Width Discretization (EQW) determines the cut-

points by dividing the value range into equal width bins. 

The number of values in each bin is based on the distribu-

tion of the values. 

Equal Frequency Discretization (EQF) divides the value 

range into bins, so that the frequency of values in each bin 

is equal, thus, the number of values in each bin is equal. 

Symbolic Aggregate Approximation (SAX) ‎[7] consists 

of two steps. The first step is the Piecewise Aggregate 

Approximation, in which the granularity of the time series 

is reduced by averaging several time points into a single 

valued time point. The second and main step of the SAX 

method is the discretization of the PAA output. The dis-

cretization is based on the assumption that normalized 

time series have a Gaussian distribution, and on the desire 

to produce equal probability states. The time series is 

therefore normalized and discretized into a fixed number 

of states according to predetermined cut-points which 

produce equal-sized areas under a Gaussian curve. 
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candidates which often made by naïve generation, as ex-

plained in details in ‎[14]. 

 
Figure 2 – A KarmaLego enumeration tree, in which the direct expan-

sion of TIRPs is performed. Each node represents a TIRP as a half ma-

trix of the temporal relations. 

3.3   Bag of TIRPs 

After discovering frequent TIRPs from the entities we can 

use them as features for the classification task. We adopt 

the idea of bag-of-words from the textual domain ‎[22], in 

which terms are used to represent documents. In our case 

it is a bag-of-tirps, which are used to represent the patients 

for the classification task. The discovery process through 

KarmaLego results with a list of TIRPs, having its vertical 

support, which describes in how many patients it was dis-

covered, and horizontal support for each patient, which 

describes how many times it was found for a specific pa-

tient within the period of time in the dataset. 

When attempting to classify based on TIRPs a table has to 

be created, in which the columns (features) are the TIRPs 

and the last is the label, and the rows are the patients. In 

this study we suggest two types of representation for a 

TIRP, related to a patient:  

 binary, in which a TIRP is represented by 1 it exists 

and 0 otherwise.  

 horizontal support (HS), in which the value is the 

number of instances of the TIRP were discovered in 

the patient multivariate temporal data. 

3.4 Feature Selection 

The reduction of the number of TIRPs (features) as often 

is required in classification procedures is even more es-

sential here since the features (TIRPs) are sometimes ex-

tensions of other TIRPs and thus refer to a subset of pa-

tients of the extended TIRP, which creates dependency 

within the features. Thus, we used several filtering feature 

selection methods, in which each feature is ranked based 

on some criterion that measures the correlation to the class 

to estimate the classification potential.  Finally we ex-

tracted the top ranked features. We used a simple method 

which is based on the Vertical Support (VS), Gain Ratio 

and Fisher Score. 

 VS - Based on the vertical support of each TIRP we 

selected the TIRPs having the highest VS, which were 

expected to represent more patients. 

 Gain Ratio - was designed to overcome a bias in the 

Information Gain measure, and which measures the 

expected reduction of entropy caused by partitioning 

the examples according to a chosen feature ‎[8]. 

 Fisher Score - The Fisher score ranking technique 

calculates the difference, described in terms of mean 

and standard deviation, between the positive and neg-

ative examples relative to a certain feature ‎[4]. 

4.   Evaluation 

To evaluate the approach of the classification through 

temporal patterns on the ICU dataset, we designed an ex-

periment which includes several settings for each parame-

ter.  

4.1 ICU Data Set 

An ICU dataset was used of patients who underwent car-
diac surgery at the Academic Medical Center in Amster-
dam, the Netherlands, in the period of April 2002-May 
2004. Two types of data were measured: static data in-
cluding details on the patient, such as age, gender, sur-
gery type, whether the patient was mechanically ventilated 
more than 24 hours during her postoperative ICU stay, 
and temporal data, measured each minute along the first 
12 hours of the ICU hospitalization, including: mean ar-
terial blood pressure (ABPm), central venous pressure 
(CVP), heart rate (HR), body temperature (TMP), and two 
ventilator variables, namely fraction inspired oxygen 
(FiO2) and level of positive end-expiratory pressure 
(PEEP). The data contains 664 patients, among which 196 
patients were mechanically ventilated for more than 24hr 
(29.5%).  

4.2 Experimental Plan 

We wanted to answer several questions. 

1. What is the best Discretization method and how 

many states are required? 

2. What is the best epsilon value for the mining? 

3. What is the best TIRP representation? 

4. What is the best feature selection method and Top 

selection? 

We used the temporal data of the last three hours ninth 

till twelfth hours. All the variables were abstracted using 

the four discretization methods [EQW, EQF, SAX, Pers-

ist] into 3 and 5 states. Then each abstracted dataset was 

mined using KarmaLego with maximal gap (on the rela-

tion before – see fig 1) of 100 seconds, minimum vertical 

support of 20% and the TIRPs were restricted to not more 

than 5 intervals. The mining was performed with three 

epsilon values 0, 5 and 10. After that the discovered 

TIRPs were used to create a matrix of the patients using 

the two representations: binary and horizontal support. 

Then the features were selected by the three feature selec-

tion methods Vertical Support, Gain Ratio and Fisher 

Score into three top selection levels 50, 100 and 150. 

This resulted into 243 evaluation runs, in which we used 

several classifiers, but we report the results of Random 
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Forest using weka Classification method, which outper-

formed the other, with 10 cross validation. 

5. Results 

In the results analysis we compare the mean accuracy 

values of all the experiments according to the parameters. 

The parameters are analyzed according to the procedure 

described earlier. 

5.1 Discretization methods  

Figure 3 presents the mean accuracy of all the runs relat-

ing to the each discretization method and the states num-

ber. In most of the discretization methods abstracting into 

5 states outperformed the 3 states, except for Persist.  

 
Figure 3 – Abstracting into five states outperformed for most of the 

methods, out of Persist. 

5.2 Epsilon and TIRP representation 
Figure 4 presents the mean accuracy for all the runs of the 

epsilon values and the TIRP representations. The Binary 

representation outperformed the HS. This indicates that 

the number of instances of the TIRP is being of less im-

portant to the classification task. While the Binary repre-

sentation accuracy increased for lower epsilon it was 

slightly improved for the HS when the epsilon value in-

creased. This is actually surprising since it was expected 

that having a larger epsilon will increase the robustness of 

the temporal relations and will enable more representative 

temporal patterns. 

 
Figure 4 – The binary outperformed the HS representation, especially 
when the epsilon value was 0. 

5.3 Feature Selection 

The Fisher Score and the Gain Ratio outperformed the 

Vertical Support which selects the TIRPs with the highest 

vertical support. This can be explained by the imbalance 

of the classes, which might not represented by the TIRPs 

having the highest VS. 

 
Figure 5 – The FS and GR outperformed the VS, which select the 

TIRPs with the highest VS. 

We present in Table 1 the top six runs which brought the 

best accuracies. The top runs correspond to the mean ac-

curacy analysis presented in the previous sections, which 

shows that the best settings for this dataset are abstracting 

using the EQW into 5 states, which is interesting since it 

is the simplest discretization method. Mining using low 

value of epsilon and using the Binary representation for 

the TIRPs. Finally to reduce the features both Gain Ratio 

and Fisher Score with 100 to 150 features were the best. 

Table 1 – the top evaluation runs with the dominant set-

tings in bold. 

discM |s| e 

TIRP 

- Rep |f| FS 

Acc 

[%] 

EQW 5 5 Bin 100 GR 79.64 

EQW 5 10 Bin 150 FS 79.64 

EQW 5 0 HS 150 GR 79.34 

EQW 5 0 Bin 100 GR 79.34 

EQW 5 5 Bin 150 FS 79.03 

EQW 5 5 Bin 150 GR 79.03 

6. Discussion and Conclusions 

We presented an approach for classification of multiva-

riate temporal data using time intervals patterns, which 

were discovered after abstracting the multivariate time 

series into time intervals. In addition to knowledge based 

state abstraction we used discretization methods. We pre-

sented an efficient time intervals mining algorithms, 

called karmaLego, for the discovery of non-ambiguous 

patterns consisting on a flexible version of Allen's tem-

poral relations. The discovered patterns (TIRPs) are then 

used as features for the classification task. We presented 

two representation approaches, binary and horizontal 

support which uses the number of instances of the TIRP 

within the given temporal data. To reduce the number of 

features we used two commonly used feature selection 

measures and a measure consisting on the vertical sup-
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port. Finally we used the Random Forest classification 

method for the classification task. 

Our analysis shows that abstracting into five states was 

better for most of the methods out of Persist, which is 

motivated by creating long intervals (fig 3). The Binary 

representation though simpler outperformed the Horizon-

tal Support, which can be explained by small values of 

HS and it might be too noisy. This happened especially 

for epsilon 0 (fig4). The feature selection measures were 

much better than the VS measure, which prefers TIRPs 

with high vertical support. This effect can be because this 

dataset is imbalanced (fig 5). Finally, we showed in table 

1 the best runs with the best settings. 

For future work we would like to perform another mining 

approach, in which each class patients are mined sepa-

rately to discover its representative TIRPs, which can re-

duce the problem of imbalanced datasets. Then after dis-

covering the TIRPs of each class to create a matrix based 

on their unification. Additionally, we plan to develop a 

discretization method that considers the class of each pa-

tient to perform an abstraction which maximizes the dif-

ference in the states distribution for each class, which is 

expected to discover different TIRPs for each class for 

better classification. Additionally we would like examine 

the use of smaller set of temporal relations which are 

more general to increase the number of discovered 

TIRPs. 
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Abstract

Computation of semantic similarity between
concepts is a very common problem in many lan-
guage related tasks. In the biomedical field, sev-
eral approaches have been developed to deal with
this issue by exploiting the knowledge available
in domain ontologies. In this paper, we study the
behaviour of several measures based on the ex-
ploitation of the geometrical model of a domain
ontology of the biomedical field (SNOMED-
CT). Then, we propose a new approach based on
the amount of overlapping and non-overlapping
taxonomical knowledge between a pair of con-
cepts. Its performance is compared against clas-
sical approaches using a standard benchmark
composed by manually ranked biomedical terms,
showing that our proposal obtains the highest
correlation with respect to human experts.

1 Introduction
The computation of the semantic similarity/distance be-
tween concepts has been a very active trend in compu-
tational linguistics. It gives a clue which quantifies how
words extracted from documents or textual descriptions are
alike. Similarity measures are usually based onis-a rela-
tions between concepts which are inherent to the concept’s
semantics. For example,bronchitisandflu are similar be-
cause both are disorders of the respiratory system.

From a domain independent point of view, the assess-
ment of semantic similarity has many direct applications
such as, word-sense disambiguation[Resnik, 1999], doc-
ument categorization or clustering[Cilibrasi and Vitnyi,
2006], word spelling correction[Budanitsky and Hirst,
2006], automatic language translation[Cilibrasi and Vit-
nyi, 2006], ontology learning[Sanchez and Moreno, 2008]
or information retrieval[Leeet al., 1993].

In the biomedical domain, similarity measures can im-
prove the performance of Information Retrieval tasks, since
they are able, for example, to map a user’s specific search
query (e.g. patient cohort identification) to multiple equiv-
alent formulations[Pedersenet al., 2007]. Other authors
have applied semantic similarity measures to discover sim-
ilar protein sequences[Lord et al., 2003] or to the auto-
matic indexing and retrieval of biomedical documents (e.g.
the PubMed digital library)[Wilbu and Yang, 1996].

In general, semantic similarity computation is based
on the estimation of semantic evidence observed in some
knowledge source. That is, background knowledge is
needed in order to measure the degree of similarity between
a pair of concepts.

Domain-independent approaches[Resnik, 1995; Lin,
1998; Jiang and Conrath, 1997] typically rely on Word-
Net [Fellbaum, 1998], which is a freely available lexical
database that describes and structures more than 100,000
general English concepts, which are stored as an ontology.
An ontology defines the basic terms and relations compris-
ing the vocabulary of a topic area as well as the rules for
combining terms and relations to define extensions to the
vocabulary[Necheset al., 1991]. However, in specific do-
mains it is more appropriate to use domain ontologies that
have been built to describe precisely and completely the
information related to a certain domain of knowledge. In
biomedicine, there exist a growing number of ontologies
that organize medical concepts into hierarchies and seman-
tic networks like the Unified Medical Language System
(UMLS) of the National Library of Medicine. SNOMED-
CT is one of the largest sources included in the UMLS
and contains a number of medical concepts interrelated by
different conceptual hierarchies corresponding to different
scopes (procedures, substances etc) (see section§3).

In the past, some classical similarity computation mea-
sures have been adapted to the biomedical domain[Ped-
ersen et al., 2007] by exploiting medical ontologies
(SNOMED-CT). In this paper, we expand this study to
other classical similarity measures[Wu and Palmer, 1994;
Maedche and Zacharias, 2002] based on the exploitation
of the ontology’s geometric model. Considering the lim-
ited performance obtained by previous attempts applied to
the biomedical domain, we present a new method which is
able to overpass them when evaluated against a benchmark
of medical concepts. It is based on the computation of the
amount of common taxonomical knowledge between a pair
of concepts.

The rest of the paper is organized as follows. Section
2 presents some similarity computation paradigms and the
way in which they have been used in the past to deal with
biomedical concepts. Section 3 presents classical similar-
ity measures based on the ontology’s geometric model and
how can they be adapted to use SNOMED-CT as ontology.
Section 4 introduces a new measure aimed to provide a bet-
ter performance than previous approaches in the biomedi-
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cal field. In section 5, all the presented measures are evalu-
ated using a standard benchmark composed by 30 medical
terms whose similarity has been assessed by expert physi-
cians of the Mayo Clinic[Pedersenet al., 2007]. The final
section will present the conclusions of this study and some
lines of future work.

2 Related Work

In the literature, we can distinguish several different ap-
proaches to compute semantic similarity between concepts
according to the techniques employed and the knowledge
exploited to perform the assessment. First, there are unsu-
pervised approaches in which semantics are inferred from
the information distribution of terms in a given corpus[Et-
zioni et al., 2005; Landauer and Dumais, 1997]. Statisti-
cal analysis and shallow linguistic parsing are used to mea-
sure the degree of co-occurrence between terms which is
used as an estimation of similarity[Lemaire and Denhire,
2006]. These measures need a corpus as general as possi-
ble in order to estimate social-scale word usage. However,
due to their completely unsupervised nature and the lack of
semantic analysis over the text, they offer a limited perfor-
mance, specially when dealing with concrete domain such
as biomedicine[Pedersenet al., 2007]. This is motivated
by the lack of domain coverage of a general domain corpus
and the difficulty of compiling a relevant domain corpus
big enough to obtain robust statistics.

Other trends exploit structured representations of knowl-
edge as the base to compute similarities. Typically, sub-
sumption hierarchies, which are a very common way to
structure knowledge[Gómez-Pérezet al., 2004], have been
used for that purpose. The evolution of those basic seman-
tic models has given the origin to ontologies in which many
types of relationships and logical descriptions can be spec-
ified to formalize knowledge[Pedersenet al., 2007]. In
the biomedical field, many domain ontologies are available,
being SNOMED-CT or MeSH some of the most successful
examples.

From the similarity point of view, there exist ontology-
based measures which combine the knowledge provided by
an ontology and the Information Content (IC) of the con-
cepts that are being compared. IC measures the amount
of information provided by a given term from its proba-
bility of appearance in a corpus. Consequently, infrequent
words are considered more informative than common ones.
Based on this premise, Resnik[Resnik, 1995] presented a
seminal work in which the similarity between two terms is
estimated as the amount of information they share in com-
mon. In a taxonomy, this information is represented by the
Least Common Subsumer (LCS) of both terms. So, the
computation of the IC of the LCS results in an estimation
of the similarity of the subsumed terms. The more spe-
cific the subsumer is (higher IC), the more similar the sub-
sumed terms are, as they share more information. Several
variations of this measure have been developed[Lin, 1998;
Jiang and Conrath, 1997]. They have been adapted by Ped-
ersen et al.[Pedersenet al., 2007] to the biomedical do-
main by using SNOMED-CT as ontology and a source of
clinical data as corpus. Those measures can be affected by
the availability of the background corpus and their cover-

age with respect to the evaluated terms. Data sparseness
(i.e. the fact that not enough data is available for certain
concepts to reflect an appropriate semantic evidence) is the
main problem[Jiang and Conrath, 1997].

Without relying on a domain corpus, other approaches
consider taxonomies and, more generally, ontologies, as
a graph model in which semantic interrelations are mod-
elled as links between concepts. Several measures have
been developed to exploit this geometrical model, com-
puting concept similarity as inter-link distance (also called
Path Length)[Wu and Palmer, 1994; Radaet al., 1989;
Leacock and Chodorow, 1998]. In the past, this idea has
been applied to the MeSH (Medical Subject Headings) se-
mantic network[Radaet al., 1989] in order to improve
the information retrieval by ranking document from MED-
LINE, a corpus made up of abstracts of biomedical jour-
nal articles. Taking a similar approach, several authors
[Caviedes and J.Cimino, 2004; Nguyen and Al-Mubaid,
2006] developed measures for finding path lengths in the
UMLS hierarchy. The advantage of this kind of measures
is that they only use a domain ontology as the background
knowledge, so, no corpus with domain data is needed.
In this paper we centre the study on this kind of mea-
sures when applying them to the biomedical field by using
SNOMED-CT as ontology.

3 Semantic similarity measures based on the
taxonomical structure

In an is-a hierarchy, the simplest way to estimate the dis-
tance between two conceptsc1 and c2 is calculating the
shortestPath Lengthconnecting these concepts (i.e. the
minimum number of links)[Radaet al., 1989].

simpL(c1,c2)=min # of is−a edges connecting c1 and c2 (1)

Several variations of this measure have been developed
such as the one proposed by Wu and Palmer[Wu and
Palmer, 1994]. They propose a Path Length measure that
also takes into account the depth of the concepts in the hi-
erarchy (2).

simw&p(c1, c2) =
2 ∗ N3

N1 + N2 + 2 ∗ N3
(2)

, whereN1 andN2 is the number of is-a links fromc1

andc2 respectively to the LCSc, andN3 is the number of
is-a links fromc to the rootρ of the ontology. It scores
between 1 (for similar concepts) to 0.

Leacock and Chodorow[Leacock and Chodorow, 1998]
proposed a measure that considers both the shortest path
between two concepts (in fact, the number of nodesNp

from c1 to c2) and the depthD of the taxonomy in which
they occur (3).

siml&c(c1, c2) = − log Np/2D (3)

Notice, that if the pair of concepts inherits from many is-
a hierarchies, all the possible paths between two concepts
are calculated but only the shortest one is considered.

Related to the taxonomical aspect of ontologies, another
interpretation of these measures is possible, considering
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that the similarity is assessed from the minimum number
of shared superclasses of the pair of compared concepts.

Having into account these two issues, Maedche and
Zacharias[Maedche and Zacharias, 2002] defined the Con-
cept Match (CM) measure (4) based on the definition of the
Upward Cotopy(UC)[Maedcheet al., 2001].

Definition: The Upward Cotopy (UC) of a conceptci

is restricted to the set of superconcepts (upper concepts of
a concept in an is-a hierarchy) ofci, and the reflexive rela-
tionship ofci to itself. More formally, theUC(ci, H

C) of a
set of conceptsC with the associated partial orderHC (all
the is-a hierarchies of concepts, that is a directed, transitive
relationHC ⊆ C × C) is defined as:

UC(ci, H
C) = {cj ∈ C|HC(ci, cj) ∨ ci = cj}

whereHC(ci, cj) means thatci is a sub-concept ofcj .
Concept Match considers a proportion between the num-

ber of common UC from the total of UC of both concepts.

simCM (ci, cj) =
|UC(ci, H

C) ∩ UC(cj , H
C)|

|UC(ci, HC) ∪ UC(cj , HC)| (4)

Classical approaches use those measures relying on
WordNet [Fellbaum, 1998] as the ontology to obtain the
similarities between terms. However, due to the limited
WordNet’s coverage of biomedical terms[Burgun and Bo-
denreider, 2001], the performance obtained in this specific
domain concepts is poor[Pedersenet al., 2007]. So, as
stated in the previous section, they have been adapted to the
biomedical domain by exploiting SNOMED-CT instead of
WordNet.

SNOMED-CT (Systematized Nomenclature of Medicine,
Clinical Terms) is an ontological/terminological resource
distributed as part of the UMLS and it is used for index-
ing electronic medical records, ICU monitoring, clinical
decision support, medical research studies, clinical trials,
computerized physician order entry, disease surveillance,
image indexing and consumer health information services.
It contains more than 311,000 active concepts with unique
meanings and formal logic-based definitions organized into
13 overlapping hierarchies: clinical findings, procedures,
observable entities, body structures, organisms, substances,
physical objects, physical forces, events, geographical en-
vironments, social contexts, context-depedent categories,
and staging and scales. Each concept may belong to one
or more of those hierarchies by multiple inheritance. Con-
cepts are linked with approximately 1.36 million relation-
ships. In such a complete domain description,is-a relation-
ships can be exploited to calculate the similarity between a
pair of terms.

4 Superconcept-based distance
Path length-based measures only consider the minimum
path between a pair of concepts, omitting the rest of the
taxonomical knowledge available in the ontology. For com-
plex taxonomies, such as SNOMED-CT, with thousands of
interrelated concepts with multiple hierarchies that classify
the concepts, this kind of measures wastes a great amount
of knowledge. For this reason, it seems reasonable that
a measure that takes into account the whole taxonomical

hierarchy involving the evaluated concepts could provide
more accurate similarity assessments.

Taking this into account, a measure was defined in[Batet
et al., 2008b] based on the amount of non-shared taxonom-
ical information of a pair of concepts considering the com-
plete is-a hierarchy and exploiting ontologies with multiple
is-a hierarchies. In particular, this measure is based on the
number of non-common superconcepts of the pair of com-
pared concepts. The measure has already shown successful
behaviour in the context of finding clusters when ontolo-
gies provide additional semantical information for some of
the variables used in the objects description[Batetet al.,
2008b; 2008a]. In this work the original measure defined
in [Batetet al., 2008b] is normalized to take also into ac-
count the proportion between common and non-common
superconcepts and better behaviour is observed.

The set of superconcepts of a conceptci is represented
by a binary vectorxi = (xi1 . . . xin), beingn the number
of concepts of the ontology. Each elementxik represents
the existence of an is-a relation betweenci andck, k = 1 :
n, such as:

xik =







0,if ck /∈ UC(ci, H
C)

1,if ck ∈ UC(ci, H
C)

Having a vectorial representation of the concepts, the
distance between two conceptsci, cj can be defined as the
Euclidean distance between the associated vectorsxi, xj :

d(ci, cj) = d(xi, xj) =

√

√

√

√

n
∑

i=k

(xik − xjk)2

In this case, this measure has a very clear interpretation.
As the values in the vectors can only be 0 or 1, the differ-
ence(xik − xjk) can only be equal to 1 if and only ifck

is a superconcept ofci and it is not a superconcept ofcj

(or viceversa). Therefore,
∑

k=1:n(xik − xjk)2 is, in fact,
equal to the number of non-shared superconcepts between
ci andcj .

Based on this interpretation, the distance can be rewritten
in terms of the set of superconcepts ofci (UC) providing a
more compact expression, which is more efficient for eval-
uation in the scope of the treated ontologies with thousands
of concepts, and which do not require the explicit construc-
tion of the binary matrix associated to the ontology, too big
and hardly to manage in big ontologies:

de(ci,cj)=

=
√

|UC(ci,HC)∪UC(cj ,HC)|−|UC(ci,HC)∩UC(cj,HC)|
(5)

It is worth to note that the distancede only considers
the non-common information of two concepts but does not
evaluate the amount of common information. So, it is not
capable to distinguish between cases in which the number
of common superconcepts between a pair of concepts is
small from those cases in which the number of common su-
perconcepts is high. For example, in figure 1 the distance
between conceptsc1 andc2 is equal to the distance between
conceptsc3 andc4. However, it makes sense to modify the
definition ofde in such a way thatde(c1, c2) < de(c3, c4)

IDAMAP 2009 43



Figure 1: Taxonomy example

owing to the higher number of common superconcepts of
the pair(c1, c2). This means thatc1 andc2 are more spe-
cific terms that share more is-a relations in the taxonomy.

de(c1,c2)=

=
√

|UC(c1,HC)∪UC(c2,HC)|−|UC(c1,HC)∩UC(c2,HC)|=
=
√

4−2=
√

2

de(c3,c4)=

=
√

|UC(c3,HC)∪UC(c4,HC)|−|UC(c3,HC)∩UC(c4,HC)|=
=
√

3−1=
√

2

In order to take into account the number of common su-
perconcepts,de is normalised by the total number of su-
perconcepts ofci andcj . The sum of common and non-
common superconcepts is|UC(ci, H

C) ∪ UC(cj , H
C)|.

This permits to include the information about the number of
common superconcepts and the Superconcept-based Dis-
tance is defined as:

Definition: Superconcept-based Distance (SCD)

dSCD(ci, cj) =

=
√

|UC(ci,HC)∪UC(cj ,HC)|−|UC(ci,HC)∩UC(cj,HC)|
|UC(ci,HC)∪UC(cj,HC)|

(6)
This definition introduce a desired penalization to those

cases in which the number of shared superconcepts is small
too. So, we are able to compare a pair of concepts on the
basis of the ratio between the non-overlappingand the over-
lapping taxonomical knowledge between them.

Using the previous example, now the distance between
concepts has changed to a better approximation of the real
situation. The result is smaller as bigger is the common
information, and vice versa.

dSCD(c1, c2) =

√

4 − 2

4
=

√
0.5

dSCD(c3, c4) =

√

3 − 1

3
=

√
0.66

In the next section, the results obtained with the pro-
posed SCD measure and those presented in section 3 are
compared, showing that considering both the amount of
common and non-common information between a pair of
concepts results in more accurate estimation of semantic
similarity for concepts in the biomedical domain.

5 Evaluation
The most common way of evaluating similarity measures
is by using a set of word pairs whose similarity has been

assessed by a group of human experts and computing their
correlation with the results of the computerized measures.
In a general setting, the most commonly used benchmark
is the Miller and Charles set[Miller and Charles, 1991] of
30 domain-independent word pairs.

For the biomedical domain, Pedersen et al.[Pedersenet
al., 2007], in collaboration with Mayo Clinic experts, cre-
ated a set of 30 word pairs referring to medical disorders.
Their similarity was assessed in a scale from 1 to 4 by a set
of 9 medical coders who were aware about the notion of se-
mantic similarity and a group of 3 physicians who were ex-
perts in the area of rheumathology. For each pair of terms,
the averaged scores for each group of experts is presented
in Table 1. The correlation between physician judgements
was 0.68 and between the medical coders was 0.78.

Table 1: Set of 30 medical term pairs with associated aver-
aged expert’s similarity scores (extracted from Pedersen et
al.)

Term 1 Term 2 Phys. Coder
Renal failure Kidney failure 4.0 4.0
Heart Myocardium 3.3 3.0
Stroke Infarct 3.0 2.8
Abortion Miscarriage 3.0 3.3
Delusion Schizophrenia 3.0 2.2
Congestive heart fail-
ure

Pulmonary edema 3.0 1.4

Metastasis Adenocarcinoma 2.7 1.8
Calcification Stenosis 2.7 2.0
Diarrhea Stomach cramps 2.3 1.3
Mitral stenosis Atrial fibrillation 2.3 1.3
Chronic obstructive
pulmonary disease

Lung infiltrates 2.3 1.9

Rheumatoid arthritis Lupus 2.0 1.1
Brain tumor Intracranial hemor-

rhage
2.0 1.3

Carpal tunnel syn-
drome

Osteoarthritis 2.0 1.1

Diabetes mellitus Hypertension 2.0 1.0
Acne Syringe 2.0 1.0
Antibiotic Allergy 1.7 1.2
Cortisone Total knee replace-

ment
1.7 1.0

Pulmonary embolus Myocardial infarc-
tion

1.7 1.2

Pulmonary fibrosis Lung cancer 1.7 1.4
Cholangiocarcinoma Colonoscopy 1.3 1.0
Lymphoid hyperpla-
sia

Laryngeal cancer 1.3 1.0

Multiple sclerosis Psychosis 1.0 1.0
Appendicitis Osteoporosis 1.0 1.0
Rectal polyp Aorta 1.0 1.0
Xerostomia Alcoholic cirrhosis 1.0 1.0
Peptic ulcer disease Myopia 1.0 1.0
Depression Cellulitis 1.0 1.0
Varicose vein Entire knee meniscus 1.0 1.0
Hyperlipidemia Metastasis 1.0 1.0

We used the same benchmark to evaluate the measures
presented in this paper, using SNOMED-CT as the domain
ontology. Note that the term pair”chronic obstructive pul-
monary disease” - ”lung infiltrates”was excluded from the
test bed as the later term was not found in the SNOMED-
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CT terminology.

Table 2: Correlations obtained for each measure against
Physicians, Coders and both

Measure Physician Coder Both
Path Length 0.33 0.395 0.386
Wu and Palmer 0.293 0.364 0.353
Leacock and Chodorow 0.453 0.585 0.548
CM 0.56 0.685 0.656
SCD 0.589 0.744 0.7

As some of the measures involved in the test compute
similarity (Wu and Palmer, Leacock and Chodorow and
Concept-match) and others evaluate dissimmilarity (Path
Length and Superconcept-based distance), for a consistent
comparison, all the results have been converted into simi-
larity values. So,sim(ci) = maxd − d(ci), wheremaxd

is the maximal value that can be obtained by the distance
functiond [Blanchardet al., 2008]. In this case,maxd cor-
responds to 2*maximum depth of any taxonomical branch
in SNOMED-CT. Note that this conversion does not affect
the result of the evaluation, since a linear transformation of
the values will not change the magnitude of the resulting
correlation coefficient.

The correlation values between the results of the dif-
ferent similarity measures with respect to the human ex-
pert scores (including physicians, coders and the averaged
scores of both) are presented in Table 2.

Considering the correlation values between human ex-
perts (0.68 for physicians and 0.78 for coders) which rep-
resent an upper bound for a computerized approach, it can
be seen that Path Length-based measures offer a limited
performance with correlations smaller than 0.45 and 0.59
respectively. These results show that poor results are ob-
tained when estimating semantic similarity from the min-
imum inter-concept path in complex domain ontologies,
such as SNOMED-CT, where multiple paths between con-
cepts from several overlapping taxonomies are available.

On the other hand, similarities computed using the mea-
sures considering much more ontological knowledge (the
whole subsumer’s hierarchy like CM and SCD) correlate
significantly better than Path Length-based ones. Further-
more, the SCD measure has the best performance com-
pared against the others and it is quite close to the corre-
lation between human manual evaluation: 0.589 vs 0.68 in
the case of physicians and 0.744 vs 0.78 with respect to
medical coders.

In conclusion, the SCD measure is able to extract a ro-
bust semantic evidence from highly complex ontologies in
biomedicine. The consideration of non common informa-
tion between concepts and its relative importance with the
common information, in addition with smoothing this rela-
tion with the root (given by the Euclidean measure), pro-
vides a more accurate estimation of the semantic distance.

6 Conclusions
In this paper, we studied the behaviour of several ontology-
based semantic similarity measures exploiting the geomet-
rical model of ontologies when applied to the biomedical
domain. The main advantage of those measures is that

they do not rely on a domain corpus in order to extract se-
mantic evidences. This is especially interesting in domains
such as biomedicine in which the access to the required
amounts of data is typically difficult due to the sensitivity
of medical information. The main drawback is that their
performance completely depends on the degree of com-
pleteness, homogeneity and coverage of the semantic links
represented in the ontology. A priori, massive ontologies
such as SNOMED-CT with thousands of interrelated con-
cepts with a high degree of taxonomic specialisation are a
good knowledge source to apply those measures[Resnik,
1999]. For other more specific domain ontologies with a
limited scope, the graph model may be partial; in this case,
these measures will be affected by the bias introduced by
the partial knowledge modelling[Cimiano, 2006].

Even using a wide ontology like SNOMED-CT, classical
approaches based on Path Length have shown a poor per-
formance. Due to the inherent complexity of taxonomical
links modelled in that ontology, with relationships of mul-
tiple inheritance between concepts, the computation of the
minimum path between a pair of concepts only represents
a partial view of the modelled knowledge.

In this paper, another measure that takes into account the
ratio between the shared and non-shared taxonomicaly re-
lated concepts of the compared pair of concepts is analysed.
Provided that the semmantics of the proposed expression is
very intuitive in terms of the set of superconcepts of the
compaired concepts, an equivalent expression of the orig-
inal Euclidean expression over a set of binary vectors was
found. The proposed distance can be rewritten in terms of
the set of superconcepts by using UC expressions. This
permits, on the one hand, to skip the explicit construction
of the binary matrix (quite interesting in big ontologies),
and, on the other hand, a very efficient computation since
the UC is directly retrievable from the ontology itself.

As shown in the evaluation, with this strategy we are able
to clearly outperform previous attempts, exploiting the tax-
onomic network complexity of SNOMED-CT. At the end,
the correlation obtained by our approach with respect to
human expert judgements is quite near to the maximum
upper-bound (the inter-expert agreement, both for medical
coders and physicians), showing the reliability of the ob-
tained results.

After this initial study, we plan to evaluate the SCD
measure with other medical ontologies such as UMLS
or MeSH. In addition, other non-taxonomic relationships
available in those ontologies can be also considered in the
future as an statement of concept relatedness. Tests with
more reduced domain ontologies will be also interesting in
order to evaluate the dependency of the similarity values in
relation to the ontology coverage.
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Abstract
Is it possible to identify human schizophrenic pa-
tients just by analyzing their brain images? This
is the fundamental question of magnetic reso-
nance imaging (MRI) based studies of human
brains for people affected by schizophrenia and
other mental illnesses traditionally diagnosed by
self-reports and behavioral observations. The
appeal of this approach is at least two-fold: to
provide a non-invasive diagnostic tool for mass
analyses and early diagnoses, and to character-
ize mental illnesses with specific and detectable
brain abnormalities. Using a dataset of 124
subjects and 7 expert-traced regions of interest
(ROI), corresponding to well-known functional
parts in the brain, we provide some supportive
evidence that this question can be answered pos-
itively. By applying several techniques of pattern
recognition to the task of discriminating between
the 64 patients and the 60 controls, we obtain re-
sults and indicative conclusions that find some
encouraging agreements with previous medical
studies in schizophrenia research.

1 Introduction
Computational neuroanatomy using magnetic resonance
imaging (MRI) is a growing research field, which employs
image analysis methods to quantify morphological charac-
teristics of different brains [Giuliania et al., 2005]. The
ultimate goal is to identify structural brain abnormalities
by comparing normal subjects with patients affected by a
certain disease.

Roughly speaking, there are two main categories of
methods: (i) methods based on the analysis of regions
of interest (ROI), and (ii) methods based on Voxel-based-
Morphometry (VBM) (see [Ashburner and Friston, 2000]).
ROI-based methods focus on a limited set of brain sub-
parts which are manually traced by experts. Methods based
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on VBM use the whole brain after a normalization proce-
dure that maps the current brain onto a standard reference,
called the stereotaxic space. In this way, a voxel-by-voxel
correspondence is available among the analyzed subjects.

In this work, we apply pattern recognition techniques
to the problem of discriminating subjects affected by
schizophrenia. We build our framework on top of sev-
eral previous investigations that confirmed the presence
of abnormalities in these subjects [Agarwal et al., 2008;
Baiano et al., 2008; Bernasconi et al., 1999; Brambilla
et al., 2003; Emmorey et al., 2003; Potkin et al., 2009;
Prasad et al., 2005] and extend it to classify healthy (i.e.,
controls) and unhealthy (i.e., patients) subjects.

Several works have been proposed recently for human
brain classification in the context of schizophrenia re-
search [Fan et al., 2007; Gering et al., 2001; Yoon et al.,
2007]. Beside standard volumetric methods [Ashburner
and Friston, 2000; Baiano et al., 2008], the most promis-
ing approaches focus on: (i) shape characterization [Gering
et al., 2001], (ii) surface computation [Yoon et al., 2007],
and (iii) high dimension pattern classification [Fan et al.,
2007]. In [Gering et al., 2001], a ROI-based morphometric
analysis is introduced by defining spherical harmonics and
a 3D skeleton as shape descriptors. Improvement of such
shape-descriptor-based approach with respect to classical
volumetric techniques is experimentally shown. In [Yoon
et al., 2007], a support vector machine (SVM) has been
proposed to classify cortical thickness that has been mea-
sured by calculating the Euclidean distance between linked
vertices on the inner and outer cortical surfaces. In [Fan
et al., 2007], a new morphological signature has been de-
fined by combining deformation-based morphometry with
SVM. In this fashion, multivariate relationships among var-
ious anatomical regions have been captured to characterize
more effectively the group differences.

In this work, we go beyond volumetric measurements,
by classifying intensity histograms of the given ROIs. In
order to be able to compare intensity values effectively, we
perform a preliminary scale normalization based on land-
mark matching between histograms [Nyúl et al., 2000].

2 Methods
Quantitative data collection and processing in MRI based
research implies facing several methodological issues to
minimize biases and distortions. The standard approach
to dealing with these issues is following well established
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Group mean (and SD)* Statistics

Characteristic

Control

(n = 60)

Schizophrenia

(n = 64) Test df p

Age, yr 39.95 (11.25)

[range 23-60]

38.84 (11.96)

[range 18-62]

t=0.53 122 0.60

Male/female 32/28 43/21 χ2 =2.49 1 0.11

Age at

onset, yr 26.28 (9.17)

Duration of

illness, yr 13.37 (10.30)

SD = standard deviation; df = degrees of freedom; p = value of

significance.

* Unless otherwise indicated.

Table 1: Demographic and clinical characteristics of the
study groups. The Student’s t-test of the age means rejects
(at a two-tailed significance level of p < 0.05) the hypoth-
esis that the groups are significantly different in age, and
Pearson χ2 confirms the same for the gender differences.

guidelines, dictated by international organizations, such as
the World Health Organization (WHO), or codified by re-
spected institutions, such as leading universities. For a de-
tailed description of the procedures followed in collecting
and processing the data, please see [Cheng et al., 2009].

2.1 The Dataset
The dataset used in this work originates from a database of
MRI scans of hundreds of human brains, containing pa-
tients affected by schizophrenia or bipolar disorder (not
considered in this particular study), and healthy control
subjects. This database has been investigated several times,
for example to produce large sample studies aimed at con-
firming previous reports of physiological abnormalities as-
sociated with the given mental illnesses [Agarwal et al.,
2008; Baiano et al., 2008; Potkin et al., 2009]. Each of
these studies focuses on a particular sub-part of the brain, a
so-called region of interest (ROI), whose abnormal activity
is noted to affect cognitive processes.

In this dataset, we combine data processed from several
different studies by creating a single data ensemble where
each subject is described by multiple ROIs. In particular,
this dataset involves 64 patients with schizophrenia and 60
healthy control subjects (Table 1). Images were acquired
and processed on PC workstations for ROI tracing, i.e.
manual annotation of the images, performed by drawing
contours enclosing the intended region. It is carried out by
a trained expert following a specific protocol for each ROI.

The ROIs contained in this dataset (each presenting two
disconnected portions, a left and a right hemisphere part)
are the following:

• Amygdala (amyg in short);

• Dorso-lateral PreFrontal Cortex (dlpfc);

• Entorhinal Cortex (ec);

• Heschl’s Gyrus (hg);

• Hippocampus (hippo);

• Superior Temporal Gyrus (stg);

• Thalamus (thal).

Figure 1: Montage of the slices in the ROI volume (41 ×
40×35) of r_stg for subject 11. On the left, the MRI values;
on the right, the corresponding binary masks.

For the sake of clarity, in the following we separately iden-
tify the left and right portion of a ROI, effectively obtaining
14 data records for each of the 124 subjects. We thus num-
ber and identify these records in the following way:

1. Left Amygdala (l_amyg);
2. Right Amygdala (r_amyg);
3. Left Dorso-lateral PreFrontal Cortex (l_dlpfc);
4. Right Dorso-lateral PreFrontal Cortex (r_dlpfc);
5. Left Entorhinal Cortex (l_ec);
6. Right Entorhinal Cortex (r_ec);
7. Left Heschl’s Gyrus (l_hg);
8. Right Heschl’s Gyrus (r_hg);
9. Left Hippocampus (l_hippo);

10. Right Hippocampus (r_hippo);
11. Left Superior Temporal Gyrus (l_stg);
12. Right Superior Temporal Gyrus (r_stg);
13. Left Thalamus (l_thal);
14. Right Thalamus (r_thal).

In Figure 1, we show a sample from the dataset, specif-
ically the ROI volume of r_stg for subject 11. This vol-
ume is made up of 35 slices of size 41× 40 and can be ar-
ranged as a montage of images (ordered from left to right,
top to bottom). Within this bounding box, the ROI itself
is irregularly shaped, as can be clearly seen from the cor-
responding binary masks on the right, artificially colored
to highlight the ROI shape. Additionally, another impor-
tant ROI that is traced is the intracranial volume (ICV), i.e.
the volume occupied by the brain in the cranial cavity leav-
ing out the brainstem and the cerebellum. This information
is extremely useful for normalizing volume values against
differing overall brain sizes.

We included in this study only subjects that featured the
complete set of all 14 ROIs, and hence we have a slightly
reduced pool compared to previous studies conducted on
the same database (e.g., 17 less controls and 6 less patients
than [Baiano et al., 2008]).

2.2 Statistical Analysis
An analysis of covariance (ANCOVA) using age, gender
and ICV as covariates is usually performed to compare the
volumes of ROIs between patients with schizophrenia and
healthy normal controls. The purpose of ANCOVA is to
find out whether data from several groups have a common
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Group mean (and SD) Statistics

ROI volumes

(cm3)

Control

(n = 60)

Schizophrenia

(n = 64) F p

l_amyg 1.46 (0.27) 1.37 (0.28) 3.07 0.08

r_amyg 1.53 (0.27) 1.43 (0.30) 3.74 0.06

l_dlpfc 15.08 (7.07) 14.35 (7.25) 0.42 0.52

r_dlpfc 15.93 (6.83) 13.32 (6.75) 5.73 0.02

l_ec 1.05 (0.22) 1.02 (0.22) 0.67 0.41

r_ec 1.16 (0.23) 1.08 (0.24) 7.27 0.008

l_hg 2.22 (0.70) 2.37 (0.67) 2.33 0.13

r_hg 2.04 (0.58) 2.16 (0.70) 1.33 0.25

l_hippo 1.73 (0.29) 1.75 (0.41) 0.05 0.82

r_hippo 1.77 (0.32) 1.76 (0.33) 0.09 0.76

l_stg 13.75 (1.95) 13.78 (2.17) <0.01 0.99

r_stg 14.55 (1.98) 14.56 (2.36) 0.01 0.94

l_thal 4.77 (0.52) 4.66 (0.59) 3.10 0.08

r_thal 5.00 (0.63) 5.02 (0.67) 0.17 0.68

SD = standard deviation.

Table 2: Analysis of covariance for ROI volumes in normal
controls and patients with schizophrenia show significant
differences in the group means only for r_ec and r_dlpfc.

mean, after adjusting for sources of bias in observational
studies. That is, to determine whether the groups are ac-
tually different in the measured characteristic when some
known sources are factored in. When studying volumetric
properties of the brain or parts of it, it is well known that the
overall size shrinks with age, it is smaller on average for fe-
males, and there is considerable variation between subjects.

ANCOVA retrieves adjusted means for the population
groups, in this case patients and controls, that can be tested
for significance against the simpler hypothesis that there is
no difference between them (the so-called null hypothesis).
This test is a straightforward application of the F test, with
an accompanying p value of significance. From the results
reported in Table 2, we can draw the following evidence:

• r_ec shows strongly significant differences (p =
0.008) between the volume averages for the two
groups;

• r_dlpfc shows significance at the p = 0.05 level;

• some other ROIs are close to being significant, but,
overall, the normal distributions of volumes are too
close or too overlapping in spread to be usable for dis-
crimination.

These results are well in accordance with previous stud-
ies [Agarwal et al., 2008; Baiano et al., 2008].

2.3 MRI Intensity Scale Normalization
A major disadvantage of MRI compared to other imaging
techniques is the fact that its intensities are not standard-
ized. Even MR images taken for the same patient on the
same scanner with the same protocol at different times may
differ in content due to a variety of machine-dependent rea-
sons, therefore, image intensities do not have a fixed mean-
ing [Nyúl et al., 2000]. This implies a significant effect on
the accuracy and precision of the following image process-
ing, analysis, segmentation and registration methods rely-
ing on intensity similarity.

Figure 2: ICV intensity histograms (treated like probabil-
ity density functions), before (top) and after (bottom) the
normalization process.

A successful technique used to calibrate MR signal
characteristics at the time of acquisition employs phan-
toms [Edelstein et al., 1984], by placing physical objects
with known attributes within the scanning frame. Unfortu-
nately, this technique is not always exploited, which is our
present case. Alternatively, it is possible to obtain good re-
sults by retrieving deformation mappings for the image in-
tensities, that is, by developing histogram mappings [Jager
and Hornegger, 2009; Nyúl et al., 2000].

In this work, we have decided to retrieve the rescaling
parameters from the ICV histograms (see Figure 2). In
this way, we focus on the interesting content of the im-
ages, which usually contain “noise” in the form of bone
and muscle tissue surrounding the brain matter proper. It
is also easier to identify landmarks on the histograms that
match the canonical subdivision of intracranial tissue into
white matter, gray matter and cerebrospinal fluid. We have
opted to select a simple rescaling mapping that conserves
most of the signal in the gray matter - white matter area,
corresponding to the two highest bumps in the range 60-
90, since ROIs primarily contain those kinds of tissue.

3 Classification Experiments
We performed several classification experiments under
varying conditions of histogram pre-processing, feature se-
lection and classifiers to seek the most promising settings
for further investigations. Experiments were carried out in
Matlab using PRTools [Duin et al., 2007] and accuracies
figures for each test run where obtained through leave-one-
out (LOO) cross-validation.

In this preliminary work, each ROI was treated indepen-
dently of the others, much like in common medical analy-
ses, to assess the individual discriminatory capabilities and
to be able to effectively compare results with previous med-
ical studies. In the following, all references to “histograms”
are intended to be the histograms scale-normalized as in
Subsection 2.3.

We tested the following classifiers [Duda et al., 2001]:

• Gaussian radial basis support vector classifier (svm),
where the standard deviation is estimated by cross val-
idation;
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ROI

Best accuracy

(classifier,features)

Average accuracy over

classifiers and

features*

l_amyg 71.0% (svm,13/15) 60.0% (63.7%)

r_amyg 68.5% (knn,13) 57.2% (59.9%)

l_dlpfc 71.0% (svm,1/5) 59.3% (60.9%)

r_dlpfc 70.2% (svm,16) 55.4% (55.0%)

l_ec 66.1% (svm,15) 58.1% (59.0%)

r_ec 66.9% (parzen,13) 58.6% (61.2%)

l_hg 66.1% (svm,12) 56.4% (58.5%)

r_hg 64.5% (knn,16) 53.0% (53.4%)

l_hippo 73.4% (svm,8) 58.8% (61.0%)

r_hippo 65.3% (knn,1/5/12) 53.7% (55.5%)

l_stg 64.5% (knn,13) 56.0% (58.1%)

r_stg 65.3% (knn,10) 55.1% (57.5%)

l_thal 68.5% (knn,10) 55.3% (56.9%)

r_thal 66.9% (knn,4/8/12) 57.0% (58.8%)

Table 3: Best and average accuracies of classification for
each ROI. In brackets, the combination of classifier and
features (more than one number indicates that multiple set-
tings attained the same accuracy) that achieved the given
performance (see text for the numbering of feature meth-
ods). * In brackets, the average of only the three best clas-
sifiers (svm, knn, parzen).

• Parzen classifier (parzen), where the optimum
smoothing parameter is retrieved by LOO using the
[Lissack and Fu, 1976] estimate for the classification
error;

• Fisher’s least square linear classifier (fisher);
• K-nearest neighbor classifier (knn), with K automati-

cally optimized with respect to the LOO error;
• Nearest neighbor (nn);
• Linear Bayes normal classifier (ldc);
• Logistic linear classifier (loglc).
In addition to using raw histograms, we tried a variety of

methods to enhance the discriminatory signal by employing
feature selection or processing techniques and dimension-
ality reduction procedures. The following list shows the
full array of methods we devised:

1. raw histograms, i.e., with frequencies of values in nat-
ural bins (no quantization);

2. histograms normalized as probability density func-
tions (pdf), to emphasize the relative distribution of
frequencies;

3. histograms scaled bin by bin to have zero mean and
unit variance (bin scaling), to emphasize deviations
from average frequencies;

4. pdfs with bin scaling, to emphasize the relative distri-
bution of deviations;

5. histograms with zero variance bins eliminated, to
eliminate constant bins;

6. pdfs with zero variance bins eliminated;
7. as (5) with bin scaling;
8. as (6) with bin scaling;

Classifier

Best accuracy

(ROI,features)

Average accuracy over

ROIs and features

svm 73.4% (l_hippo,8) 59.6%

knn 69.4% (l_dlpfc,12) 58.1%

parzen 69.4% (l_amyg,16) 57.9%

fisher 67.7% (l_amyg,16) 55.8%

loglc 66.9% (l_hippo,2/4) 55.6%

nn 69.4% (l_dlpfc,12) 55.0%

ldc 67.7% (l_amyg,16) 55.1%

Table 4: Best and average accuracies for each classifier. In
brackets, the combination of ROI and features that achieved
the given performance.

Feature

Best accuracy

(classifier,ROI)

Average accuracy over

classifiers and ROIs

1 71.0% (svm,l_dlpfc) 56.1%

2 66.9% (loglc,l_hippo) 54.7%

3 72.6% (svm,l_hippo) 55.9%

4 71.8% (svm,l_hippo) 55.4%

5 71.0% (svm,l_dlpfc) 56.2%

6 66.1% (svm,l_dlpfc) 54.8%

7 71.0% (svm,l_hippo) 55.7%

8 73.4% (svm,l_hippo) 55.3%

9 69.4% (svm,l_amyg/l_dlpfc) 58.7%

10 68.5% (knn,l_thal) 58.8%

11 68.5% (svm,l_dlpfc) 58.8%

12 69.4% (knn/nn,l_dlpfc) 58.3%

13 71.0% (svm,l_amyg) 57.5%

14 66.1% (svm,l_amyg) 57.1%

15 71.0% (svm,l_amyg) 57.1%

16 72.6% (svm,l_hippo) 56.8%

Table 5: Best and average accuracies for each feature
method. In brackets, the combination of classifiers and
ROIs that achieved the given performance.

9. histograms quantized into 4 bins;
10. pdfs quantized into 4 bins;
11. as (9) with bin scaling;
12. as (10) with bin scaling;
13. dimensionality reduction with principal component

analysis (PCA) at 99% of variance of (5);
14. PCA of (6);
15. PCA of (7);
16. PCA of (8).

In Tables 3, 4 and 5, we report a summary of the results
we obtained. Table 3 shows the best and average classi-
fication accuracies for each ROI over all tested classifiers
and feature methods. It gives a rough indication of which
ROIs are more discriminatory. Table 4 shows the best and
average classification accuracies for each classifier over all
feature methods and ROIs, giving a ranking of the most per-
forming classifiers. Finally, Table 5 shows the best and av-
erage accuracies for each feature method over all classifiers
and ROIs, highlighting the most promising data processing
techniques: quantization and PCA. Note that the average
accuracies can be used to sort the relative discriminatory
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Figure 3: Plots of the subjects’ histograms divided accord-
ing to the classification experiment that achieved the best
accuracy (svm with feature method 8 on l_hippo). From top
to bottom, left to right, the four plots identify true positives,
false positives, false negatives and true negatives (precision
= 0.74, recall = 0.75).

power between different choices (e.g., svm is more power-
ful than nn among classifiers), but they have no meaning in
absolute terms (59.6% for svm is a rather dreadful classifi-
cation rate, barely above chance).

Overall, results are suggestive and encouraging, in fact
they seem to support the main scientific claim that it is pos-
sible to identify schizophrenic patients from healthy peo-
ple. However, best and average accuracies are not conclu-
sive, showing a significant rate of false positives and false
negatives (see Figure 3). This confirms how tough the prob-
lem is.

Nevertheless, we can draw some limited conclusions:
• svm was the best performing classifier, both on aver-

age and with the best overall accuracy, obtained on
l_hippo with 73.4%;

• the three best performing ROIs are l_hippo, l_amyg
and l_dlpfc with respectively 73.4%, 71.0% and
71.0%;

• left portions of the ROIs are almost always more dis-
criminative, which is interesting since medical analy-
ses found an overall difference between healthy sub-
jects and schizophrenic patients with higher statistical
difference on right ROIs of amyg, hippo and dlpfc;

• while not achieving the best peak performances, quan-
tization seems to enhance discrimination power over
all classifiers and ROIs;

• average accuracies are very low, in fact just above
chance;

• nn, ldc and loglc always perform worse or equal to the
other classifiers, bringing the averages down.

The abnormalities in the amygdala, hippocampus and dor-
solateral prefrontal cortex, in particular in the left side,
are among the most consistent findings in MRI studies
on schizophrenia [Meisenzahl et al., 2008; Shenton et
al., 2001]. Suggesting that these structures play a ma-
jor role for the pathophysiology of the disease [Lopez-
Garcia et al., 2006]. In particular, the dorsolateral pre-
frontal cortex, along with the thalamus and the hippocam-
pus, is a critic component of the brain circuitry underly-
ing higher cognitive functions, such as attention, execu-
tive function and context processing [Procyk and Goldman-
Rakic, 2006]. The amygdala plays a critical role in the neu-

ral system that is involved in emotional and in fear-related
responses [Swanson and Petrovich, 1998]; the hippocam-
pus is involved in long term memory and in regulating
stress response [Sala et al., 2004; Tulving and Markow-
itsch, 1998].

4 Conclusions
In this report, we have provided some supportive evidence
that it is possible to discriminate between schizophrenic pa-
tients and healthy people based on analyses of brain MR
images. We have built upon previous medical studies that
have focused on volumetric measurements of selected por-
tions of the brain, namely ROIs, corresponding to well-
known functional units that affect human cognitive behav-
ior in schizophrenia.

Classification results achieved with several off-the-shelf
pattern recognition techniques under different data process-
ing methods seem to suggest that the content of these ROIs,
in the form of histograms, can be used to characterize the
population of schizophrenic patients. We find results that
are consistent with MRI studies in schizophrenia, espe-
cially concerning the amygdala, hippocampus and dorso-
lateral prefrontal cortex, in particular in the left side.

Moreover, we find that svm performs best both on peak
and average accuracy, but not by a large margin with re-
spect to a simpler classifier such as knn. At the same
time, the feature extraction and processing methods we em-
ployed have increased accuracies, but not dramatically and
decisively.

We envisage further work in two main directions: ex-
tracting more significant features from the data and build-
ing more complex models, starting from smart combina-
tions of all ROI data.
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Abstract
We present a new technique for induction of
models which can help in selecting the optimal
therapy for a particular patient. The model is
based on Bayesian reasoning and visualized with
a nomogram. To evaluate the method, we present
a case study on choosing the chemotherapy for
treatment of breast cancer.

Machine learning methods are often used in medical di-
agnostic and prognostic, while their use in medical decision
making is most often only indirect. We can either train
models to mimic the gold standard decisions or construct
the prognostic models which use the chosen therapy as one
of the factors and thus implicitly suggest the therapy lead-
ing to the better outcome.

We propose a simple approach inspired by naive
Bayesian classifier and, in particular, the work of Možina
et al. [2004]. We compute how much each possible value
of each feature indicates a particular therapy, and visualize
the model as a nomogram, so it can be easily printed out
and used without a computer.

1 Method
Log odds ratio for conditional probabilities is defined as

log
p(Y = 1|T = 1)/p(Y = 0|T = 1)
p(Y = 1|T = 0)/p(Y = 0|T = 0)

(1)

In our case, Y will be the outcome, where Y=1 is the de-
sired outcome (e.g. patient recovers), and T will be the
chosen therapy. Both Y and T are binary.

The numerator and denominator can be interpreted as
conditional relative “risks”: they tell how more likely is
the desired class than the undesired. The entire formula is
the ratio of ratios. Its value is positive if Therapy 1 is more
successful than Therapy 0, and vice versa.

Equation (1) can be simplified to

log
p(Y = 1, T = 1) p(Y = 0, T = 0)
p(Y = 1, T = 0) p(Y = 0, T = 1)

(2)

Now consider a specific patient described with feature
vector A = [A1, A2, . . . , An]. We can rewrite (2) into con-
ditional log odds ratio, with patient’s data as condition

log
p(Y = 1, T = 1|A) p(Y = 0, T = 0|A)
p(Y = 1, T = 0|A) p(Y = 0, T = 1|A)

(3)

Applying the Bayesian rule gives

log
(

R × p(A|Y = 1, T = 1) p(A|Y = 0, T = 0)
p(A|Y = 1, T = 0) p(A|Y = 0, T = 1)

)
,

(4)
where

R =
p(Y = 1, T = 1) p(Y = 0, T = 0)
p(Y = 1, T = 0) p(Y = 0, T = 1)

(5)

Assuming, like in the naive Bayesian classifier, the inde-
pendence of attributes with regard to the class, we get

log

(
R ×

∏
i

p(Ai|Y = 1, T = 1) p(Ai|Y = 0, T = 0)
p(Ai|Y = 1, T = 0) p(Ai|Y = 0, T = 1)

)
(6)

which equals

log R +
∑

i

log
p(Ai|Y = 1, T = 1) p(Ai|Y = 0, T = 0)
p(Ai|Y = 1, T = 0) p(Ai|Y = 0, T = 1)

(7)
The terms being summed represent the contributions of

individual attribute values. We shall denote these contribu-
tions by CLORC(Ai) (conditional log odds ratio contribu-
tion), so (7) becomes

log R +
∑

i

CLORC(Ai) (8)

Probabilities needed to compute CLORC(Ai) can be esti-
mated from the training data.

2 Visualization
The model can be visualized in a nomogram (see Figure 1).
Each axis in the main part corresponds to a feature and po-
sitions of values correspond to their respective CLORCs.
Choosing the therapy requires reading the contributions
from the nomogram, summing them and adding log R. If
the result is positive we choose Therapy 1 and vice versa.

To compute by how much one therapy is better than an-
other (more accurately, what is the ratio of ratios of posi-
tive to negative outcomes for the two therapies), we use the
bottom part of the nomogram, which represents the func-
tion elogR+x: we find the sum of CLORCs on the upper
axis and read the ratio on the bottom one.

Similar to naive Bayesian nomograms [Možina et al.,
2004], this nomogram:
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Figure 1: Nomogram for choosing the optimal therapy for
treating breast cancer

• tells which features indicate which therapy,

• can be used to choose the optimal treatment for a par-
ticular patient,

• gives the arguments for and against each therapy for a
particular patient.

3 Case Study
Between 1997 and 2001, 696 patients with early breast can-
cer were treated at the Institute of Oncology Ljubljana and
had their uPA and PAI-1 levels determined in the tumor ex-
tract. All of the patients had a histologically confirmed in-
vasive breast cancer. The established clinical and histomor-
phological factors such as menopausal status, tumor size,
tumor type, nodal status, pathological grade, hormonal re-
ceptors and tumor vessel invasion were also determined.
Treatment decisions regarding primary surgery and adju-
vant systemic therapy were based primarily on guidelines
valid at the time and did not take into account neither uPA
nor PAI-1 levels; 368 (53%) received CMF (cyclophos-
phamide, methotrexate, and fluorouracil) and 328 (47%)
received anthracycline-containing regiments. All patients
underwent radical local treatment. In this paper, we con-
sider the treatment as successful if the disease did not recur
for at least three years. Figure 1 shows the model built from
this data.

First, the nomogram offers some general insight into the
problem. It would seem that the tumor grade and the num-

ber of nodes are the most important features to be consid-
ered. Both can however strongly suggest only the anthracy-
clines therapy (namely, having a tumor of grade I, or more
than 3 nodes, are strong indicators for the anthracyclines
chemotherapy). Low uPa and PAI levels indicate the CMF
therapy. Small tumor sizes are another indicator for CMF,
though their importance is far behind the number of nodes
and the tumor grade. Menopausal status is irrelevant for the
decision.

Second, given a patient, we can decide for the therapy.
Assume we have a patient with grade II tumor (–0.3), neg-
ative hormone receptors (+0.3), small tumor size (+0.5)
and low uPA and PAI (+0.4), while other data is unknown.
The total is +0.9 and with the lower part of the nomogram
we discover that the success ratio for the CMF therapy is
around 2.3 times greater than that of anthracycline.

Finally, we see that for this particular patient, the only
argument against using CMF is the tumor grade.

The model fairly agrees with the standard practice. An-
thracyclines are usually used for more advanced cancers,
that is, larger tumors (≤ 20 mm), cardiovascular invasion,
higher uPA and PAI levels and larger number of affected
lymph nodes (> 3). The most obvious discordance is the
tumor grade, where grade III should indicate anthracycline
therapy and grade I is typically treated with CMF. Another
problem is that the number of affected lymph nodes is not
ordered correctly, with zero infected nodes placed between
3 and 1-3. We suspect that this is related to the fact that only
25 out of 221 patients with no affected lymph nodes were
treated with CMF, so the probability estimates are unreli-
able. Menopausal status is indeed believed to be unrelated
to the success of these specific therapies.

4 Conclusion
The proposed model has a simple mathematical foundation
and is easy to understand and use. Its biggest potential
problem are unreliable estimates of probabilities needed
for its construction: physicians typically choose the bet-
ter therapy, so the prescribed therapy in such data is not
independent from the attributes.

Future work on the method will include its generaliza-
tion to multiple therapies and outcomes, computation of
confidence intervals for contributions and the final ratio,
and, most importantly, its evaluation on a larger set of prob-
lems.
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Abstract 
In this paper we describe a data mining method-
ology developed for grouping patients with 
Staphylococcus aureus (SA) and Methicillin-
Resistant Staphylococcus aureus (MRSA) infec-
tions into clusters according to the pattern of 
care, the subtype of MRSA, and the outcome of 
the illness. A new cluster validation methodology 
is presented. The results of three final clusterings 
and their medical interpretations are described. 

1 Introduction 
In recent years, there has been an increased use of infor-
mation technology to support the public health mission of 
monitoring for disease and reportable conditions. Until 
recently, limited health indicator data has been available 
to public health for testing surveillance algorithms that 
operate on the entire Electronic Medical Record (EMR). 
 The aim of this project is to produce fully synthetic 
background data based on the full EMR from the Bio-
sense program. Before synthetic records can be generated, 
it is necessary to determine for each of the diseases/sets of 
symptoms present in the data what sequence of health care 
events patients are experiencing. Due to a large variability 
in the care events that patients experience, clustering 
techniques will be employed to group patients into clus-
ters of similar care procedures. In this paper we concen-
trate on Staphylococcus aureus (SA) and Methicillin-
Resistant Staphylococcus aureus (MRSA) infections.  

2 The Data Mining Methodology 
The goal of the data mining methodology developed is to 
derive (from the available medical records) a care model 
of how patients are treated for a given illness or a set of 
symptoms. This method has the following main steps 
(Fig. 1): 
1) Identify a subset of patients of interest (patients who 

have a set of symptoms of interest). 
2) Build Patient Care Instances - sequences of patient 

care events for each patient identified in step 1. 
3) Build Patient Care Descriptors summarizing each 

Patient Care Instance. 
4) Perform clustering on Patient Care Descriptors to 

detect clusters with similar care instances. 

5) Use derived clusters to characterize patient care 
model for a given illness/set of symptoms. 

 
Figure 1 Data mining steps to characterize Patient Care Models. 

3 Patient Care Instances 
A Patient Care Instance (PCI) is a sequence of the health 
care encounters present in the data set for a given patient 
[Buczak et al., 2008]. PCI consists of up to 7 types of 
events: 1) hospital visit (HVisit); 2) lab order; 3) lab 
result; 4) radiology order; 5) radiology result; 6) Rx 
(drug) order); and 7) death event. The events in the PCI 
are sequentially ordered based on the dates and times they 
occurred. The information in each of the events is 
extremely detailed. Let us consider a lab order event: it 
contains information such as test name (e.g., Blood 
Culture-BLC), specimen type (e.g., blood), order number 
and date/time of test. A lab result event has even more 
information: test name (e.g., fungal culture/smear), 
specimen type (e.g., ELB), order number, date/time of 
test, order LOINC component (e.g., fungus identified), 
collection date, etc. 
 Individual PCIs are of different lengths (depending on 
the number of visits and specific information in lab or-
ders, lab results, etc.) They range from 90 fields to 58,410 
fields. People who came only once and did not have any 
lab or radiology orders, have a PCI with one record. Peo-
ple who came many times and had many lab or radiology 
orders and results, have hundreds of records in their PCI.  

4 Patient Care Descriptors 
The next step is to build the patient care descriptors which 
summarize the PCIs. For each PCI, one patient care de-
scriptor is computed. Each descriptor has attributes speci-
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fying the number of hospital visits, overall lab orders, 
each of the specific lab orders (e.g., blood culture, respira-
tory culture, urine culture, Aerobic Culture/Smear, Plate-
let Auto AB), microorganisms identified (e.g., Enterobac-
ter Cloacae, Staphylococcus Aureus, MRSA), types of 
radiology orders (e.g., DX Chest, DX Abdomen), syn-
dromes (e.g., Fever, Gastrointestinal), subsyndromes (e.g., 
malaise and fatigue, myalgia). The values of all attributes 
mentioned so far depict how many times a given syn-
drome / subsyndrome / lab test occurred in the PCI (posi-
tive integers or zero). Text attributes include the patient’s 
race (e.g., White) and ethnic group (e.g., Hispanic or La-
tino). Table 1 shows an example of a patient care descrip-
tor. For a given data set, each patient descriptor has the 
same set of attributes allowing for easy subsequent com-
putations. 

Table 1 Example Patient Care Descriptor 

Patient ID 121845 
Age Range 50+ 
Gender M 
Race White 
Ethnic Group Not Hispanic or Latino 
Deceased Flag  
HVisit 2 
Lab Order 3 
Lab Result  
Rad Order 1 
Rad Result 1 
Rx Order  
Botulism-Like  
Fever  
GI  
Hemorrhagic_Illness  
Localized_Cutaneous_Lesion 1 
…  
Abdominal Pain  
…  
Diabetes mellitus 1 
…  
Heart disease, ischemic 1 
…  
Aerobic Culture and Smear 1 
Blood Culture 2 
C Reactive Protein CRP 1 
…  
MRSA Culture (CMRSA) 3 
Urine Culture  
Staphylococcus Aureus MR 1 
…  
DX Chest  
PX Ankle 2 
…  

5 Clustering of Patient Care Descriptors 
The clustering method used was hierarchical agglomera-
tive clustering using Ward’s linkage. The agglomerative 
clustering starts with each pattern in a singleton cluster, 
and successively merges clusters, until a stopping crite-
rion is satisfied. Ward’s linkage [Ward, 1963] uses an 
analysis of variance approach to evaluate the distance 
between clusters. At each stage, the combination of each 
cluster pair is analyzed, and the two clusters whose union 
generates minimum increase in information loss are 
joined. Ward defines the information loss in terms of the 
error sum-of-squares (ESS) criterion. For a set X the ESS 
is described by: 

∑∑
==

−=
xx N

j
j

N

i x
i x

N
xXESS

1

2

1
|1|)(                          (1) 

where |.| is the absolute value of the norm of a vector. The 
Ward’s linkage function (i.e., distance between clusters X 
and Y) is described by: 

)]()([)(),( YESSXESSXYESSYXD +−=       (2) 
where XY is the combined cluster resulting from merging 
of clusters X and Y; ESS(.) is the error sum of squares 
described in Eq. (1). 
 We used SAS to perform clustering and employed the 
Euclidean distance. The choice of attributes for the dis-
tance measure is discussed in Section 9. 

6 Cluster Validation 
When performing clustering, an important issue is the 
validation of the clustering results. There are three broad 
approaches for investigating the cluster validity [Theo-
doridis and Koutroubas, 1999; Halkihi et al., 2001; 
Kovacs et al., 2005]. The external method entails that the 
clustering results are evaluated based on a pre-specified 
structure that is imposed on the data set and reflects an 
expert’s intuition about that set. The internal criteria ap-
proach evaluates the results in terms of quantities that 
involve the patterns themselves. The relative criteria ap-
proach compares the results of clustering obtained by one 
procedure with those obtained by a different procedure or 
by the same procedure but with different parameters. 
 With agglomerative clustering, the main goal of valida-
tion is to determine how many underlying clusters are in 
the data set. In the descriptions below, we will use the 
notation SS to describe the sum of squares: 

2

1
)(∑

=

−=
n

i
i XXSS  (3) 

SSw refers to within cluster SS; SSb refers to between 
cluster SS; SSt refers to total (for the whole data set) SS.  
Several internal validity indices can be used simultane-
ously to determine the number of clusters:  
o Root Mean Square Standard Deviation (RMSSDT): 
measures how homogenous a given clustering is (lower 
RMSSTD value usually means better clustering). 
o Semi-Partial R squared (SPR): measures the loss of 
homogeneity after merging the difference between the 
pooled SSw of the new cluster and the sum of the pooled 
SSw values of clusters joined to obtain the new cluster 
divided by the pooled SSt for the whole data set. The 
value of this index should be low. 
o Pseudo F statistic [Calinski and Harabasz, 1974]: meas-
ure of separation between clusters: 

)(
)1(

knSS
kSS

w

b

−
−  where 

k is the number of clusters and n is the number of observa-
tions. The higher the value of the statistic, the greater the 
separation between clusters. The cluster solution immedi-
ately prior to the decease in Pseudo F should be selected. 
o  Pseudo T square statistic: 

wswr

srwswrwt

SSSS
nnSSSSSS

+
−+−− )2)((  - where SSwt, 

SSwrt, SSws represent respectively the within cluster sum 
of squares in cluster t, r, s; nr and ns represent respectively 
the number of elements of cluster r and s. Clusters r and s 
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are joined in this step to form cluster t. A sudden increase 
of the statistic indicates a joining of two distinct clusters 
(a cluster solution immediately preceding this increase 
should be selected).  
 In our approach to cluster validation we use both inter-
nal and external criteria, with special emphasis on the 
internal ones. The methodology consists of computing all 
of the above cluster validity measures for each subset of 
features chosen. Then we determine the underlying cluster 
number for each method and each feature subset. In sev-
eral cases a measure hints to several possible numbers of 
clusters. The next step is to compute a cluster validity 
value which is set to 1/n where n is the number of 
equiprobable cluster choices as determined by a given 
metric for a given feature subset. For example, if the 
RMSSTD metric for the feature subset 3 determines that 
there are 5 or 10 clusters, the cluster validity measure 
(ClustConf) for each of those choices will be ½ (since 
there are two equiprobable choices).  
 We define the Cluster FS (Feature Set) Confidence as: 

∑
=

=
NumMetrics

k
jkifClusterConjionfClusterFSC

1
),,(),(  (4) 

where i is the Feature Set (FS) number, j is the number of 
clusters, and k is the metric number. 

The Cluster Metric Confidence is defined as: 

∑
=
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We define the overall confidence for a given number of 
clusters as: 

∑
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=
SetsNumFeature

i

jionfClusterFSCjstConfOverallClu
1
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 The choice of the underlying number of clusters is per-
formed based on the highest values of the Overall Clust 
Conf. For each number of clusters corresponding to three 
top Overall Clust Conf values, the feature set with the 
maximum Cluster FS Conf is chosen and the results of 
that clustering undergo external cluster validity investiga-
tion. This investigation is performed by a medical expert. 

7 Feature Selection 
The problem of cluster validity and choice of features for 
clustering are interrelated. The result of clustering with 
one set of features can diverge from the result with a sec-
ond set since the distance measures are different. 
 Not only little research was done on feature selections 
for unsupervised data [Dash and Liu, 2000; Kim et al., 
2002] but additionally the methods developed for this 
purpose assume that the goal, when searching for the best 
feature subset, is to obtain a set of attributes that gives the 
clustering as similar as possible to the one obtained with 
all the features [Boudjeloud and Poulet, 2005]. Other 
methods assume that the set of features is constant. In our 
case, the set of features is not constant, the clustering ob-
tained with all the features is not necessarily the best, and 
the goal is to find the best clustering possible without the 
medical experts having to go through all the care models. 
Our goal is to devise a methodology that uses clustering 
techniques and metrics, and results in a reasonable cluster-

ing from a medical standpoint while the experts have to 
look only at a small subset of the patients’ records. 

8 Data Set 
The data set contains the anonymized medical records of 
458,346 patients and covers over one year of visits. As a 
proof-of-concept, we concentrated on patients with SA or 
MRSA infections. MRSA strains, referred to as 
‘superbugs’ because of their resistance to most antibiotics, 
have become an important concern for hospital and public 
health personnel. The Centers for Disease Control and 
Prevention (CDC) estimates that in 2005 there were 
100,000 cases of invasive MRSA causing about 18,650 
deaths. MRSA can be a cause of skin infections and inva-
sive infections among adults and children [Gorwitz et al., 
2006]. Historically, two types of MRSA have been de-
scribed: community acquired (CA) and healthcare ac-
quired (HA). In the past, the bacterial strains and course 
of the disease caused by CA MRSA were felt to be dis-
tinct from HA MRSA. Increasingly the distinction be-
tween CA and HA infections has blurred. 
 We extracted from the data set 9984 patient records that 
had lab tests performed that identified the presence of SA 
or MRSA. This represented 2743 patients. The rest of this 
research is performed on this data set. To reduce the 
sparseness of the data set, we collapsed 1195 features into 
883. This was performed by adding the values of similar 
attributes. As an example, the attribute DX-C-Spine was 
created as the sum of the following features: DX-C-Spine-
1-View, DX-C-Spine-2-View, DX-C-Spine-2-or-3-Views, 
which are different types of cervical spine X-rays. 

9 Distance Measures 
The next step was to define a distance measure between 
patient care descriptors for clustering. We used the 
Euclidean distance with weights set to 1 for chosen fea-
tures. We excluded certain features from the distance 
computation because they had nothing to do with MRSA 
and related illnesses; this included most types of radiology 
tests: DX Abdomen, DX Knee, etc.  
 We used 13 different sets of features for computing the 
distance. They range from all the features (883) to a sub-
set of only 9 MRSA-related features. Most of the feature 
sets included: Deceased Flag, HVisit, Lab Order, Lab 
Result, Radiology Order, Radiology Result, and Rx Or-
der. Many of the sets included syndromes (Botulism-like, 
Fever, Gastrointestinal, Hemorrhagic Illness, Localized 
Cutaneous Lesion, Neurological, Rash, Respiratory, Se-
vere Illness or Death). Some of the subsets included sev-
eral types of lab tests such as: Blood Culture, Isolator 
Blood Culture, Respiratory Culture, Resp-Viral Culture, 
Urine Culture, Antibody Screen, and MRSA PCR Screen. 
Some of the sets included microorganisms such as SA or 
MRSA. Other sets included certain radiology tests: DX 
Chest, PX Chest, DX Feeding Tube Placement, or PX 
Central Line Placement. Some sets included subsyn-
dromes that could be related to MRSA: Specific Infection, 
Lymphadenitis, Lymphadenopathy, Skin infection, Uri-
nary tract infection, or Pneumonia.  
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 The two unique feature sets for clustering were all the 
features, and MRSA-only features (respectively, FS1 and 
FS9 in Table 2). The other feature sets were chosen based 
on information related to the severity of illness, general 
types of lab tests, information from the literature on 
MRSA symptoms, medical expert input, and results of 
clustering with all the attributes (FS1). When means and 
standard deviations for a feature of the two clusters identi-
fied with FS1 were substantially different, a given feature 
was included at least in one feature subset. An example is 
Lab Order (its mean in cluster 1 was 5.77, and its mean in 
cluster 2 was 21.36). In comparison, the feature Achro-
mobacter Xylosoxidans was never included in a feature 
subset, since cluster 1 mean was 0.0018 and cluster 2 
mean was 0.0067. 

Table 2 Number of Clusters Determined by Different Validation 
Methods for Each Feature Set  

Feature 
Set 

Semi-
Partial 
R Sq RMSSTD 

Pseudo 
F 

Pseudo 
T Sq 

FS1 2 6 2 2 or 7 
FS2 3 or 6 5 or 10 3 3 or 6 
FS3 6 5 or 10 2 or 6 6 or 10 
FS4 3 2 or 11 3 12 
FS5 3 6 or 11 3 3 or 12 
FS6 2 4 2 or 4 2 or 5 
FS7 3 5 or 10 3 3 or 6 or 11 
FS8 2 3 or 5 3 or 6 6 or 8 
FS9 2 2 or 4 2 or 6 5 or 11 

FS10 2 or 3 4 or 6 2 ? 
FS11 2 2 or 10 2 3 
FS12 3 or 5 5 or 11 2 3 or 6 
FS13 6 5 2 3 or 6 

10 Results 
Table 2 describes the number of clusters identified by 
each of the four cluster validation methods for each of the 
subsets. The number of clusters identified ranges from 2 
to 12. Usually one or two equiprobable numbers of clus-
ters are determined by a metric for a given feature subset. 

Table 3 lists the Cluster FS Conf values for the number 
of clusters varying from 1 to 12. The Overall Clust Conf 
is shown in Fig. 2. Its value is much higher for 2, 3, and 6 
clusters than for others. We find from Table 2 for 2, 3, and 
6 clusters which feature set gave the highest Cluster FS 
Conf in each case. This is FS1 for 2 clusters, FS5 for 3 
clusters, and FS3 for 6 clusters. These three clustering 
results underwent external evaluation by the medical ex-
pert. During the external evaluation, a medical doctor re-
ceived 88 (3% of the total) patient care instances chosen 
in such a way that for each of the three clusterings there 
were at least 10 PCIs in each cluster. He reviewed the 
records in a masked fashion. His goal was to come up 
with medical criteria and determine how he thought the 
care instances should be clustered. He came up with sub-
categories such as hospital acquired (HA) infection, 
community acquired (CA) infection, immunosuppressed, 
invasive disease, cutaneous disease, trauma, and death, 
among others. The categories are not mutually exclusive. 
Once he categorized all the 88 patient care models, we 

gave him the results of the three clusterings to determine 
how much sense, from a medical standpoint, each one of 
them made. 

Table 3 Cluster Feature Set Confidence Values for Number of 
Clusters 1 to 12 

 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 
FS1 0 2.5 0 0 0 1 0.5 0 0 0 0 0 
FS2 0 0 2 0 0.5 1 0 0 0 0.5 0 0 
FS3 0 0.5 0 0 0.5 2 0 0 0 1 0 0 
FS4 0 0.5 2 0 0 0 0 0 0 0 0.5 1 
FS5 0 0 2.5 0 0 0.5 0 0 0 0 0.5 0.5 
FS6 0 2 0 1.5 0.5 0 0 0 0 0 0 0 
FS7 0 0 2.33 0 0.5 0.33 0 0 0 0.5 0.33 0 
FS8 0 1 1 0 0.5 1 0 0.5 0 0 0 0 
FS9 0 2 0 0.5 0.5 0.5 0 0 0 0 0.5 0 
FS10 0 1.5 0.5 0.5 0 0.5 0 0 0 0 0 0 
FS11 0 2.5 1 0 0 0 0 0 0 0.5 0 0 
FS12 0 1 1 0 1 0.5 0 0 0 0 0.5 0 
FS13 0 1 0.5 0 1 1.5 0 0 0 0 0 0 

 

 
Figure 2 Overall Cluster Conf value. 

10.1  Results for FS1 
The clustering performed with all features (FS1) deter-
mines 2 clusters. The dendrogram (Semi-Partial R Square) 
for this set of hierarchical clusterings is shown in Fig. 3 
and points to two clusters. The biggest drop in RMSSTD 
(Fig. 4) points to 6 clusters. Pseudo F and Pseudo T 
squared are depicted in Fig. 5. The first points to 2, while 
the second points to 2 or 7 clusters. 

 
Figure 3 Dendrogram with Semi Partial R Square for FS1. 
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Figure 4 RMSSTD for FS1. 

 

Figure 5 Pseudo F and Pseudo T Square for FS1. 

 Cluster 1 patients had mainly cutaneous disease and 
very few died (0.06%). About half of this cluster had evi-
dence of CA disease, although there was more evidence of 
post-operative complication disease than in Cluster 2. 
Patients were more likely to have a history of trauma pre-
ceding SA disease. Patients from Cluster 1 had a much 
lower number of lab orders, lab results, radiology orders, 
radiology results, and Rx orders than the patients from 
Cluster 2 (see Table 4). Cluster 2 patients were much 
more severely ill from a variety of disease processes (e.g., 
HIV infection). They overwhelmingly had invasive dis-
ease and more of them died (7.77%). Very few had evi-
dence of CA disease and they were more likely to have 
HA, but not post-operative HA infection. 

Table 4 Mean Characteristics for 2 Clusters Obtained with FS1 

Cluster 
Number 

Num 
Elements 

Deceased 
Flag HVisit Lab 

Order 
Lab 

Result 
Rad 

Order 
Rad 

Result 
Rx 

Order 

1 1700 0.0006 3.60 5.77 6.58 3.32 3.09 4.97 

2 1043 0.0777 5.37 21.36 21.53 13.04 11.52 14.90 

10.2  Results for FS5  
The second highest Overall Clust Conf (Table 3) points to 
3 clusters and Table 2 points to FS5 in this case. This fea-
ture subset includes Deceased Flag, HVisit, Lab Order, 
Lab Result, Radiology Order, Radiology Result, Rx Or-
der, all 9 syndromes, all MRSA-related tests and results, 
certain cultures and subsyndromes. 
 Essentially all Cluster 1 patients had cutaneous disease, 
many with a preceding history of trauma. Greater than 

65% had evidence of CA disease. There were no deaths. 
These patients had the smallest number of lab orders, lab 
results, radiology orders, radiology results, and Rx orders 
(see Table 5). Cluster 2 patients had moderate disease 
with some deaths (0.12%). MRSA infection was split be-
tween invasive and cutaneous. About 25% was CA. These 
patients represented a wide variety of disease etiologies. 
Cluster 3 was similar to Cluster 2 in that the patients had a 
variety of disease etiologies, albeit much more severely ill 
and all of them died. About half of them had invasive dis-
ease. None had evidence of CA disease or MRSA from 
post-operative complications. 

Table 5 Mean Characteristics for 3 Clusters Obtained with FS5 

Cluster 
Number 

Num 
Elements 

Deceased 
Flag HVisit Lab 

Order 
Lab 

Result 
Rad 

Order 
Rad 

Result 
Rx 

Order 

1 1048 0 2.92 4.10 4.90 1.90 1.70 2.95 

2 1615 0.0012 5.31 16.54 16.90 10.11 9.12 12.56 

3 80 1 1.24 13.39 14.96 11.46 9.43 7.69 

10.3  Results for FS3  
The third highest Overall Clust Conf (Table 3) points to 6 
clusters and Table 3 points to FS3 in this case. This fea-
ture subset includes Deceased Flag, HVisit, Lab Order, 
Lab Result, Radiology Order, Radiology Result, Rx Or-
der, all 9 syndromes, all MRSA-related tests and results, 
SA, Blood Culture, Isolator Blood Culture, Respiratory 
Culture, Resp-Viral Culture, Urine Culture, Antibody 
Screen, DX Chest, PX Chest, certain subsyndromes such 
as Specific Infection, Lymphadenitis, Lymphadenopathy, 
Skin infection, and Urinary tract infection. 
 Cluster 1 contained primarily patients with CA cutane-
ous MRSA infections. No patients died. There were cases 
with both cutaneous disease and invasive disease. Histo-
ries of mental disease, immunosuppression, and trauma 
were common. These patients had the smallest number of 
lab orders, lab results, radiology orders, radiology results, 
Rx orders (see Table 6). Cluster 2 patients appeared to be 
moderately ill. There were about equal numbers of CA 
and HA disease. Cutaneous MRSA was more common. 
Only one person died (0.1%). There were multiple reports 
of positive SA cultures that were not identified as MRSA. 
There was a range of presentations, patient encounter 
processes and underlying etiologies. Cluster 3 had a pre-
dominance of patients with positive urine cultures, which 
suggests patients with indwelling urinary catheters. HA 
infections were more common than CA, which is also 
consistent with long-term patients. There was some cuta-
neous disease. Nobody died. These patients had the sec-
ond highest number of urine cultures and blood cultures. 
Cluster 4 patients were very seriously ill but nobody died. 
Several patients were presumed to have HIV infection or 
other serious immunodeficiency. There was a strong in-
fectious disease feel to these patients. All Cluster 5 pa-
tients died. Some deaths were from MRSA, most were 
not. Coronary artery disease was the most common cause 
of death. SA infection, though almost always invasive, 
often seemed to be of little significance. This group exhib-
ited the fewest number of hospital visits. Cluster 6 pa-
tients had almost entirely invasive MRSA disease. 1.7% 

IDAMAP 2009 59



of them died and most were very seriously ill. These were 
very sick patients who were ill from infectious causes as 
opposed to Cluster 5 patients who were sick from non-
infectious causes who happened to get a positive SA or 
MRSA culture. These patients had the most lab orders, lab 
results, radiology orders, radiology results, Rx orders, 
MRSA Cultures, MRSA-related tests, Blood Cultures, 
respiratory cultures, urine cultures, DX Chest, PX Chest, 
Isolator Blood cultures, and Resp-viral cultures.  

Table 6 Mean Characteristics for 6 Clusters Obtained with FS3 

Cluster 
Number 

Num 
Elements 

Deceased 
Flag HVisit Lab 

Order 
Lab 

Result 
Rad 

Order 
Rad 

Result 
Rx 

Order 

1 1058 0 2.95 3.85 4.54 1.90 1.81 3.12 

2 1001 0.001 5.11 14.32 15.13 9.33 8.38 10.37 

3 392 0 5.22 14.82 14.42 7.82 7.06 7.24 

4 38 0 6.37 13.63 14.24 7.26 7.84 7.32 

5 78 1 1.22 12.77 13.27 11.36 9.42 7.88 

6 176 0.017 6.30 36.09 36.68 20.80 17.94 37.40 

 
The best clustering in terms of the external criteria is 

the partitioning into 6 clusters obtained with feature set 
FS3. From the point of view of cluster validity metrics, 
this partitioning has the third highest Overall Cluster Conf 
value. This grouping is superior from a clinical / epidemi-
ological standpoint because it not only grouped patients 
with similar health care processes, but also separated them 
out by underlying disease processes. This clustering sepa-
rated those who died from MRSA from those who died 
from other causes with MRSA infection. 

11 Conclusions and Future Work 
We describe a novel data mining methodology for cluster-
ing MRSA patients according to the patterns of care they 
experienced, the subtype of MRSA they are sick with, and 
the clinical outcome. The first step is extracting patterns 
of care from the EMR data, the second step is building 
Patient Care Descriptors that summarize them, and the 
final step is the clustering of those descriptors. When per-
forming clustering, we faced a number of challenges: the 
number of underlying clusters is unknown, the number of 
attributes is very large, the clustering obtained with all the 
attributes is not the best from a medical standpoint, and 
the number of patients is prohibitively large for a medical 
expert to go through all of them. In our approach to clus-
ter validation we employed a combination of internal and 
external criteria. We defined the Overall Cluster Conf and 
other metrics so we could choose the most meaningful 
clusterings. The external evaluation criteria were em-
ployed on those results. The resulting 6 clusters are mean-
ingful from a medical standpoint and very useful for the 
generation of synthetic medical records for people with 
any form of MRSA.  

In future work, we will further refine this methodology 
to obtain medically meaningful clusterings for any type of 
disease present in the data. This will require the develop-
ment of an automatic technique for choosing the features 
for the distance measure used in clustering. 

Acknowledgments 
This research was supported by Grant Number P01 
HK000028-02 from the Centers for Disease Control and 
Prevention (CDC). Its contents are solely the responsibil-
ity of the authors and do not necessarily represent the of-
ficial views of CDC. 

References 
[Boudjeloud and Poulet, 2005] Lydia Boudjeloud and Francois Poulet. 

Attribute selection for high dimensional data clustering. ASMDA 
2005 Conference, pages 387-395, May 2005. 

[Buczak et al., 2008] Anna L. Buczak, Linda J. Moniz, John Copeland, 
Henry Rolka, Joseph Lombardo, Steven Babin, Brian Feighner. 
Data-driven hybrid method for synthetic electronic medical records 
generation. In: Proc. of IDAMAP, pages 81–86, 2008. 

[Calinski and Harabasz, 1974] R.B. Calinski and J. Harabasz. A dendrite 
method for cluster analysis. Communications in Statistics, 3:1–27, 
1974. 

[Dash and Liu, 2000] Manoranjan Dash and Huan Liu. Feature selection 
for clustering. Pacific-Asia Conf. on Knowledge Discovery and Data 
Mining, pages 110–121, 2000. 

[Gorwitz et al., 2006] Rachel J. Gorwitz, Daniel B. Jernigan, John H. 
Powers,  and John A. Jernigan. Strategies for clinical management 
of MRSA in the community: summary of an experts meeting. March 
2006. http://www.cdc.gov/ncidod/dhqp/ar_mrsa_ca.html.  

[Halkihi et al., 2001] Maria Halkihi, Yannis Batiskis, and Michalis 
Vazirgiannis. On clustering validation techniques. Journal of Intelli-
gent Information Systems, 17(2-3):107–145, 2001. 

[Kim et al., 2002] YongSeog Kim, W. Nick Street, and Filippo Menczer. 
Evolutionary model selection in unsupervised learning. Intelligent 
Data Analysis, 6(6):531–556, 2002.  

[Kovacs et al., 2005] Ferenc Kovacs, Csaba Legany, Attila Babos. Clus-
ter Validity Measurement Techniques. In: Proc. Sixth Int’l Symp. 
Hungarian Researchers on Computational Intelligence (CINTI), 
2005. 

[Theodoridis and Koutroubas, 1999] Sergios Theodoridis and Konstanti-
nos Koutroubas. Pattern Recognition. Academic Press. 1999. 

[Ward, 1963] Joe H. Ward Jr. Hierarchical grouping to optimize an 
objective function. Journal of the American Statistical Association, 
58(301):236–244, 1963. 

60 IDAMAP 2009



UsingPseudoTime-Series Trajectories to Explore Disease Regions in Glaucoma

Yuanxi Li 1, David Garway-Heath2∗ and Allan Tucker 1

1 School of Information Systems, Computing and Mathematics, Brunel University, West London, UK

2 NIHR Biomedical Research Centre for Ophthalmology,

Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK, London, UK

{yuanxi.li,allan.tucker}@brunel.ac.uk

Abstract

Previously, we have developed methods to build
pseudo time-seriesfrom cross-sectional medical data.
In this paper we extend these ideas to automatically
identify disease regions of interest at the extremes of
trajectories, and explore how trajectories differ be-
tween data generated from different glaucoma tests.

1 Introduction
Progressive loss of the field of vision is characteristic of a
number of eye diseases such as glaucoma, a leading cause
of irreversible blindness in the world. There are consider-
able data being collected on patients who suffer from eye
disease such as Visual Field (VF) test data and the Heidel-
berg Retina Tomograph (HRT) data. Many of these datasets
are cross-sectional and the time dimension is not measured
due to the expensive nature of such studies across an entire
population, despite the inherently temporal nature of eye
diseases. Previously, we have developed methods to build
pseudo time-seriesfrom cross sectional data using a combi-
nation of distance metrics, graph theoretical operations and
bootstrapping[Tucker and Garway-Heath, 2009]. This re-
sults in trajectories through the dataspace starting at healthy
data and ending at cases of advanced disease. Here we ex-
tend some of these ideas in order to automatically identify
disease regions of interest along these trajectories as well as
the likely transitions between them. We also explore how
HRT and VF data interact within the disease process.

2 Methods
The VF test assesses the sensitivity of the retina to light. It
is typically measured by automated perimetry, a technique
in which the subject views a dim background as brighter
spots of light are shone onto the background at various lo-
cations in a regular grid pattern. The brightness at which
the subject sees the spots of light is related to the retinal
sensitivity. For this paper, the VF data are aggregated into
average values based upon their association with one of 6

∗David Garway-Heath is part funded by the Department of
Healths National Institute for Health Research Biomedical Re-
search Centre at Moorfields Eye Hospital and the UCL Institute
of Ophthalmology. The views expressed in this publication are
those of the authors and not necessarily those of the Department
of Health.

Figure1: VF data from someone suffering typical glauco-
matous field loss and an HRT image

nerve fibre bundlesbased upon the mappings in[Garway-
Heathet al., 2000]. The other type of data that we explore
are HRT data[Kamal et al., 2000] and involves generat-
ing images of the retina in order to calculate certain mea-
surements associated with the three dimensional shape of
the optic nerve head. These include neuro-retinal rim area
which are used for the experiments in this paper. The mea-
surements are calculated for 6 different segments: nasal,
nasal inferior and superior, temporal, temporal inferior and
superior. Figure 1 shows an example of a VF test and an im-
age from which HRT data are collected. Here we combine
the VF and HRT datasets (we have data for HRT and VF
on each of 180 patients) to see if trajectories that are iden-
tified capture the interaction between the two data types as
glaucoma progresses. The data are classified into healthy
or glaucomatous based upon the VF data using an AGIS
algorithm[AGIS, 1994].

Building pseudo time-series involves plotting trajecto-
ries through cross-sectional data based upon distances be-
tween each point using prior knowledge of healthy and dis-
ease states. These trajectories can then be used to build
temporal models such as Hidden Markov Models to make
forecasts. The temporal bootstrap involves resampling data
from a cross-sectional study and repeatedly building these
trajectories through the samples in order to build more ro-
bust time-series models[Tucker and Garway-Heath, 2009].
In this paper, we use the following algorithm to generate
and explore the transitions of the different states within the
trajectories that are discovered from the combined VF and
HRT data. Essentially, it starts by searching for 3 hidden
states,h (one more than the original ‘healthy’ and ‘dis-
ease’), whilst learning the HMM with the EM algorithm
[Bilmes, 1997]. This is then repeated for increasing values
for h until more than one stable end state is found in the
transition matrix of the HMM.
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Algorithm 1 DiseaseRegion Identification
1: Input: Pseudo time-series generated from the combined VF

and HRT data
2: Unlabel the binary disease class states
3: h=3
4: repeat
5: Train a HMM on the PMTS withh hidden states using EM
6: until transition table in the paramterised HMM has more than

one stable disease region (or ‘end state’)
7: h = h + 1
8: Output: HMM with new multiple hidden ‘end states’

3 The Experiments and Results
The ‘end states’ represent expected values for data
based upon the HMM learnt from the unlabelled pseudo
time-series. These are likely to represent stable stages
of glaucoma data at the extreme of each trajectory found
from the pseudo time-series. Firstly we look at the state
transition diagram generated from the transition matrix
of the learnt HMM in the top of Figure 2. Note that 4
states were found that resulted in two end states. Full lines
represent probabilities of over 0.15 and dashed represent
probabilities between 0.05 and 0.15. The full transition
matrix is given in Table 1 whereht represents the hidden
stateh at time t. This table and diagram show that

ht−1\ht 1 2 3 4
1 0.9747 0.0253 0.0000 0.0000
2 0.0509 0.7461 0.0897 0.1133
3 0.2749 0.0000 0.6827 0.0424
4 0.0000 0.0700 0.0990 0.8310

Table1: Transition matrix for discovered states

there appear to be three relatively stable states:1, 2 and
4 (where the probability of moving to another state are
less than 0.15). 4 coincides with the starting healthy
state, 1 and 2 appear to represent relatively stable end
states and3 appears a transitory state. We now explore
these states further by calculating the expected values of
the variables associated with each state as shown in the
bottom of Figure 2 (plotted as VFs and rim measurements
spaced anatomically). These values are calculated using a
junction tree inference algorithm on the HMM where the
evidence entered is simply the end state[Murphy, 2002].
As expected state4 shows a normal rim width and the
healthiest VF sensitivity, whereas state1 shows marked
diffuse rim narrowing, especially in temporal, temporal
superior and temporal inferior sectors, and moderate loss
of retinal sensitivity, especially in inferior arcuate and
superior arcuate regions. This is what would be expected,
based on known anatomical relationships. State3 displays
mild diffuse narrowing of rim and mild diffuse reduction
of retinal sensitivity. State2 shows moderate narrowing
of rim, especially in nasal and temporal superior sectors
and temporal sector. Here one would expect temporal rim
sector loss.

4 Conclusions
In this paper, we explore how to build time-series mod-
els from cross-sectional glaucoma data, how two different

Figure2: (top) The state transitions for the combined VF
and HRT data and (bottom) their expected data.

types of this data interact as the disease progresses, and fi-
nally how to automatically identify different disease states
at the end of the discovered trajectories. We have carried
out a small study with promising results, being able to iden-
tify stable states with abnormal VF sensitivity and marked
rim narrowing and transitory states with moderate narrow-
ing of rim, especially in the nasal and temporal superior
sectors and temporal sector, and subtle loss of retinal sen-
sitivity in the central macula. We intend to expand this re-
search to considerably larger longitudinal glaucoma studies
in order to test the methods more thoroughly.
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Abstract
To face the rapid growth of the world elderly
population, health smart homes with sensing
technology are emerging to automatically detect
early loss of autonomy using objective criterion
such as the Activity of Daily Living grid. The
paper presents data mining techniques to classify
seven activities in a health smart home using only
the most relevant attributes. The evaluation has
shown that a correct classification of 84.5% can
be reached with a dataset reduced to 16% related
to less than 34% of the current sensors. Results
also showed the importance of microphones as
complementary data source.

1 Introduction
One of the important goals of health smart homes is to as-
sess how a person copes with her handicap and to detect
a loss of autonomy as early as possible. But the technolo-
gies involved in health smart home, to be set-up in a large
number of flats and institutions, need to be robust, scalable
and affordable. Most of the researches related to health
smart home is focused on sensors, network and data shar-
ing [Chan et al., 2008], but a fair number of laboratories
started to work on reliable activities detection. However,
to the best of our knowledge, only few approaches have
determined which sensors are important for robust classifi-
cation. Thus, the domain still needs a robust method to de-
termine the most informative sensors for smart homes. In
this paper, we present an evaluation of several data mining
state-of-the-art techniques applied to the problem of robust
ADL recognition from a minimal set of sensors. One of
the originality of the approach is to consider microphones
which is a modality not much exploited in this domain.

2 Telemonitoring Data
An experiment has been run to acquire telemonitoring data
in the Health smart home of the TIMC-IMAG lab located
in the Faculty of Medicine of Grenoble. Thirteen healthy
participants were asked to perform 7 activities, at least
once, without condition on the time spent. The 7 activi-
ties were defined based on the ADL scale: (1) Sleeping;
(2) Resting; (3) Dressing and undressing; (4) Feeding; (5)
Eliminating; (6) Hygiene activity; and (7) Communicating.

The flat contains 18 sensors which get different informa-
tion about the inhabitant. Presence infra-red (PIR) sensors
bring information about the location and agitation of the
person, doors contacts reflect the use of some furniture and
a weather station indicates the temperature and hygrometry
of the bathroom. The last sensors are a set of seven micro-
phones distributed all around the flat (hidden in the ceiling)
analysed in real-time by the AuditHIS system [Vacher et
al., to appear] to extract sounds and speech. From these
sensors, 38 numerical and boolean attributes have been de-
rived. Data has been annotated by cutting down each ADL
interval into 3-minute windows labelled with the name of
the activity. The final dataset was thus composed of 232
examples of 3-minute activity described by 38 attributes.

3 Method

In this work, selection of attributes is used to find out
what the sensors of interest for ADL automatic recogni-
tion are and the impact of this selection on the learning
performance. The induction algorithms used were: Deci-
sion Tree (C4.5), Decision Table Majority (DTM), Naı̈ve
Bayesian Network (NBayes) and Support Vector Machine
(SVM). They have been chosen for their popularity in data
mining applications and because they represent quite dif-
ferent approaches to learning. Although most of the cho-
sen algorithms can handle numerical attributes, the data has
been discretized using supervised discretization. Attribute
selection techniques are generally divided into two fami-
lies filter and wrapper. To test the impact of attribute se-
lection on the learning performance a small subset of each
method type has been chosen. Correlation-based Attribute
Selection (CorrFA) searches for subsets of attributes that
are highly correlated with the class but with minimal inter-
correlation with each other. This method is thus well suited
to discover non redundant attributes sets. Consistency-
based Attribute Selection (ConsFA) searches for subsets of
attributes that are consistent with the class. An attribute
subset is inconsistent if there are more than one instance
with same attribute values but associated with different
classes. Wrapping method is an attribute subset selection
method that uses the targeted learning algorithm score at
each node as evaluator. This method is more time con-
suming but leads generally to higher performance than the
previous described as it fits the learning algorithm.
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4 Evaluation
4.1 Attribute Selection Results
For the filter selection method, the number of retained at-
tributes varies with the method employed (CorrFA, ConsFA
and Global Filtering) but a global trend appears. Four to
five PIR attributes are always in the top of the list (bath-
room, living room, bedroom and kitchen) followed by
two microphone attributes (sound in bedroom and speech).
This is not surprising as each room is related to several
ADLs and thus the presence of someone in a room has a
high predictive value about what s/he doing in it. With the
wrapper methods, the only noticeable change with the fil-
ter method is the rank of the dresser state attribute which
has a low entropy which is true (i.e., open) only in case of
dressing activity, making it quite interesting for classifica-
tion. Global Filtering (GF) and Global Wrapping (GW) are
composed from the attributes that have been selected more
than 50% of the time over stratified 10-fold cross-validation
and the selection methods.

4.2 Impact on the Supervised Learning
The impact of the attribute selection has been assessed by
learning from the data sets composed from subsets of at-
tributes using a 10-fold stratified cross-validation repeated
10 times. Table 1 summarises the results.

Performance with the whole set is the reference for cor-
rected paired student t-test. This data set gives the lowest
performances for DTM (80.0%). NBayes and C4.5 have
significantly higher performance than DTM (p < .05) but
no significant difference is observed between them nor with
SVM. Data set composed of PIR attributes (i.e., ‘PIR only’
data set) only gives significantly reduced performances but
still reasonable which emphasizes the location information
impact for the classification. When the sound attributes are
removed from the whole set (i.e., ‘No sound’ data set), the
performances are significantly lower. This shows that the
sound processing does present essential information to per-
form activity recognition. However, the Signal-To-Noise
ratio of the sound signal must be improved to reach satisfy-
ing performance in this flat which has poor noise insulation
[Vacher et al., to appear].

The data set composed of the attributes selected by
Global Filtering (GF) attribute selection method leads to
performances that are not significantly different from the
ones with the whole set. This data set contains less than
29% of the original data (using only 7 sensors). No learn-
ing scheme is significantly better than the others. The data
set composed of the attributes selected by Global Wrapping
(GW) attribute selection method leads to performances

method Whole
set

No
sound

PIR
only

GF GW

C4.5 83.3 76.8∗∗ 71.7∗∗ 82.5 83.4
DTM 80.0 75.7∗∗ 71.3∗∗ 82.6 83.0∗
NBayes 85.3 77.4∗∗ 72.9∗∗ 85.1 84.5
SVM 82.9 78.9∗ 75.0∗∗ 81.3 84.6
average 82.9 77.2 72.7 82.9 83.9

Table 1: Correctly classified Instances (%) for different
learning algorithms and data sets (∗p < .05; ∗∗p < .01).

that are significantly better for the DTM learning scheme
(p < .05) but not for the other schemes when compared
with the whole set. No significant difference is observed
when compared to the GF performances. This data set con-
tains less than 16% of the original data (using only 6 sen-
sors). No learning scheme is significantly better than the
others. Overall the GW method leads to higher average
performance (83.9%) than with the whole set (82.9%) and
than the GF method (82.9%) but this is not significant and
is mainly led by the DTM learning scheme.

5 Conclusion
The main result of the study is that it is possible to
keep high performance for automatic classification of ADL
when selecting a relevant subset of attributes. About 33%
of the sensors (and less than 16% of the attributes) are
enough to classify ADL with same (and sometime supe-
rior) performance as with the whole data set. But the re-
tained sensors are of different nature (location, sound, con-
tact door) and thus complement each other. The selected
attributes were mainly related to PIR sensors and micro-
phones. While these sensors seem to be the most infor-
mative, contact door attached to the dresser was essential
for classifying dressing activity. Indeed, the chosen ADLs
were all related to a location (e.g.: sleeping in the bedroom,
eating in the kitchen . . . ) and when two activities are usu-
ally done in the same room (e.g., sleeping and dressing)
a strict location sensor is not enough to distinguish them.
Thus, realistic ADLs should include activities in unusual
location (e.g., eating while watching TV, sleeping on the
sofa . . . ) to challenge the learning process and acquire
more accurate models. This is illustrated by the eliminat-
ing and hygiene activities which, due to their natural in-
terrelation (e.g., WC and then washing hand) and the flat
configuration, challenged the learning.

Globally, sound sensors attributes have a good predictive
power and the study shows that this information is essen-
tial for ADL classification. But the study also showed the
limit of the current audio processing. Indeed, the sound at-
tribute should deliver the same information as the PIR sen-
sors while adding higher semantic level attributes (speech,
footstep . . . ) but the very hostile sound conditions of the
experiment shows that the robustness of the current audio
processing needs to be improved. However, the presented
results confirmed the information power of this modality at
least for support to classical smart home sensors.
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Christophe Escriba, and Eric Campo. A review of
smart homes- present state and future challenges.
Computer Methods and Programs in Biomedicine,
91(1):55–81, Jul 2008.

[Vacher et al., to appear] Michel Vacher, Anthony Fleury,
François Portet, Jean-François Sérignat, and Norbert
Noury. Complete sound and speech recognition sys-
tem for health smart homes: Application to the recog-
nition of activities of daily living. In Recent Advances
in Biomedical Engineering. InTech, Croatia, to appear.

64 IDAMAP 2009



Personalized Feedback based on Automatic Activity Recognition from
Mixed-Source Raw Sensor Data

Harm op den Akker
Roessingh Research and Development

h.opdenakker@rrd.nl

Val Jones
Telemedicine Group
University of Twente

v.m.jones@utwente.nl

Hermie Hermens
Roessing Research and Development

h.hermens@rrd.nl

Keywords: Wireless sensor networks, data mining, sen-
sor data fusion, activity monitoring, COPD, biosignals.

Abstract
We present a data set consisting of multiple wireless sen-
sors that monitor movement and various types of bio sig-
nals, recorded from patients that suffer from Chronic Ob-
structive Pulmonary Disease (COPD). From this data, the
goal is to derive appropriate feedback to the patient that
will motivate them to achieve a healthy lifestyle and a good
phyisical condition.

1 Introduction
The AAL1 project IS-ACTIVE (Inertial Sensing Systems
for Advanced Chronic Condition Monitoring and Risk Pre-
vention) started in April 2009. The project addresses con-
tinuous monitoring of activities and health status of pa-
tients, suffering from Chronic Obstructive Pulmonary Dis-
ease (COPD), in their daily environment. The goal is to
promote a healthy lifestyle by providing personalized feed-
back on daily life activities taking into account the limita-
tions for the patient caused by his chronic condition. To
achieve this goal, we need to know what the patient is do-
ing, and what the condition of the patient is throughout the
day.

The patient will be equipped with a series of smart wire-
lessly networked sensor nodes. The final selection of sen-
sors to be used has not yet been made but will likely in-
clude MEMS accelerometers, tilt switches, gyroscopes and
magnetic compasses. Each sensor node will also include a
microcontroller which takes care of sampling and network-
ing, but resources must also be reserved for intelligent pro-
cessing of the sampled data on the microcontroller itself.
Besides the motion sensors needed for activity recognition,
the patient will also wear biosensors to monitor his health
status. Physiological parameters of interest include heart
rate, some measure of respiration and oxygen saturation. In
addition, analysis of audio recordings may be used to de-
tect respiratory difficulty indicated by coughing and heavy
breathing.

1Ambient Assisted Living

The resulting dataset will include sensor data outputs
captured while performing a wide range of movements like
walking, nordic walking (with sensors on the sticks), cy-
cling, and any physiotherapy exercises that are commonly
prescribed to COPD patients. Continuous series of sensor
data will be hand-annotated with descriptions of the activ-
ities performed. If possible, the corpus will include video
recordings of some basic activities, such as walking on a
treadmill while wearing all the different sensors, so that
these activities can be studied in greater detail afterwards.
Because initially all raw sensor outputs are saved to the cor-
pus, and the sampling frequency of the sensors will be set
to a high level (100Hz or higher), the total quantity of data
collected will be very large. The use of multiple movement
sensors, such as the Inertia ProMove sensor2, which will
feature 9 degrees of freedom from three sensors: 3D ac-
celerometer, 3D magnetic compass and 3D gyroscope, will
result in a data set comprising as many as 40-50 layers of
data.

The data mining challenge will be to automatically clas-
sify time segments of sensor data as belonging to one of
the identified activities, and at the same time to calcu-
late an estimate of the amount of strain that is put on the
patient while performing that activity. The definition of
strain in this context depends heavily on the individual pa-
tients, and can be seen as physical- or psychological strain,
stress or a combination thereof. An important constraint
on the algorithms to be designed is that they should run
on the wireless sensor network nodes in a distributed way.
Data transmission should be kept to a minimum to pre-
serve battery lifetime, while processing power on the nodes
themselves is limited. For examples of a distributed activ-
ity recognition approache see [Marin-Perianu et al., 2008;
Amft et al., 2007].

The challenge in designing the automatic activity recog-
nizers can be described by three requirements. First, the
algorithms should use as little data as possible from the
sensors in order to minimise the number of sensors actu-
ally needed and to enable reduction of each individual sen-
sor’s sampling frequency. Second, processing of individ-
ual sensor outputs should be done on the wireless sensor
node itself, as far as possible, in order to reduce the need

2http://www.inertia-technology.com/
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for wireless transmission between sensor nodes. And third,
the part of the algorithm which combines the various sen-
sor outputs should be as simple as possible so as to be able
to run on one of the (resource poor) nodes.

2 Approach
Because of the distributed nature of the task, we propose
a layered approach with well defined subtasks that can be
performed on specific nodes in the network. At the low-
est layer, feature extraction from the wireless sensor data
will take place. Once it is clear which features are needed
for the activity recognition task, these features should be
extracted on the sensor nodes themselves so that network
transmission can be kept to a minimum. Then, the feedback
device, which will most probably be some sort of PDA, is
charged with the task of collecting relevant features from
the nodes and doing the actual activity recognition. Note
that with state-of-the-art PDA devices, the resources avail-
able for this part of the algorithm might not be that limited
at all, but battery usage remains an issue. A similar ap-
proach is required for the biosensors, which will send their
data (e.g. heartrate) to the feedback device on a previously
defined minimum need basis. A second algorithm running
on the feedback device will then combine biosensor and
activity data and generate appropriate feedback for the pa-
tient.

This feedback is meant to help patients to be as active as
possible, while preventing attacks of breathlessness. In or-
der to provide each patient with the optimal feedback, the
system will adapt to the behaviour and health status of the
user. If, for example, a patient repeatedly chooses to ig-
nore advice from the system to take it easy, with no serious
health consequences for the patient, the system should be-
come less cautious and allow the user to be more active.
More importantly, if the system fails to warn a patient in
time to lower his/her activity level, the system should issue
its warnings more quickly. This general activity monitor is
one of the envisioned applications, one that requires only
a rather broad measure of activities. A second application
is to aid patients in performing their daily physiotherapy
excercises in a correct way. This requires a better accu-
racy from the activity recognition algorithm, because it has
to correctly detect, for example, short series of arm or leg
movements. The feedback device can then take on the task
of personal coach, by keeping track of the exercise sched-
ule while giving motivational feedback.

These different applications impose different require-
ments on the classification tasks. On the broad scope, the
system should never mistake running for lying in bed, but
mistaking slowly riding a bike for walking might not be a
huge problem. On the other hand, the need for accuracy
greatly increases when trying to detect all the actions that
are performed in a physiotherapy excercise session. These
differences have to be taken into account when collecting
the training data for the algorithms. For detecting a bicycle
ride, it may be sufficient to annotate a 15 minute trip from
home to work as “riding a bike” (without indicating a stop
for a red light, or the speed at every moment) and use it for

training. For the excercise patterns, it is probably a good
idea to make video recordings of various sessions, and let-
ting each phase of the movements be annotated by multiple
annotators according to a previously agreed upon annota-
tion manual. The inter annotator agreement then needs to
be high overall, but small inconsistencies near the bound-
aries of movements may be acceptable.

For the annotation schema we propose a layered ap-
proach. On the highest layer, at least five different classes
will be distinguished including riding a bike, walking, jog-
ging, doing excercises and non-active. Then in the second
layer, more detailed activities like the exact excersises can
be annotated. These might include up to 10 different at
home excersises for COPD patients. If necessary for the
classification algorithms, a third layer may contain annota-
tions of specific arm- or leg movements.

3 Feedback
As stated earlier, the final goal of the research is to pro-
mote a healthy lifestyle for COPD patients. We attempt
to achieve this by providing feedback that motivates each
individual patient to improve their physical condition to
the maximum of their abilities. This raises the question of
when and how to provide feedback, which is a non-trivial
and not well understood issue. That is why an important
part of our research will focus on using the recognized ac-
tivity patterns and bio-signal data as input to a feedback
system. This system can be seen as a sort of Clinical Deci-
sion Support System that will also have to adjust its ‘deci-
sions’ (i.e. feedback responses) to how the patient reacts to
them. At this point however, the details of the development
of such a system are largely unclear.

To conclude, the goal of this article is to start a discus-
sion on how to use data mining or machine learning tech-
niques to eventually derive appropriate patient feedback
from a large set of raw sensor data.
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Abstract 
Traditional studies of health care quality center upon 
single events of hospital inpatient treatment, measur-
ing treatment processes and outcomes for patients 
grouped by disease or unit of service.  This paper 
seeks to refine models for analyzing episodes of care 
with temporal data mining methods.  We aim to cha-
racterize patterns of patient condition, treatment 
processes, and outcomes, based upon administrative 
data from outpatient and inpatient settings to be con-
sidered in the design and monitoring of quality im-
provement interventions.  

1 Introduction 
We are collaborating with the Institute for Healthcare Im-
provement, who recently commented that “Reducing rates 
of re-hospitalization has attracted attention from policy-
makers as a way to improve quality of care and reduce 
costs. However, we have limited information on the fre-
quency and patterns of re-hospitalization in the United 
States to aid in planning the necessary changes.”  (Jencks 
2009).  Re-hospitalization is one among many patterns of 
treatment for a given disease, as shown in Figure 1.  In 
this model, cases are identified as “index events” for hos-
pitalization, and their records from other sites of care eg 
emergency room, are added to the data set   Quality im-
provement questions to be addressed are – What patient 
conditions lead to re-hospitalization and other outcomes?  
How can we optimize the patients’ quality and cost of 
care?   

2.1 Methods for Episodes of Care 
In current practice, hospitalized patients are tabulated 

by their source of admission and discharge for a specified 
condition ie. index event.  These tables provide a limited 
view of their care, without an understanding of comorbidi-
ties and other sites of care during an episode of illness. 

A better approach is to select patient records that have 
been hospitalized for the condition (index event), and in  
a second pass through the data set, select all records for 
those patients representing care before and after their hos-
pitalization.  Simple sorts of the data set illustrate treat- 
 
 
 

  
ments for individual patients, useful for clinical decision 
support.  Temporal data mining methods reveal patterns of 
disease and treatment, to be used in decisions about quali-
ty improvement and financing of health care.   

2.2 Discussion 
Concaro et al. applied sequential pattern mining algo-
rithms with a national inpatient sample to find frequent 
sequences of disease such as pneumonia, hypertension, 
and diabetes, with a market basket form of analysis.  They 
recommend further research to “specify the temporal evo-
lution and potential cause-effect relationships between 
healthcare events. “  

Tudor et al. applied logistic regression models, account-
ing for daily organ failure scores in the prediction of sur-
vival for intensive care patients.  Prediction of hospital 
treatment outcomes addresses a part of our episode of care 
scenario, aimed to improve the quality and cost of care in 
all settings 

This paper is submitted to IDAMAP with an initial de-
scription of a problem and data set that may benefit from 
an analysis through intelligent data analysis or data min-
ing.  We look forward to discussing alternative methods 
for this application. 
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Description and Aim 
The purpose of this challenge is to encourage students to study and apply best knowledge discovery 
approaches to a real medical data mining problem. The goal is to extract knowledge from the Nation-
al Ambulatory Medical Care Survey (NAMCS) data set (see description of NAMCS data). 
 
The contributions will be judged by the IDAMAP program committee members. The winner will 
receive a cash award of 300 EUR and will have the opportunity to present his/her work at the 
IDAMAP workshop. No funds for travel or workshop registration will be provided. 

Eligibility 
The challenge is open to all students. Individual participants as well as groups are welcomed. 

Participation 
Participants are invited to report on interesting findings and knowledge obtained applying data min-
ing approaches to the NAMCS data set. There are no restrictions on the data mining technique to be 
used (supervised or unsupervised learning are allowed). 
 
The data is publicly available at: www.cdc.gov [look for NAMCS]. The data are organized by year, 
but there are no restrictions or requirements to use data from any specific year. The participants are 
free to use data from one or multiple years. 
 
The contributions must be submitted as a written report and must include: 

• names, academic degree(s), affiliations of all authors (advisors should be listed as authors), 
• short abstract, 
• introduction, methods, results, discussion and conclusion.  

 
The entry must be formatted using the Word template for regular IDAMAP submissions (up to six 
pages, 4500 words, see instructions for submission in the IDAMAP call for papers). Entries must be 
submitted by email to the workshop chairs. 

Winners 
Congratulations to Lan Umek and Minca Mramor from the University of Ljubljana, Slovenia, and 
their supervisor Blaz Zupan. 
 
They have applied a subgroup discovery approach to analyze the records on outpatient visits from the 
year 2006. Their method discovered a number of significant subgroups of similar patients in terms of 
characteristics, reasons for visiting the physician, diagnosis and treatment. The authors comment on 
the somewhat unexpected properties of three such subgroups and suggest that each may deserve fur-
ther biomedical research. 
 

IDAMAP 2009 Student Challenge 

IDAMAP 2009 69



 

70 IDAMAP 2009



Subgroup Discovery in Data Sets with Multi–Dimensional Responses:
Application to a Medical Domain

The IDAMAP 2009 Student challenge

Lan Umek, Minca Mramor

supervisor: Blaž Zupan
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Abstract

Medical data sets often include a large number
of features. When inferring a machine learning
model, the features can be divided into the in-
put (description of patients, symptoms, other dis-
eases, . . . ) and output (diagnosis, treatment, drug
prescription, . . . ) variables. To analyse such
data sets we used the technique that can treat
many output features simultaneously [Umek et
al., 2009]. The method uses a combination of k-
medoids clustering and analysis of contingency
tables and aims to find subgroups of patients that
are similar both in the input and output space
with significant dependencies between both sets
of variables. We applied this method on the The
National Ambulatory Medical Care Survey data
and discovered several meaningful patterns.

1 Introduction

The aim of our analysis for the student challenge was the
application of a subgroup discovery approach [Umek et al.,
2009] on the records from the outpatient departments in the
year of 2006 from The National Ambulatory Medical Care
Survey (NAMCS) data [NAMCS, 2009]. Due to the high
diversity of medical data we applied the method on sev-
eral different subsets of the patients. Our goal was to group
patients into subgroups that would reflect reasonable rela-
tions between their individual characteristics, vital signs,
and reasons for visiting the physician and the correspond-
ing diagnosis and treatment procedure.

2 Data

We used the data from the National Ambulatory Med-
ical Care Survey (NAMCS) conducted in the year of
2006. The aim of NAMCS is to gather reliable in-
formation about the provision and use of ambulatory
medical care services in the United States. The sur-
vey first started in the year of 1973. The information
about the patient visits is collected from the non-federally
employed office-based physicians. Data are obtained
on the demographic characteristics of patients, patients
symptoms, physicians diagnoses, diagnostic procedures,
medications ordered or provided, patient management,

and planned future treatment. The data is freely avail-
able online at ftp://ftp.cdc.gov/pub/Health_
Statistics/NCHS/Datasets/NHAMCS/.

The 2006 data included the information on 35104 pa-
tient visits described with 416 variables. In our analysis we
used 55 variables that we divided into the following 6 sec-
tions: patient characteristics (e.g. age, sex, race) reason for
visit (symptoms), associated diseases (e.g. diabetes, obe-
sity, cancer), vital signs (e.g. blood pressure, temperature),
diagnosis, medications, and diagnostic screening services.
These variables were used to find the subgroups in the data,
as shown in Table 1.

3 Models

3.1 Search Algorithm

Our analysis was based on a subgroup discovery ap-
proach [Umek et al., 2009] which requires a data set with
two sets of variables at the input and output. The method’s
main idea is to reduce the complexity of the possible links
between the two sets of variables (X and Y ) by summa-
rizing the variability among X and Y . This is done by
inferring cluster systems Lx and Ly and afterwards study-
ing the relation between the input and output variables by
analysing the cross–table Lx × Ly . For this purpose we
extracted a subset of variables from the original data and
divided it to inputs and outputs (Table 1).

Table 1: Feature sets, the number of features included
(nvar) and a list of names for a selection of representative
features from the set.

feature set nvar representative features

INPUT 32

basic 3 sex, age, race

vital signs 7 height, BMI index, blood pressure

other diagnosis 21 arthritis, asthma, cancer, . . .

+ use of tobacco

reason for visit 1 main reason for visit

OUTPUT 23

diagnosis 1 principal diagnosis

diagnostic tests 22 total number of tests

+ number of medications EKG, urine test, . . .

The used method discovers subgroups of patients that
are similar both in inputs and outputs and reflect the local
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dependencies between both sets of variables. The search
algorithm can be briefly described in the following steps:

1. Perform k1–medoids clustering [Kaufman and
Rousseeuw, 1990] of n patients in X–space and
k2–medoids clustering in Y –space. Label each
instance with the corresponding cluster indices Lx

and Ly .

2. Present the results of clustering in a contingency table
for Lx and Ly:

Ly

1y 2y · · · k2

1x n11 n12 · · · n1k2
n1+

2x n21 n22 · · · n2k2
n2+

Lx

...
...

...
. . .

...
...

k1 nk11 nk1 · · · nk1k2
nk1+

n+1 n+2 · · · n+k2
n

where nij represents the number of patients in cluster
i in the input space and cluster j in the output space.

3. Under null hypothesis

H0 : variables Lx and Ly are independent

the contribution

cij =
(nij −

ni+n+j

n
)2

ni+n+j

n

. (1)

of the subgroup (cell) ij approximately follows χ2

distribution with one degree of freedom [Agresti,
2001]. The estimated p–value pij is then assigned to
each subgroup. Subgroups with small p–values show
significant evidence against the null hypothesis and
are reported to the expert.

In the search algorithm we tested several different com-
binations of the numbers of clusters k1 and k2. This conse-
quently produces a very large number of overlapping sub-
groups and increases the danger of false discoveries. The
set of discovered subgroups was therefore reduced in the
following steps:

• the p–values were adjusted using false discovery
rate [Benjamini and Hochberg, 1995],

• we measured the similarity between subgroup and re-
ported only the most representative ones

For expert’s interpretation of the results we described
each subgroup of patients with the most frequent value of
reason for visit and most frequent principal diagnosis. The
distribution of other variables has been reported only in
case of significantly different distribution compared to the
reference set.

3.2 Parameters Used in the Algorithm

The crucial part of every clustering algorithm is the defini-
tion of the dissimilarity measure. We used weighted Man-
hattan distance where each feature set from Table 1 had the
same weight. Within each feature set all the variables were
equally important. With such definition we stressed the im-
portance of variables from smaller feature sets, especially

the reason for visit in X–space and principal diagnosis in
Y –space.

Based on the variable reason for visit, we divided the
data into blocks and were interested in specific subgroups
within these predefined blocks. The reasons for visit are
classified into 7 modules, from which we used the Symp-
tom module, Disease module and Injuries and Adverse ef-
fects module as defined in the appendix II of the NAMCS
Micro-data file documentation. The modules are addition-
ally divided into groups based on the organ system the
symptoms or diseases refer to (e.g. Symptoms Referable
to the Respiratory System or Diseases of the Nervous Sys-
tem, see Table 2).

4 Results and Discussion

For most of the patients from different groups in the mod-
ules described in the previous paragraph, we have discov-
ered several interesting and significant subgroups of pa-
tients. Table 2 shows the number of subgroups that our
method identified as significant.

Table 2: Overview of the results. The block of symp-
toms defined the data set for analysis, # patients is its size.
The number # subgroups presents the number of interesting
subgroups after filtering.

block # patient # subgroups

symptoms referable to

skin, nails, and hair 919 9

nervous system (excluding sense organs) 1033 10

eyes and ears 1090 9

digestive system 1252 3

cardiovascular and lymphatic systems 82 2

poisoning and adverse effects 88 2

neoplasms 524 14

mental disorders 219 9

diseases of

skin and subcutaneous tissue 287 5

respiratory system 267 7

musculoskeletal system and connective tissue 208 2

genitourinary system 401 6

eye 253 8

digestive system 211 4

circulatory system 533 3

blood and blood-forming organs 115 2

congenital anomalies 150 2

injury by type and-or location 1385 8

4.1 Selected Results

We here explain three of the discovered subgroups, show-
ing the methods output, our description and the experts ex-
planation of the subgroup. The adjusted p–values of all
subgroups are less than 0.01.

1. A subgroup of 11 out of 115 patients from block
“Diseases of the Blood and Blood-forming Organs”
(p < 0.001)
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Methods output:
Main symptom: Anemia (probability=1)

Other interesting patient’s properties:
Distribution of BMI
On the entire data set:
mean = 23.9, standard deviation = 6.9
On the subgroup:
mean = 17.4, standard deviation = 2.1

Distribution of RACE
On the entire data set:
P(RACE=Asian Only)=0.06
P(RACE=Black/African American Only)=0.32
P(RACE=More than one race reported)=0.02
P(RACE=Native Hawaiian/Oth Pac Isl Only)=0.01
P(RACE=White Only)=0.59
On the subgroup:
P(RACE=Black/African American Only)=1

Diagnosis
Sickle-cell anemia, unspecified (probability = 0.909)
Hb-S disease with mention of crisis (probability =
0.09)

Description of the subgroup:
All of the patient from this subgroup had anaemia.
From the input variables, this subgroup significantly
differs from the entire group of patients with “Dis-
eases of the Blood and Blood-forming Organs” in the
body mass index (BMI) and the race variables. Specif-
ically, the patients from the subgroup have lower BMI
(average 17.1) and are all Black American/African by
race. From the output variables only the Diagnosis
is reported, which is for all 11 patients Sickle-cell
anaemia (one of them having a Sickle-cell anaemia
crisis).

Expert’s explanation:
Sickle-cell disease, or sickle-cell anaemia, is a life-
long blood disorder characterized by red blood cells
that assume an abnormal, rigid, sickle shape. Sickling
decreases the cells’ flexibility and results in a risk of
various complications. The sickling occurs because
of a mutation in the hemoglobin gene. Sickle cell dis-
ease is the most common inherited blood disorder in
the United States. The prevalence of the disease in the
United States is approximately 1 in 5,000, mostly af-
fecting African Americans, according to the National
Institutes of Health [NIH, 2009].

The discovered subgroup points out this known char-
acteristic of patients with sickle cell anaemia (mostly
African Americans). However, the patients in the sub-
group also have a significantly lower BMI than other
patients with diseases of the blood and blood-forming
organs.

2. Subgroup of 143 out of 533 patients from block “Dis-
eases of the Circulatory System” (p = 0.0156)

Methods output:
Main symptom: Hypertension (probability = 0.889)

Other interesting patient’s properties:
Distribution of CASTAGE
On the entire data set:
P(CASTAGE=In situ)=0.83
P(CASTAGE=Local)=0.17
On the subgroup:
P(CASTAGE=Local)=1

Diagnosis = Unspecified essential hypertension
(probability = 0.74)

Description of the subgroup:
This is a subgroup of more than 20% of patients with
the reason for visit “Diseases of the Circulatory Sys-
tem”. 89% of these patients had the main symptom
of hypertension. All of these patients were also diag-
nosed with cancer at the local stage. The diagnosis of
most of the patients from the subgroup was unspeci-
fied essential hypertension.

Expert’s explanation:
This is an interesting subgroup because all the patients
with hypertension also have cancer at the local stage.
Hypertension is one of the known cardiovascular side
effects of cancer treatment[Yeh and Bickford, 2009].
However, hypertension in this large group of patients
is most likely not only due to chemotherapy. The as-
sociation between hypertension and cancer in this sub-
group is intriguing and would be appealing for further
research.

3. A subgroup of 19 out of 287 patients from block “Dis-
eases of the Skin and Subcutaneous Tissue” (p <
0.001)

Methods output:
Main symptom: Psoriasis (probability = 1)

Other interesting patient’s properties:
Distribution of BPDIAS
On the entire data set:
mean = 72.3, standard deviation = 13.3
On the subgroup:
mean = 85.5, standard deviation = 7.5

Distribution of BMI
On the entire data set:
mean = 29.0, standard deviation = 10.5
On the subgroup:
mean = 46.1, standard deviation = 15.0

Diagnosis = Other psoriasis (probability = 1)

Description of the subgroup:
This is a smaller subgroup of 19 patients with dis-
eases of skin and subcutaneous tissue. All of them
had the symptoms and diagnosis of psoriasis. The sig-
nificant characteristics of this group are also high di-
astolic blood pressure (average value of 85) and a very
high body mass index (BMI, average value 46.1, nor-
mal values from 20 to 25).
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Expert’s explanation:
Obesity is a significant risk factor for psoriasis and
body mass index (BMI) correlates with disease sever-
ity. The reason might be in the higher levels of
adipokines such as leptin and resistin in overweight
individuals that correlate with higher levels of inflam-
matory cytokines and lead to a more severe course of
disease[Johnston et al., 2008].

5 Conclusions

With the chosen subgroup discovery approach several in-
teresting subgroups of patients were discover from the The
National Ambulatory Medical Care Survey (NAMCS) data.
However, it is important to stress, that the definition of the
metric has a large impact on the results. In our first attempt
all the variables were treated equally and consequently the
resulting subgroups did not reflect reasonable relations. It
is senseless to expect that patient characteristics, for exam-
ple sex or race, have the same impact on the physician’s
diagnosis as the major reason for visit. On the other side,
we have to consider all the relevant information. Therefore,
the choice of suitable weights in the definition of the metric
plays a crucial part in the analysis of medical data.
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